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Abstract

In this paper, we present the study of the interlace polynomials for n-claw
graphs. For a positive integer n > 1, an n-claw graph W, is a tree that has
one center vertex and n claws. The center vertex is connected to one vertex of
each of the n claws using one edge of the claw. We present iterative formulas
and explicit formulas for the interlace polynomial of W,. Furthermore, some
interesting properties of the polynomial are discussed.

1 Introduction

In this paper, the set of vertices of a graph G is denoted by V(G) and the set
of edges by E(G). For a € V(G), G\ {a} is the resulting graph after removing
the vertex a and all edges of G connected to a.

Consider an undirected graph G and a,b € V(G) with ab € E(G). The
edge ab divides the set of vertices, V(G) \ {a, b}, into four sets:

Va(G) = {c€V(G)| ace E(G),bc ¢ E(G)},
Vi(G) = {c€V(G) bece EG)ac¢ E(G)},
Vas(G) = {c€V(G)| ac,bc € E(G)}, and
w(G) = {c€V(G) ac,bc¢ E(G)}.

Note that V(G) \ {a,b} = Va(G) U V4(G) U Vap(G) U V., (G), where the
unions are disjoint. Now, let us recall the toggling process and then pivoting
a graph [3].
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Definition 1.1 (Toggle process)

Toggling the pair u,v in V(G) means obtaining a new graph G’ such that
V(G") = V(G) and uwv € E(G') if and only if uv ¢ E(G), keeping the rest of
the graph unchanged.

Definition 1.2 (Pivot process)

Pivoting G on an edge ab simply means obtaining a new graph G from G by
toggling every pair u,v such that the vertices u and v are from two different
sets Va(G), Vo(G) and Vab(G), keeping the rest of the graph unchanged.

Figure 1: Pivot Process

The interlace polynomial of a graph G is defined iteratively:

Definition 1.3 (Interlace Polynomial)
For any undirected graph G with n vertices, the interlace polynomial ¢(G, z)
of G is defined by
- z" if E(G) =
9(G,2) = { 2(G\ {a}, @) + (G \ {8},z) if abe E(G)

Some basic known results are given below. Proof can be found in [3].

Proposition 1.4 (3]
1. The map defined above gives a well defined polynomial on all simple
graphs.
2. The interlace polynomial of any simple graph has zero constent term.
8. For any two disjoint graphs G1 and Gz,

Q(Gl U Gz:x) = q(Glrz) q(szm)‘
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4. For any path P, on n edges, the interlace polynomial is given by
g(Pi,z) =2z, q(P2,z)=2+2z, and
q(Pn,z) = q(Pn-1,%) + 2¢(Pn-2,z) forn > 3.

In this paper we will be developing the interlace polynomial of a special
graph called n-claw graph, which is defined as follows:

Deflnition 1.5 (n-Claw Graph)
An n-claw graph is a graph, denoted by W, with the set of vertices and set of
edges as follows:

V(Wa) ={c,ai,bi51<i<n,j=1,2}  and
E(Wn) = {cag,a,-bi,j|l S 1 S n,j = 1, 2}

Clearly, W, is a tree with |V(W,)| = 3n + 1 and |E(W,,)|| = 3n. Figure 2
shows the 4—claw graph.

b1 b1,2 b1 bo2 b3 ba2 bg,1 ba2

Figure 2: 4-Claw Graph

2 Iterative Formulas for the Interlace Poly-
nomial of n-claw graphs

First, let us develop the interlace polynomial of W, for small values of n.

Proposition 2.1 Let gn(x) be the interlace polynomial of the n-claw graph
Wha. (That is, q(Wa,z) = ¢qu(z).)

1. go(z) = z.

2. qi(z) =2+ 2%+ 2z.

3. g2(z) = z° + 22% + 52° + 52% + 2z.
Proof.

1. For n = 0, we get V(Wo) = {c} and E(Wp) = ¢. Hence we get the
result.
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2. Forn=1,
V(W1) = {c,a1,b1,1,b1,2} and E(W)) = {ca1,a1b1,1,a1b1,2}.

When we pivot the graph W) on the edge ca1 we get Wi*! = W, since
Ve(W1) = Vo, (W1) = ¢. Thus Wi \ {1} is the graph with 3 vertices
without edges. This means q(W*!,z) = z3. Next, Wi \ {c} is the
path P, therefore, g(Wi \ {c},z) is % + 2z. The result follows from
Proposition (1.4) and Definition (1.5).

Next, we find the iterative formula for interlace polynomial of W, in general.

[ J [ J
by bz bara bera Ber Baz by s bara beers By Bz Ba Rz boay bz by
Wa Wa\{an} Wa*"\{bn.1}

Figure 3: Decomposition of W, with respect to anbn

by bz baoia bacta baz b s b 10 b 12 Bad by by by [
W Waa\fon} W25\ (bn.2)

Figure 4: Decomposition of W, ; with respect to anbn 2

@
by b Beetn baa bz bea baorz b b b beaa
M"n.z Wa .2\{“" l' w:."zc\{"}

Figure 5: Decomposition of Wy, 2 with respect to anc

Theorem 2.2 Forn >1,
n(2) = (2 + 2+ 1)gn-1(2) + 2" (= +2)"7.
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Proof.
To find the interlace polynomial of W,, we pivot the graph W, on the
edge anbn,1. See Figure 3. Then by Definition (1),

n(@) = ¢ (Wa\{an},@) +q(Wa,1,2),

where W, = W:"b"’l\{bml}-
Here Wa\{an} is the disjoint union of W,._; and {bn,1,bn,2} (no edge).

Therefore,
d(Wa\{an},z) = 2%qn-1(z).

To find ¢ (Wi,1,z), we pivot the graph W1 on the edge anbn2. See Figure 4.
Then again by Definition (1.5), we get

g (Wa,1,2) = q(Wni\{an},7) + ¢(Wh2,2)
where Wa,2 = Wa7'™*\{bn,2}.
Since Wy,,1\{an} is the disjoint union of Wn_; and {bn,2},
q(Wn,1\{ar}) = 2¢n-1(z).

To find g (Wh,2,x), we pivot the graph W, 2 on the edge a.c. See Figure 5.
Then
q(Wha2,7) = ¢(Wa2\{an},2) + ¢ (Wi3°\{c},z) .

Now W, 2\{a~} is nothing but W,,_1. Therefore,
g (Wn2\{an},7) = gn-1().

Note that W;3°\{c} consists of n disjoint components obtained by
{c}h {a1b1,1,a1b1,2},..., and {@n-1bn-1,1,a8n-1bn-12},
which are isomorphic to P;. Using Proposition (1.4),

g (Was'\{c}) = zq(Pz,z)""! = z(z® + 2z)*"1.

n,2
Corollary 2.8 Let g.(z) be as defined earlier.
1. g3(z) = 27 + 32° + 925 + 162* + 162° + 722 + 2z.
2. The degree of gn(z) is 2n + 1.
3. The constant term of gn () is always 0.
Proof.
1. Using the iterative formula obtained in Theorem (2.2) for n = 3,

(2% + = + 1)ga(z) + z°(z + 2)°
(2 + z 4+ 1)(z® + 22* + 52° + 52° + 22) + 2%(z + 2)?
=z +32°% +92° + 162° + 162° + 72% + 2z.

g3(z)
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2. We use induction on n. From Proposition (2.1) the result is true for
n=0,1,2. Assume the result for n — 1, that is, the degree of gn—-1(z) is
2n — 1. Then Theorem (2.2) shows that the leading coefficient of g.(z)
is the leading coefficient of £2gn—1(z). Therefore, the degree of gn(z) is
2n+ 1.

3. Once again using induction on n and with the help of Proposition (2.1)
and Theorem (2.2), gn(0) = O for all n > 0. Thus the constant term of
the polynomial is always 0. Note that this confirms the known result for
all simple graphs. (See statement (2) of Proposition (1.4)).

3 An Explicit Formula for ¢,(z)

Since the degree of gn (z) is 2n + 1, let us rewrite the interlace polynomial of
the n-claw graph W, as

gn(Z) = @n,2n+1y@ T+t anaz forn > 1.

Obviously, by Proposition (2.1), go(z) = z means ao,1 = 1. Also we have
a1 =2,a12=a13 =1,a21 =2, a22 =az3 =5, az4 =2, and az5 = 1.
Using the iterative formula obtained in Theorem (2.2) and comparing the
coefficients of the corresponding terms, we obtain the following result.

Theorem 3.1 Let n > 1. The sequence {anx |n>1,1<k<2n+1}, as.
denoted above, satisfies the following recursive relations:

(1) any = a(n-1)1
(2} Forn>2 an2= Q(n-1),1 + e(n-1),2-
(8) For3<k <n—1, @nk = @n-1),(k-2) + &n-1),(k=1) T A(n-1),k-

(4) Gn(2n) = G(n-1),(2n-2) + G(n=1),2(n—1) BRA Gn,(2n+1) = G(n-1),2(n-1)-

Proof.

From the iterative formula an(z) = (* + 2+ 1)qn_1(:c) +z(z +2)""L,
the z2"*+1-term and z2"-term of gn(z) are those of (z2 + z + 1)gn-1, thus
(1) and (2) are true. Similarly, for 3 <k <n—1,k=2n, or k=2n+1,
(2% + = + 1)gn—1 is the only part in gn(x) contributing to the z k_term. Thus
(3) and (4) are satisfied.

Let us use these recursive relations to describe some coefficients of the
interlace polynomial.

Theorem 3.2 Let n > 1. The following coefficients of the polynomial gn(z)
are determined as follows:

1. The leading coefficient is an (2n41) = 1.
2. The coefficient of = is always 2, that is, an,1 =2.

3. The coefficient of %" is @y 2n) =T
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4. The coefficient of £ is an2 = 2n + 1.
5. The coefficient of z° is an,3 = (n+ 1) forn > 3.
Proof.

1. Using the recursive relation given in Theorem 3.1(4),we get
Gn,(2n+1) = G(n=1),(2n-1) = &(n-2),(2n-3) =" =a13 = 1.

2. By the recursive relation an,1 = @(n-1),1 and the fact from Proposition
(2.1) that az,; = 2, we get the result.

3. To find the coefficient of 2", we use the recursive relation for @n (2n)
and the facts that the leading coefficient of gn—1(z) is Q(n-1),(2n-1), and
q1,2 = 1. By Mathematics Induction, Thus an,(2n) = @(n-1),(2n-2) +1 =
n.

4. By Theorem 3.1(2), @n,2 = @(n-1),2+2 since a¢,_1),; = 2. Also, we know
from ¢2(z) that a2,2 = 5. Thus By induction, an2 = 2(n — 2) + @22 =
2n—-44+5=2n+1.

5. By Theorem 3.1(3) and the known formulas a(n_1)2 = 2(n—1) +1 =
2n—1and @(n_1),; = 2, we obtain an,3 = 2n+14a(n-1),3. Now we apply
induction on n to prove the result. The result is true for n = 3 since
a3 = 16 by Proposition (2.1). Let us assume that the result is true for
n—1(n > 4), that is, an-1,3 = n% Then an3 = 2n+14n% = (n+ 1)%.

Now let us find the interlace polynomial explicitly.
Theorem 3.3 Let g.(z) be as before, n > 1. Then

3" Y(n43) Jor z=1;
(2 +z+ 1) (2 + 2 + 2z)+

tn(z) = 2 2 nel_(g2 n—1
=2 (2+2)[(= +2z)=_1—(=: +z+1)""1] for z# 1.
Proof.
1. Substituting x = 1 in the iterative formula obtained in Theorem (2.2),
we get
(1) = 3gn-1(1)+3"7!

3[3¢n-2(1) +3""%) 431
3%gn—2(1) +2x 3""!

= 3" g(l)+(n-1)x3"!
3""! x4+ (n—-1) x 3! (by Proposition (2.1))
3" 1(n +3).
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2. To show this result, we use mathematical induction on n. Let u = 2% +
z + 1 (for simplicity, ignore the variable ) and vn(z) = v"~!(z® + 2% +
2z)+2%(z+2)[(z2+2z)" ! —u""?) /(z—1), the right hand side expression
of the formula we are proving. We want to show that gn(z) = va(z) for
all positive integers. Obviously, v1(z) = z° + 2z + 2z = q1(z). Assume
the formula is true for n, that is, ga(2) = va(z). By the iterative formula
in Theorem (2.2)

gn+1(x) = uga(z)+ "’ﬂ‘n(‘B +2)"
(2® +22%) [(z? + 22)" ! —u" Y] )
z—1

u [u""l (= + 2* + 2z) +

+z(z? + 2z)"
ne 3 2
= u"(a®+2%+2z) - u_i::_—+__12a:_)
3 2y(,.2 n-1
+ u(z® + 22°)(z* + 2x) + (2 + 22)".

-1
Note that © = 22 + ¢+ 1 = z° + 2z — (z — 1), we have

u(z® + 222)(2? + 2z)"!

2 n
po + z(z® + 2z)

2 _ _ 3 2 2 n-1
_ @E+2%u-(z 1)):"_ :’2‘” Wz +22)" | (2 + 22)"

3 2 2 n_ _ 3 2 2 n—1
. @42+ 20)" - @ DA BNy gy

3 2 2 n
- [+ 22 )_(zl +22)" _ o(a? + 22)(a? + 22)") + z(z? + 22)"
_ (@ +22%) @’ +22)"
- z—1 )

It gives

z¥(z +2) [(2® + 22)" — u"]
z-—1

gnt1(z) = u™(z® + 2% + 2z) + = vpt1 ().

Thus, gn+1(x) = vn+1(z) is true for all positive integers n and all real
numbers z # 1.
From the formula above, which is in the rational form, we can develop a
formula for g»(z) in the polynomial form.

Theorem 3.4 Forn>1andz €R,

n—1

gn(z) = :c(a:2+a:+1)“+:cz:( ”: )(z2+x+1)’°(3_ l)n—k-l‘
k=0

Proof.
Refer to formula obtained in Theorem (3.3). Set u = z° + z + 1. Then,
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" z® + 2 + 23)(z - 1) + 2 (z + 1) [(2? + 22)" ! — w7

Qn(z) = = 1
= " _ai 1 [u”_1($3 +xz- 2) + (m2 + 217) ((12 + 2:3)”-1 _ un—l)]
= ;BTN (E-DE - D) -9 + (& 4 2)")
= Wt a4 [+ ) -
= un-l(:x"’ -x) + o f ] [(g ( Z ) uk(a: _ l)n—k) _ 3u""’]

n-1 n-1
— n-lc¢ 3 _ n ke qyn=k=1 , TU _
= v (z :z:)+a:kz=o( k)u(z 1) +——$_1(u 3)

n—1
= v (2® - z) +u""z? + 22) + .'L‘Z ( Z ) u(z —1)"k!
k=0

n-1
= zu"+z Z ( Z ) uH(z — 1)~k

k=0

n—-1
= z(@®+z+1)"+zy ( Z ) (®+z+1)* = - 1~7FL,
k=0

We now give explicit formulas for the coefficients of the important com-
ponent z(z? + z + 1)™ in gn(z). It can be shown by applying the binomial
formula. We skip the proof.

Lemma 3.5 For n+ 1 < m < 2n + 1, the coefficient of the x™-term of
z(z? + z 4+ 1)™ is given by

n
() (momliaean)
ot k m-2n+2k-1

By Theorem (3.4) and Lemma (3.5), we can confirm that an 2n+1 = 1 and
@n,2n = 1 shown by other methods before. Also, it is easy to obtain an 2n—1:

Corollary 8.6 Forn> 1, an (2n-1) = n(n+3)/2.

Proof.
In the formula given in Lemma (3.5), for m = 2n — 1, the only nonzero
terms are from k =1 or k = 2. It gives the term:

(1) (0)+(2) (5)] - g

By Theorem (3.4), the summation part has one term of 22"~!, which is the
leading term, when k =n - 1:

n 2n—1
(n-l )z .
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Thus, the 2"~!-term of gn(x) is given by:

+1 3
Qn,(2n-1) = n(n2 ) +n= 17._(_7’174:__2

Using the formula given by Theorem (3.4) one can find g (z) for any values
of z. Some of them are listed in the following corollary:

Corollary 3.7 Let g.(z) be as before, n > 1. Then
1. gn(=1) =3 ((-)" - 3).
2. gn(-2)=-8-3""1,
8. ga(2) = 2%"+1,

4 A Matrix Application

In [4], it is shown that the interlace polynomial value of a graph at —1 is the
rank of a matrix derived from the adjacent matrix of the graph.

Theorem 4.1 4] Let A, be the n x n adjacent matriz of a graph G with n
vertices and r = rank(I, + An) over Fa of the field of characteristic 2, where
I, is the n X n identity matriz. Suppose ¢(G, =) is the interlace polynomial of
G. Then

9(G,-1) = (-1)"(-2)"".

Theorem 4.2 Let Aan+1 be the (3n+ 1) x (3n + 1) adjacent matriz of W,
and rn = rank(Aan+1 + Isnt1) over Fa. Then ry is odd. In fact,

.= 3n ifn is odd
"7 1 8n+1 if n is even.

Proof.
Note that |V (W,)| = 3n + 1. By Corollary (3.7) and Theorem (4.1),
(1) = [(-1)"-3]/2
(_1)8n+1 (_2)3n+1—r,.
Thus,

(_l)n _ 3 = (_1)1‘1.23“—7‘"-’-2.

Furthermore, (—1)™ — 3 is always negative, whose value is —2 when n is even
and —4 when n is odd. Thus r, has to be odd. Comparing both sides, we
obtain that 7, = 3n + 1 when = is even and rn, = 3n when n is odd.
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Corollary 4.3 Let Msn41 be the symmetric matriz below:

( B 0 0 - ... 0 C1
0 B 0 - -~ 0 C
0 0 B o --- 0 C
Many1 = : )
oT . 0 BI' c
T AT
L¢t ¢ ¢ e e CUD J(an+1)><(3n+1)
where
1 11 1 0 0 O 1 i ? (1)
B=|110|, ¢c=]0000]|, and D=
101 0000 0110
01 01

Then over the field I,

3n if n is odd
3n+1 ifn is even.

rank(Man41) = {

Proof.
It is straightforward to see that the matrix Asn+1 + I3n41 in Theorem (4.2)
is equal to M3n4+1. Then the result follows.

It is interesting to compare this simple proof, which uses a graph theory
result, with a proof by linear algebra techniques.
Proof. (linear algebra proof)

Let
I 0 0 0
0 I cee 0 0
(] 0 I 0 0
Usnyr = :
0 0 I 0
Tp-1 T p-1 Tp-1
-CTB -C*'B R | I (3n+1)x(3n+1)
We have
rB 0 0 o ]
0 B 0o --. 0 C
0 0 B o 0
Usn+1Man41 =
0o -.. ... 0 B c
0 0 0 - -+ 0 D-(m-1)CTB"'C ]
Then

rank(Man+1) = 3n + rank(D — (n — 1)CTB~C).
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Note that , D— (n —1)CTB~'C=D~CTB 'Cover F; andisad x 4
invertible matrix (of full rank). Thus when n is odd, it implies that over F2,

rank(Mant1) = 3(n — 1) + rank(D) = 3(n — 1) + 3 = 3n.
On the other hand, when n is even, we get,
rank(Msn+1) = 3(n — 1) + rank (D - cTB-lc) =3(n—1)+4=3n+1.

One advantage of the linear algebra method is that the determinant of the
matrix Man+1 can be calculated, in addition to the computation of the rank.

Corollary 4.4 Let Mans1 be as above. Then

0 if n is odd
|Mang1| = { (=)™ ifn is even

Proof.
Note that in the proof of the last corollary the matrix U is introduced and

|U] = 1. By calculation, |B| = —1 and |D — CTB~1C| = 1. Therefore, when
n is even, over Fa,

|U| - |Map41| = |B|*™*-|D = CTB'C| = (-1)"".

When n is odd,
|U| - |Mans1| = |B|" ™| D} = 0.
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