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Abstract

Consider a simple undirected graph G = (V, E). A family of subtrees,
{Tv}vev, of a tree T is called a (T ;¢)-representation of G provided
uv € E if and only if [T, NT,| > t. In this paper we consider (77;¢)-
representations for graphs containing large asteroidal sets, where 7
is a subdivision of the n-star K n. An asteroidal set in a graph G
is a subset A of the vertex set such that for all 3-element subsets
of A, there exists a path in G between any two of these vertices
which avoids the neighborhood of the third vertex. We construct a
representation of an asteroidal set of size n+Y_1_, (%) (;-2) and show
that no graph containing a larger asteroidal set can be represented.

1 Introduction

The study of graph representations is an active research area in graph
theory. Given a graph G = (V, E), a representation of G is the following
collection of objects: (1) a set S, (2) a function f : V — P(S) (the
power set of S), and (3) a function g : f(V) x f(V) = {0,1} so that
g (f(v1), f(v2)) = 1 iff viv; € E. We call S the host set, f the assignment
function, and g the conflict rule. A graph G is representable under a given
host set S and conflict rule g if there exists a suitable assignment function
f, in which case we say that G is (S; g)-representable.

Much is known about graph representations when the conflict rule depends
on the size of the intersection between assigned subsets. Such intersec-
tion representations have been studied extensively. A comprehensive list of
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authors can be found in [7].

Given conflict-tolerance ¢ = 1, all graphs are (S;1)-representable for large
enough S. A central objective in the theory of graph representations is
to find the smallest host set on which certain classes of graphs may be
represented with respect to some given conflict rule. For example, the
cycle C,, can be represented on a host set of size n. Indeed, assigning the
set {i,44+1 mod (n)} to vertex v; gives a set representation of C,,, however
there is no possible assignment of subsets from a smaller host set that will
induce C,, with t = 1.

In this paper we consider tree representations of graphs. Tree represen-
tations are a variation on the traditional graph representation. The host
is a tree, giving more structure than merely a set of elements; objects as-
signed to vertices of a represented graph are subtrees of the host tree; and
an edge exists between two vertices if and only if their assigned subtrees
intersect in ¢ or more nodes, where t is a prescribed conflict-tolerance. An
important distinction between set representations and tree representations
is that given a host tree, not all graphs have a representation where the
conflict-tolerance is ¢t = 1, even if we allow subdivision of the tree. For
example, cycles of length four or greater are always forbidden.

The classes of graphs representable using different host trees differ signifi-
cantly (see [1,2,3,4,6,8]), and are thus interesting to study. A well known
and interesting example is the result of Lekkerkerker and Boland [9]. We
first give a definition and then state their result.

Definition 1.1 An asteroidal set in a graph »
G is A C V(G) so that Vv1,vs,v3 € A, and )
Vi, 5,k € {1,2,3} with ¢,j, and k distinct,
there ezists a path between v; and v; which
does not intersect N(vi). If |A| = m, then A
is said to be an m-asteroid of G. Further-
more, if A is the mazimum size asteroidal
set contained in G, then G is said to be m-
asteroidal.

v V3
{v1,v2,v3} is an
asteroidal set in the
graph

Theorem 1.2 A graph is representable on an interval if and only if it is
chordal and non-asteroidal.

For convenience of notation, consider Kj 5, to be a subdivision of the tree
K n. In 1972 James Walter wrote his dissertation [10] on graphs repre-
sentable on K; 3 with tolerance ¢ = 1. This can be thought of as a gener-
alization of the result of Lekkerkerker and Boland, since K; 3 is a logical
extension from studying paths. Walter discovered that graphs containing
certain induced cycles and certain asteroidal configurations were not rep-



resentable under this host tree and conflict rule. Walter’s result provides
motivation for the work done in this paper, and is stated as follows.

Theorem 1.3 A graph G is (K, 3; 1)-representable iff G is chordal, at most
3-asteroidal, and for any two pairs vi,ve and u,,up of vertices contained
in asteroidal triples of G, any path connecting v, and v must be adjacent
to any path connecting u; and ug.

Given this result, it seems that cycles and asteroidal sets are interesting
structures to study while considering tree representations of graphs. It was
Jamison who stated that it would be interesting to explore what happens
if the conflict-tolerance is greater than one. In 2001, Eaton and Barbato
[1] studied representations of cycles on K, 3 with arbitrary tolerance ¢.
They described all cycles representable on K; 3 with conflict tolerance ¢,
showing that arbitrarily large cycles can be represented on X 3 at the cost
of increasing the tolerance. Their theorem is restated below.

Theorem 1.4 Fort = 3,4, and 5 the mazimum n such that C, is (K 3;¢t)-
representable is 3t — 3. For t > 6 the largest such n satisfies the following

inequality 3 . s 3
2 S<n< 42
t+t+4_‘n_4t+2t 1

1
4
A related result on cycles is due to Eaton and Faubert [3]. The two consid-
ered tree representations where the host tree is a caterpillar. That is, a tree

in which every node is either on, or adjacent to, its longest path. Again,
we provide a definition and then state their result.

Definition 1.5 We say that G € cat{h,t] if there exists a caterpillar with
mazimum degree h such that G is representable on this caterpillar with
tolerance t.

Theorem 1.6 If n < (h —2)(t —1)+2 with h > 3 and t > 2, then
Ch € catlh,t].

The two went on to show that C,, € cat[4, 3] for all values of n. They also
completely classified the graphs which are in cat(2,t] and cat[3,1] [2].

Going back to the result of Eaton and Barbato, note that for k¥ > 6, the
cycle C) contains an asteroidal set of size L-’é] That is, their result on
cycles implies that graphs containing arbitrarily large asteroidal sets are
representable on Ky 3. We explore this result further, and construct the
largest asteroidal set representable on K , with arbitrary conflict tolerance
t > 1 and n > 3. The remainder of this paper will be devoted to proving
the following main theorem and discussing a few open problems.



Theorem 1.7 Fort > 1 and n > 3, an asteroidal configuration of size

n+ p_o (B)(E22) which is (KCy,n;t)-representable eists. Furthermore,
any graph containing a larger asteroidal set is not (K, »;t)-representable.

Note that any terms not defined in this introduction, but used throughout
the paper, can be found in [11].

2 Construction of the Graph Containing the
Asteroidal Set

2.1 Vertices and their Assigned Subtrees

For convenience, we will refer to the graph we are constructing as the target
graph. Recall that our host tree is K . It shall be sufficient to assume
that each branch of the host tree contains ¢ nodes. For clarity, the word
node will be used to indicate a vertex of the host tree, distinguishing these
from vertices of the target graph. We call the unique node of degree n
the branching node of the host tree, and the branches of the host tree are
labeled with the integers 0, 1, ..., — 1. Furthermore, within this paper, any
reference to the size of a subtree or of an intersection should be interpreted
in terms of number of nodes. It should be noted that each subtree defined
below will correspond to a vertex in the target graph. The vertex set of the
target graph will be described in terms of four disjoint subsets V, W, P, and
Q. Note that the subscripts of the vertices in V and P will give information
as to which branches their corresponding subtrees exist on, and should be
interpreted modulo n. The desired asteroidal set will be a subset of the
vertex set of the target graph. The description of each set of vertices below
is accompanied by an image, giving an example of the subtree representative
of one of the vertices from that set. The sample host tree X, 3 is shown;
the tolerance used in the examples is ¢ = 5; and the selected subtrees are
denoted by thick edges and filled nodes.

1. Let V be a collection of vertices represented
by distinct subtrees, each of size exactly t,
and contain the leaf of a branch of Kjn.
These subtrees are paths on the exterior por-
tion of each branch of K; . Since there are
n branches of K, ,, we will have n vertices
in V. We will refer to these vertices later as
V0, .-.» Un—1, Where the subscripts denote the
branch on which the corresponding assigned
subtree exists.

The subtree
assigned to one of
the vertices in V



2. For 2 £ k < n, we define W/, to be the set of vertices represented
by distinct subtrees which are of size exactly ¢ and exist non-trivially
on exactly k branches of Ky ». There are (})(;-2) such subtrees, and
therefore the same number of corresponding vertices. We take W to
be the union, over all values of k, of the sets Wk Clearly g Py S

forms a partition of W, and therefore W| = ke (B (523)- Note
that we assume the convention that (}) = 0 for b > a.
The subtree The subtree The subtree
assigned to one of assigned to one of assigned to one of
the vertices in W, the vertices in W; the vertices in P

3. Construct P, the collection of all vertices representable by subtrees
existing non-trivially on exactly two consecutive branches of K,
and which extend out to the leaf node on each of these branches.
We define vertex p;, whose assigned subtree we denote by T, and
contains the entirety of branches i andi+1for0<i<n-1.

4. Let Q be a collection of vertices, each assigned a subtree which is an
extension of a subtree assigned to a vertex in W. That is, for each
vertex in W we create k(w) (recall that k is the number of legs of
K1,n» on which T, the subtree assigned to w, lives non-trivially) new
vertices in Q. Each of these vertices is assigned a subtree which has
been created by elongating, out to the second to last node, exactly
one of the pre-existing legs of the subtree assigned to the correspond-
ing vertex w. Consider the following example where we show T,
the subtree assigned to one of the vertices from W and one of its
extensions, a subtree assigned to a vertex in Q.



T, the subtree assigned One of the three extensions of
to the vertex w € W Tw, giving the subtree assigned
to one of vertices in Q

2.2 Basic Claims About Adjacencies

Consider the graph G = (WVUWUPUQ, E), where E is the edge set
defined by the conflict tolerance relationship. Given the assignment of
subtrees of K, from the previous section, we have the following claims
and observations about E. Note that we will use the notation T} to refer
to the subtree assigned to vertex z of G.

Observation 2.1 V is an independent set.

Observation 2.2 There are no edges between the vertices of Q and V.
Observation 2.3 N(v;) = {pi-1,p:}

Claim 2.4 W is an independent set.

Proof. Note that for each w € W, we have that |T},| = t. Let w;,w; be
distinct vertices in W. Then their assigned subtrees are distinct. That is,
there exists at least one node of K;, which is a node of Ty, UT,,;, but
which is not a node of Ty, N Ty,. This gives that [Ty, N Ty, | < |Tw,| = t.
Therefore, given any two vertices from W, their assigned subtrees have an
intersection of fewer than ¢ nodes, and thus the vertices cannot be adjacent.
In short, W is an independent set. [ |

Observation 2.5 VUW is an independent set.
Claim 2.6 Vertices p; and p; are adjacent if and only if j € {i — 1,7+ 1}.

Proof. If j #i—1ori+1 then p; and p; are assigned subtrees which
exist on distinct pairs of branches of K1 ». That is, their assigned subtrees
intersect in exactly a single node (the branching node). Since ¢t > 1, we
have that p; and p; are not adjacent. [ |
Claim 2.7 Let w € W, then N(w)NP # @ iff T, exists non-trivially only
on two consecutive branches of Ky . Furthermore, if IN(w)NP| # 0, then
[N(w)nP| =1.
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Proof.  Consider p € P and w € W with pw € E. Then [T,NT,| > t.
However, since |T,| = t, this implies that T, N T, = T,,. Now, since T,
exists on at least two branches of K, 5, and we know that T, C T}, then
T, exists non-trivially on the same two branches of K, , as T}, (which are
indeed consecutive).

If T, exists non-trivially only on two consecutive branches of K, (call
them branch ¢ and i + 1), then Ty, C T;,,. Therefore, |T,, N Tp,| = ¢,
implying that p; € N(w). n
Claim 2.8 If q is a vertez from Q, then q and p; are adjacent iff Ty was
obtained from some T,, by elongating branch j or branch j + 1.

Proof.  1f T, exists non-trivially on exactly two branches of K; ,, then
the result follows directly from the previous claim. We therefore assume
that T, exists non-trivially on at least 3 branches of K;,. Let gp; € E.
Assume that T, was obtained from T, by an elongation of branch i, where
i ¢ {j,j +1}. Now, since T, exists non-trivially only on branches j and
J+1of Kyn, we have aj +a;41 >t —1, where a; and a;, are the lengths
of the legs of T, on branch j and j + 1 of K; ,. Furthermore, since i % j
and ¢ # 7+ 1, we must have that the previous statement is also true about
T,. This, however, gives a contradiction since |T,| = ¢ and T, lives non-
trivially on at least 3 branches of Ky . ]

Claim 2.9 For wy,wy, € W, there exists 1 € Q, with the property that
q1 € N(w) \ N(ws).

Proof. Let wy,ws € W with w; # ws. Assume that N(w;) C N(ws).
Now, consider Q,, the set of all ¢ € @ so that T, can be obtained via an
elongation of one of the legs of Ty,. Then, since N(w;) C N(ws), we know
Qu, C N(w;). That is, Vg € Qu,,|Tw, NT,| > t. However, |Ty,| =t, so
this implies T\, N'Ty = Ty, Vg € Q,,,.1 This gives us that T, C Ngeg,, To-
However, we know that NeeQ., Iy is exactly T,,. Therefore, we have that
Ty, C T,; but, since [Ty, | = | w,f, we know T, =T,,. Thus w; = ws, a

contradiction. This gives that there must exist a g; € N(w;)\ N(wz). W

2.3 Verification of the Asteroidal Properties of VU W

Theorem 2.10 YV U W is an m-asteroidal set of the graph G which has
vertez set VUWUPU Q and edge set E, wherem=n+3;_, () (;:2;)

Proof. 'We recall that an asteroidal set A is an independent set which has
the property that for any selection of 3 vertices, a;,az,a3 € A there is a
path connecting any two of them, which avoids the neighborhood of the
third. ,
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Firstly, notice that C = vopov1..., Un—1Pn—1v0 is & cycle in G. This cycle will
be used extensively in the verification of the properties of the asteroidal set.
Also worth noting is that, for convenience of notation we will use P(u,v)
to denote a path in G connecting the vertices u and v instead of the more
commonly used (uv)-path. The following claims 2.11 through 2.16 verify
that this definition is satisfied on YV U W.

Claim 2.11 For vy,vq,v3s € V, Vi, 5,k € {1,2,3}, with i,j, and k distinct,
there exists a path, P(v;,v;), so that P(v;,v;) N N(ve) = 0.

Proof. Let vy,vs,v3 € V. Now, we construct a path between v; and v;
which avoids N(vk) = {pk—1,Px}. Then the cycle C' provides two paths
from v; to v;, one of which must avoid the sequence pxvikpi+1. v

Claim 2.12 For vy,v2 € V, w € W, there exists a path, P(v1,v3), so that
P(v1,v2) N N(w) = 0.

Proof. The cycle C connects the vertices v, and vz via two paths. Now,
recall that N(w) contains at most one of the vertices on this cycle. If
N(w) NP = @, then we take either portion of the cycle as our path. If
N(w)NP is non-empty, then there must be exactly one vertex p € N(w)NP,
so we traverse the portion of the cycle from v; to v in the direction which
avoids p. This gives us the desired path. v

Claim 2.13 For vj,v € V, w € W, Vi,j € {1,2} with i and j distinct,
there ezists a path, P(v;,w), so that P(v;,w) N N(v;) = 0.

Proof. We begin from w. Let Q,, denote the collection of all ¢ € @, so that
T, was obtained from T, by elongating one of its legs. Now, notice that
|N(w) N Q| > 2, so there exists q1,g2 € N(w) N Qy. Then, recall Vg € Q,
there exists two vertices p.,p» € N(g) N P. Since g1 and g, are distinct,
there are at least three distinct vertices pg,py, e € N{(q1) U N(g2). Also,
recall that N(v;) NP = {p;j—1,p;}. Therefore, there exists p € {Pa, b, Pc}
with p ¢ {pj-1,p;}. We take the path from w to this vertex p. We again
traverse the path from vertex p to v; which uses the portion of the cycle C
avoiding the sequence p;_1v;p;. v

Claim 2.14 For wy, w2, w3 € W, Vi, 4,k € {1,2,3}, with 4,5, and k dis-
tinct, there exists a path, P(w;,w;), so that P(w;,w;) N N(w) = 0.

Proof.  Recall the existence of g; € N(w;) so that ¢; ¢ N(wx), and
gj € N(w;) so that g; ¢ N(wi). We traverse from w; to ¢; and from w;
to g;. If gi = g;, then we have the desired path already, so assume they
are not equal. Now, g; and g; may be adjacent, however, we are unsure,
so we travel on. Recall that N(wy) may contain at most one vertex from
P. Also, recall that each vertex from Q is adjacent to exactly two vertices
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from P. Therefore we can extend from g; to at least one of its neighbors p;
and from g; to at least one of its neighbors p; without crossing into N (wy).
Again, if p; = p; we have the desired path, so we assume this is not the
case. Now, we are on the cycle C. If N(wx)NP = 0, then we connect p; to
p; via either portion of the cycle. Otherwise N(w) NP is a single vertex,
P, and we connect p; to p; by a path along the cycle in the direction which
avoids p. In either case we have completed a path connecting the vertices
w; and w; which avoids N (wy). \ 4

Claim 2.15 For w;,ws € W, v € V, there ezists a path, P(w),ws), so
that P('wl,wg) n N(‘U) =0.

Proof. If N(w;) N N(wy) # @ then we can draw a path from w; to wy
via their common neighbor. Recall that there are no edges between the
partitions V and Q, so this path satisfies the requirements. Otherwise,
N(w1) N N(wg) = @. Then, similar to the proof of claim 2.13, there exist
paths from w; to p, and from w; to py where p,,py ¢ N(v). Now, we can
use the cycle C to connect the vertices p, and p, with a path that does not
intersect N(v). v

Claim 2.16 For wy, w2 € W, v € V, Vi,j € {1,2} with i and j distinct,
there exists a path, P(w;,v), so that P(w;,v) N N(w;) = .

Proof. We begin from w;. Recall that there exists ¢ € N(w;), so that
g ¢ N(w;). We move from w; to g. Also, recall that N(w;) contains at
most one vertex in the partition P, and that g is adjacent to exactly two
vertices from P. That is, we can extend from g to one of its neighbors in P
without crossing into N(w;). Now we find ourselves again on the cycle C.
If N(w;) NP = 0, we travel either half of the cycle from p to v. Otherwise,
N(w;) NP consists of a single vertex, and we travel the half of the cycle
connecting p and v which avoids this vertex. The union of the two selected
paths provides a single path from w; to v with the desired property. v

We have shown that YUW satisfies the definition of an asteroidal set. Recall
that V| = n and [W| = 37, (3)(}-2), and that VN W = 0. Therefore

we have exhibited an asteroidal set of size n + Y _, () (;22). [
3 No Larger Asteroid is Representable Under
the Restrictions of n and ¢

In the current section we show that the construction of a larger asteroidal
set under the current restrictions of n and ¢ is impossible. Note that showing
this will prove the following theorem:
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Theorem 3.1 If G is a (Kyn;t)-representable graph then G is at most
(n + ra (BG2 )-asteroz’dal.

Proof. Firstly, observe that an asteroidal set must be an independent
set. Furthermore, it is easily seen that at most Y p_, (3)(;23) vertices
may be assigned subtrees which contain the branching node of K, , such
that no two subtrees intersect in ¢ or more nodes. Now, note that we have
almost ‘saturated’ the branching node of the host tree with subtrees while
constructing the asteroidal set of size n + Y ., (3) (:23).

Let M be the set of vertices which are assigned subtrees containing the
branching node and extending non-trivially only on a single branch of X, ..
We need only to consider whether the vertices of M and V can coexist in

the same asteroidal set.

Claim 3.2 Let m; be a vertex with assigned subtree, T.y;, existing non-
trivially only on branch i of Ky, and which contains the branching node
of Ki,n. Then, any path from v; to another asteroidal vertexr a, must be
adjacent to m;.

Proof. Note that by Lekkerkerker and Boland’s result, @ must have a
non-trivial intersection with a branch of K; , other than branch i. If not,
then {v;, m;,a} is an asteroidal triple which is represented on an interval,
a direct violation of their theorem.

We consider any path beginning at v; and ending at a. Along this path there
must be a vertex ug, the last vertex along the path whose assigned subtree
does not contain the branching node of K ,. Now, we must have that Ty, ,,
contains the branching node of the host tree, and also has an intersection of
size at least ¢ with T,,,. Therefore, either Trn, C Ty, or Ty, NTy, C T,
Recalling that [T}y, | = t gives that either |T;,,NT,,,,| 2 tor |[Tn,NTy,| 2 ¢,
inducing either the edge ugs+3m; or ugm;. That is, any path connecting v;
with another asteroidal vertex must be adjacent to the vertex m;. v

The previous claim directly implies that the vertices m; and v; cannot be
part of the same asteroidal set. A similar agument can be used to show the
same result about v; and a vertex whose subtree is a proper sub-path of the
i*h branch of the host tree. This implies that per branch we may only have
one vertex whose assigned subtree exists non-trivially only on that branch,
no matter the configuration of subtrees. Note that this property is satisfied
in the configuration constructed in section 2. |

Combining the result from section 2 with this result, we have shown the
main result from the introduction, and have rediscovered the surprising
corollary originally seen by Eaton and Barbato:
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Corollary 3.3 Graphs containing arbitrarily large asteroidal sets are rep-
resentable on KCy 3 [1].

Since the size of the largest cycle which is (K, 3;t)-representable is eventu-
ally quadratic in ¢, and the size of the largest representable asteroidal set
grows exponentially, the following observation can be made directly from
combining the main result here with Eaton and Barbato’s result on cycles.

Observation 3.4 If an asteroidal configuration of size m is (K, 3;t)-
representable, it is not neccessary that every asteroidal configuration of size
m or smaller has such a representation. In fact, the size gap can be made
arbitrarily large.

The following fairly obvious observation can be made, however.

Observation 3.5 If an asteroidal configuration of size m is (Kyn;t)-
representable, then there exists an asteroidal configuration of size m — k
for each k < m — 3 which is also (K1 n;t)-representable.

4 Open Problems

There are still many interesting open problems in the theory of tree repre-
sentations, as well as some questions stemming from the main result in this
paper. Answers to the following questions would be interesting.

Question 4.1 For small fized values of n and t, which asteroidal configu-
rations are (K, n;t)-representable?

We can already see that the answer is non-trivial. The cycle gives an ex-
ample showing that even though some large asteroid may be representable,
not all smaller asteroidal configurations can be represented. The number
of m-asteroidal configurations grows quickly, so given the current tools, it
seems that analyzing relatively small cases is in order.

Conjecture 4.2 A graph G is (Ky,5;1)-representable iff G is chordal, at
most n asteroidal, and G satisfies the condition that given any two pairs of
vertices from asteroidal sets in G, any path connecting the first pair must
be adjacent to any path connecting the second pair (Walter [10]).

The argument for necessity in Walter’s conjecture is straight forward. The
argument towards sufficiency, however, seems to require surgical detail, and
has not yet been resolved.

Question 4.3 Exactly which graphs are (K, ,;t)-representable?

A complete characterization of the class of (K;,,;t)-representable graphs is
the ultimate goal here. The fact that Walter’s 1972 conjecture still remains
undecided may be a good indicator that a full solution is still out of reach,

however.
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