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Abstract

A set of vertices S in a graph G is a dominating set, if
any vertex of G — S is adjacent to some vertex in S. The
domination number, ¥(G), of G is the minimum cardi-
nality of a dominating set of G. The subdivision of an
edge uv is the operation of replacing uv with a path uwv
throughout a new vertex w. A graph G is domination
critical upon edge subdivision if the domination num-
ber increases by subdivision of any edge. In this paper
we study domination critical graphs upon edge subdivi-
sion. We present several properties and bounds for these
graphs and then give a constructive characterization of
domination critical trees upon edge subdivision.
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1 Introduction

For notation and graph theory terminology, we in general fol-
low [3]. Specifically, let G be a graph with vertex set V(G) =V
of order |V| = n and size |[E(G)| = m, and let v be a vertex in
V. The open neighborhood of v is Ne(v) = {u € V |uv € E(G)}
and the closed neighborhood of v is Ng[v] = {v} U N(v). The
degree of v is degs(v) = |Ng(v)|. If the graph G is clear from
the context, we simply write N(v) and deg(v) rather than Ng(v)
and dg(v), respectively. For a set S C V/, its open neighborhood
is the set N(S) = UyesN(v), and its closed neighborhood is the
set N[S] = N(S)US. A set of vertices S in G is a dominating
set, (or just DS), if N[S] = V(G). The domination number,
v(G), of G is the minimum cardinality of a DS of G. If S is
a subset of V(G), then we denote by G[S] the subgraph of G
induced by S. A set of vertices S in G is an independent dom-
inating set, if S is a DS and the induced subgraph G[S] has no
edge. The independent domination number, i(G), of G is the
minimum cardinality of an independent dominating set of G.
A set S C V(G) is a 2-packing of G if for every two different
vertices 7,y € S, N{z] N N[y] = 0. The 2-packing number p(G)
of a graph G is the maximum cardinality of a 2-packing of G.

Let S be a DS in a graph G and let v € S. A vertex w € V(G)
is an S-private neighbor of v if N[w] NS = {v}. Further, the
S-private neighborhood of v, denoted pnfv, S], is the set of all
S-private neighbors of v.

A cycle on n vertices is denoted by C,, while a path on n vertices
is denoted by P,. We denote by K, the complete graph on n
vertices. An r-partite graph G is a graph whose vertex set V(G)
can be partitioned into r sets of pair-wise non-adjacent vertices.
For positive integers pi,pa, ..., D, the complete r-partite graph
Ky, pa,..p 18 the r-partite graph with partition V(G) = VUV,U
...UV, such that |V;| = p; for 1 < i < r and such that every two
vertices belonging to different partition sets are adjacent to each
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other. A star is a complete bipartite graph of the form Kj,. A
vertex of degree one is called a leaf, and its neighbor is called a
support verter.

The subdivision of an edge wv is the operation of replacing uv
with a path uwv throughout a new vertex w. In this paper we
denote by G° the graph obtained from G by subdividing the

edge e € E(G).

When a graphical parameter is of interest in an application, of-
ten times it is important to know how the parameter behaves
when the graph is modified. For instance, the effects of remov-
ing or adding an edge and removing a vertex have been consid-
ered on parameters such as connectivity, chromatic number and
domination number. Several authors studied graphs for which
a domination parameter such as domination number, and total
domination number changes under removal of a vertex, removal
of an edge, contracting of an edge and adding an edge. Thus
the are several varieties of critical and stable graphs upon re-
moval of a vertex, removal of an edge, contracting of an edge
and addition of an edge. For references of the critical concept
on domination see for example [1, 2, 4, 5, 6].

In this paper we will study domination critical graphs upon sub-
division of an edge. A graph G is domination critical upon edge
subdivision if the domination number increases by subdivision
of any edge. We present several properties and bounds for these
graphs and then give a constructive characterization of domina-
tion critical trees upon edge subdivision.

The 2-corona of a graph H, denoted by H o P, is the graph of
order 3|V (H)| obtained from H by attaching a path of length
2 to each vertex of H so that the resulting paths are vertex-
disjoint. The following is useful.

Theorem 1.1. For any graph G, p(G) < 4(G).

103



2 General results and bounds

We begin with investigation of the affection of subdivision of an
edge on the domination number.

Proposition 2.1. For any edge e in a graph G, v(G) < v(G®) <
v(G) + 1.

Proof. Let e = zy € E(G), and zwy be the subdivision of e. Let
S be a y(G®)-set. If w & S, the S is a DS for G, and if w € S,
then (S—{w})U{z} is a DS for G. Consequently v(G) < v(G*®).
On the other hand if D is a 7(G)-set, then DU {w} is a DS for
Ge implying that v(G®) < v(G) + 1. O

We call a graph G, domination critical upon edge subdivision, or
just ysg-critical, if y(G¢) > v(G) for any edge e € E(G). Thus if
G is a vsg-critical, then for any edge e, v(G¢) = v(G)+1. If G is
a 7sq-critical graph and v(G) = k, then we call G, k—~,q4-critical.

Proposition 2.2. Any graph G of order n > 3 with v(G) =1
1S Ysq-cCritical.

Proof. Assume that G is a graph of order n with 7(G) = 1. Let
S = {z} be a v(G)-set. Then deg(z) =n —1. Let e € E(G).
If e = zy, where y € N(z), and zwy be the subdivided edge
of G¢, then any v(G®)-set intersects {z,w,y}. If v(G®) =1
and D = {a} is a ¥(G®)-set, then a € {z,w,y}. Ifa = z,
then a does not dominate y. Thus a # z, and similarly a # y.
Thus a = w. This implies that G = P,, a contradiction. Thus
4(G¢) > 2. On the other hand {z,y} is a DS for G¢, implying
that v(G®) = 2 = y(G) + 1. Next assume that e = yz, where
¥,z € N(z). Similarly, we obtain that v(G*) = 2 = v(G) + 1.
Thus G is ~ysq-critical. O

Corollary 2.3. For any n > 3, K, is ysqa-critical.
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In the next lemma we present some classes of «,4-stable graphs.

Lemma 2.4. (1) P, is ysq-critical if and only if n =0 (mod 3).
(2) Cy, is Ysa-critical if and only if n =0 (mod 3).

(3) If ny < mp < ... < g, then Kpyn,,..n, 5 Ysa-critical if and
only if ny = 1.

Proof. Since v(P,) = v(C,) = [3, (1) and (2) follows immedi-
ately.

(3) Let X1, Xa,..., Xk be the partite sets of G = Kpjn,,..n,-
Assume that n; > 1. Thus 4(G) = 2. Let e = zy be an ar-
bitrary edge of G. Then {z,y} is a DS for G® implying that
Y(G) =(G°). o

Corollary 2.5. For anym > 1, there is a m—-y,4-critical graph.

Proof. For m =1, K, is 1 — ~yg-critical, for n > 3. For m > 2,
K, + Kn-1 is m — y,q4-critical graph, for n > 3. O

We now give a characterization for «.4-critical graphs.

Theorem 2.6. A graph G is vysq-critical if and only if any v(G)-
set is a 2-packing.

Proof. (=) Let G be a ~y,4-critical graph, and let S be a ¥(G)-
set. If S is not a 2-packing, then there are two vertices z,y € S
such that d(z,y) < 2. If d(z,y) = 1, then S is a DS for G*¥, a
contradiction. Thus d(z,y) = 2. Let 2 € N(z) " N(y). Then S
is a DS for G*#, a contradiction.

(<=) Let any y(G)-set be a 2-packing. Toward a contradiction
assume that G is not y,g-critical. Thus there is an edge e = zy
such that v(G®) = ~v(G). Let zy € E(G) be subdivided to
zwy € E(G™), and let S be a y(G*¥)-set. Since w is dominated
by S, SN {z,y,w} #0.

If y € S, then z is not a leaf, since otherwise there is a v(G)-
set which is not a 2-packing. We may assume, without loss of
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generality, that {z,w} NS = 0, since otherwise we obtain a
v(G)-set which is not a 2-packing. Since z is dominated by S,
N(z)NS #0. Let z; € N(z) N'S. Then S is a v(G)-set which
is not a 2-packing, a contradiction. We deduce that y ¢ S, and
Similarly = &€ S.

Thus w € S. If N(y)N (S — {w}) # 0 or N(z) N (S —{w}) #0,
then (S — {w})U{y} or (S — {w})U{z}, respectively, is a v(G)-
set which is not a 2-packing, a contradiction. Thus N(y)N (S —
{w}) = 0 and N(z) N (S — {w}) = 0. If [V(G)| = 2, then G
is not 7.q-critical, thus |V(G)| > 3. Without loss of generality
assume that deg(y) > 2. Let y; € N(y) — {w}. There is a
vertex y» € N(y1) N S, since S is a DS. Now (S — {w}) U {y} is
a v(G)-set which is not a 2-packing, a contradiction. O

Corollary 2.7. If G is a 7ysa-critical graph, then v(G) = i(G) =
p(G).

Proof. Let G be a v4-critical graph. Let S be a v(G)-set. By
Theorem 2.6, S is a 2-packing. This implies that p(G) > |S].
By Theorem 1.1, 7(G) = p(G). Furthermore, since S is an
independent dominating set, we have i(G) < |S|, which implies
that v(G) = i(G). O

Corollary 2.8. If G is a vsq-critical graph with v(G) > 1, then
diam(G) > 3.

Proof. Let G be a ysq-critical graph with v(G) > 1. Let S be
a v(G)-set. By Theorem 2.6, S is a 2-packing. Let z,y € S.
Assume that diam(G) < 2. Then N(z] N N{y] # 0, a contradic-
tion. a

The following is a direct consequence of Theorem 2.6.

Proposition 2.9. Let G be a y,q-critical graph and S = {z1, 23,
Ty} be ay(G)-set. Then {N|zy], N[z3), ..., N[zyc)]} is a par-
tztzon of V(G), and >_1_,(1 + deg(z;)) = n.
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A subset S of vertices of G is called a perfect code, or efficient
dominating set, if for every v € V(G), |N[v] N S| = 1. For the
coding theorists the important question is to decide if a graph
G has a perfect code.

Corollary 2.10. If a graph G is ysq-critical then it has a perfect
code.

Note that the converse of Corollary 2.10 is not correct, since P
has a perfect code but it is not 7,4-critical.

Proposition 2.11. A regular graph G is ~ysq-critical if and only
if(G) = Faw

Proof. Let G be a regular graph. If G is 4-critical, then by
Proposition 2.9, v(G) = Tag)- Conversely assume that 4(G) =
7A@ U G is not ys-critical, then there is a 7(G)-set S such
that S is not a 2-packing. Then S dominates less than |S|(1 +
A(G)) = n vertices of G, a contradiction. O

Observation 2.12. A graph G of order n is n — ~.4-critical if
and only if G = K,.

Proposition 2.13. There is no (n — 1) — ~v4-critical graph of
order n.
Proof. Since v(G) =n — 1, we have that G = Ky + K,,_o. Now

clearly G is not ~,4-critical. a

Theorem 2.14 (Ore, [3]). If a graph G of order n has no iso-
lated vertez, then v(G) < §.

Theorem 2.15. A graph G of order n is (n — 2) — 7,q4-critical
if and only if G € {Ps + K,_3,C3 + K,_3}.

Proof. First it is easy to see that Py + K,_3 and Cs + K,_3
are (n — 2) — 7yyq-critical. Let G be a (n — 2) — vy4-critical
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graph of order n. If G is connected, then by Theorem 2.14, we
obtain that G = P,, a contradiction, since P; is not ~y,q4critical.
Thus G is disconnected. Let G; be the component of G with
maximum edges. If [V (G,)| > 5, then by Theorem 2.14, v(G) <
2+n—5=n—3, a contradiction. Thus |V(G;)| £ 4. Assume
that |V(G1)| = 4. Then Theorem 2.14 implies that G — G, has
no edge, and v(G;) = 2. Furthermore, since G is 7q-critical, we
obtain that G, is vs¢-critical. But this is a contradiction, since a
2 — 7,q-critical graph has at least 6 vertices. Thus |V(G1)| < 3.
Similarly we can see that |V(G1)| € {1, 2}, and so |V(G1)| = 3.
If there is a component Gy # G; such that E(G;) # 0, then by
Theorem 2.14, v(G) < n — 2, a contradiction. Thus G — G has
no edge. Consequently G € {Ps + K,-3,C3 + K._3}. d

Observation 2.16. If G is a ysq-critical graph and S is a v(G)-
set, then for any vertez € S, |pn|z, S]| = deg(z) + 1.

Theorem 2.17. There is no induced subgraph characterization
of Ysq-critical graphs.

Proof. Let G be a graph of order n, V(G) = {v1,va, ...,v,}, and
H=GoP,. Let V(H) = {vl,vq,...,v,} U{zili = 1,2, ...,n,j =
1,2}, where for ¢ = 1,2,...,n, z; is adjacent to v;, and i is
adjacent to z;;. Let S be any DS of H. Then SN {1, Tin} # 0
for i = 1,2,...,n. This implies that |S| > n. On the other hand
{z11,%21, .-, Tn1} is a DS for H, implying that v(H) = n. If
there is a DS S such that S is not a 2-packing, then |S| > n,
since SN{zi1, Ti2} # 0 for i = 1,2,...,n. Thus H is a ~y,g-critical
graph. O

Let L(G) be the set of all leaves of G.

Theorem 2.18. Let G be a ~ysq-critical graph of order n and
6*(G) = min{deg(v)|v € V(G) — L(G)}. Then v(G) < O
The equality holds if and only if G has a v(G)-set S such that
any vertex of S is of degree 6*(G).
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Proof. Let S be a v(G)-set. By Observation 2.16, for any vertex
in S, deg(v) > 1. Any vertex of S dominates at least 6*(G) +
1 vertices of G (including itself). Thus S dominates at least
|S|(6*(G) + 1) vertices of G, and so y(G) < T

Now we prove the equality part. Let G be a «,4-critical graph
with v(G) = 7o Thus n = (6*(G) + 1)v(G). Let S be a
v(G)-set. By Observation 2.16, any vertex of S dominates at
most 6*(G) + 1 vertices of G (including the vertices of S). If
there is a vertex z in S such that deg(z) > §*(G) + 1, then =
has at least 6*(G) + 1 external private neighbors. Since n =
(0*(G) + 1)|S|, we obtain that there are two vertices u,v € S
such that N(u) N N(v) # 0. But then S is not a 2-packing, a
contradiction by Theorem 2.6. Thus any vertex of S is of degree

5(G).

Conversely, since any vertex of S is of degree §*(G), we find that
S dominate exactly (6*(G) + 1)|S| vertices of G. Consequently,
n = (6*(G) + 1)|S] = (6*(G) + 1)¥(G). O

Since 6*(G) > 2, we have the following.

Corollary 2.19. If G is a ~sa-critical graph of order n, then
Y(G) £ %, with equality if and only if G has a v(G)-set S such
that any vertex of S is of degree 2.

Note that the vertices outside S in the above theorem are not
necessarily of degree §*(G). For example let G be obtained from
a star Ky, for n > 2 by subdividing n — 1 edge, twice, and
subdividing the remaining edge, once. Then v(G) = %, the
vertices of the unique v(G)-set are of degree 2, but G has a
vertex of degree n > 2.

Since for any graph G, v(G) > 1_,_+(G), we obtain the following
which the proof for the equality part is similar to the proof of
Theorem 2.18.
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Theorem 2.20. If G is avs-critical graph then v(G) 2 mRmy
with equality if and only if G has a v(G)-set S such that any
vertez of S is of degree A(G).

Let D be the class of all graphs G of diameter diam(G) > 2,
with a diameterical path P;z1Zs...Zdiam(G)+1, Such that for any
vertex v € V(G) — V(P), there is a unique integer j > 0 such
that v € N(z3;42).

Theorem 2.21. If G is a ysq-critical graph then 4(G) > LX&am(@),
with equality if and only if G € D.

Proof. The lower bound v(G) > lﬁi‘%’!‘_@ is obvious, since for
any graph G this bound holds. So we prove the next part. Since
P = Pdiam(G)+1: 'Y(G) > 'Y(Pdiam(G)+l) = égﬂg,g&—l' On the
other hand {z3i42/0 < 7 < %} is a DS for G. Thus 7(G) =

L+diemi@  Conversely, assume that ¥(G) = Lrdiem(©)  Since

P = Piom@)+1, and Y(Paiam(c)+1) = m’"g% any vertex of
G — P is adjacent to some vertex Tj;ji, where 0 < j < %.
If there are two different j;, 7o such that a vertex a € G — P
is adjacent to 3j,+2 and zsj,+2, then diam(G) < diam(P), a

contradiction. 0

3 Trees

In this section we obtain a constructive characterization for all
~sa-critical trees. Let 7 be the family of unlabelled trees T that
can be obtained from a sequence T3, ..., T; (j > 1) of trees such
that Ty is a star K, for r > 2, and, if j > 2, T;4; can be
obtained recursively from 7; by the following operation.

e Operation O. Let T; € T and v be a vertex of T; such
that v does not belong to a v(7})-set. Then the tree T;
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is obtained from T; by joining v to a leaf of an star K,
for some m > 2.

Theorem 3.1. A tree T is vysq-critical if and only if T € 7.

Proof. (=) We proceed by induction on the domination num-
ber (T') of a ysg-critical tree T to show that T' € 7. If y(T') = 1,
then clearly T is a star. Since P, is not «y,q4-critical, T is a star of
order at least three, and so T' € 7. Suppose the result is true for
all ~ygq-critical trees T' with domination number less than v(T').
Let T be a vs4-critical tree with v(T) > 1. Since v(T) > 2, if
diam(T) < 4, then there is a y(T')-set which is not a 2-packing,
a contradiction. Thus, diam(T) > 5. Let g —z; — T2 — ... — Tk
be a diameterical path in T’ between two leaves z¢ and z, where
k = diam(T). We root T at zo. Let S be a (T')-set containing
Tx—1. Since S is a 2-packing, N(zx_;) NS = 0.

If deg(zk—2) > 3, then z,_5 has some children different from
Zg—1 and zx_3. Let a # z4_;, Zr_3 be a child of zx_y. Since S
is a y(T)-set, zx_p & S and diam(T) = k, we may assume that
a € S. But then S is not a 2-packing, since zx_, € S. This
contradiction implies that deg(zx—2) = 2.

Let Ty and T, be the sub-trees obtained from T by removing the
edge Tr-3Tk—2 such that z,_3 € V(T1) and z4_5 € V(T3). Note
that T is a star of order at least 3. Clearly SNV(T3) = {zx_1},
and SNV(Ty) is a DS for T;. In particular, y(T}) < «(T) - 1.
Furthermore, for any y(Ti)-set D, D U {z4_,} is a DS for T.
Thus y(T1) = ~(T) - 1.

We show that T} is ~yg-critical. Assume that T} is not 7,q-
critical. By Theorem 2.6, there is a «y(7})-set D such that D is
not a 2-packing. Then D U {zi_1} is a v(T)-set which is not a
2-packing, contradicting the fact that T is v,g-critical. Thus T}
is ygq-critical.

Since v(T1) < v(T'), by inductive hypothesis, T} € 7. We show
that no v(T1)-set contains zx_3. Suppose to the contrary that
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there is a y(T})-set A such that zx_3 € A. Then AU {z)_,} is
a v(T)-set which is not a 2-packing, a contradiction. Thus no
v(T})-set contains zx—3. Now T is obtained by joining zx_; to
Tr-3,andso T € 7.

(<=) We proceed by induction on the domination number «(T")
of a tree T € T to show that T is vsg-critical. If ¥(T") = 1, then
T is an star of order at least 3, and obviously by Proposition 2.2,
T is ~y,q-critical. Hence, the result is true for the base case when
¥(T) = 1. Suppose the result is true for all trees T € 7 with
domination number less than v(T"). Let T' € 7 be a tree with
4(T) > 1. Then T can be obtained from a sequence Tj, ..., T;
(j > 1) of trees such that T is a star Ky, forr > 2, and, if j > 2,
then T4, can be obtained recursively from T; by the operation
0. Since ¥(T) > 1, T is not a star, and so j > 2. Let v be
a vertex of T;_; such that v does not belong to a y(Tj_1)-set.
Then the tree T} is obtained from T;_; by joining v to a leaf of
an star K} ,, for some m > 2. Let o be the central vertex of K,
and let S be a y(T})-set. If D is a (T;-1)-set, then DU {o} is
a DS for T}, implying that v(T;) < v(Tj-1) + 1.

We now show that S = S* U {0}, where S* is a v(T;_1)-set.
Assume that o € S. Since v is not in any y(Tj-1)-set of Tj_, it
follows from [1] that |(V (T;-1) — {v}) N S| = v(T;-1). Further-
more, |(V(K1m)U{v})NS| > 2. This shows that v(T}) = |S| >
¥(Tj-1) + 2, a contradiction. Hence 0 € S and S* = S — {o} is
a DS of T;_1, moreover S* is a y(T;_1)-set. This means that for
any v(T;)-set S, S = 5* U {0}, where S* is a y(T;_1)-set.

Since ¥(T;—1) < v(T = Tj), by the inductive hypothesis T}, is
~sq-critical. By Theorem 2.6, S* is a 2-packing. Now it is obvious
that S is 2-packing. By Theorem 2.6, T} is ~y4-critical. a
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