Random Seidel Switching on Graphs

Jacob Hughes*

Abstract

We consider the random process arising from a sequence of ran-
dom Seidel switching operations on n vertices. We show that this
process can be interpreted as a random walk on a Cayley graph of an
abelian group, and use spectral methods to show that the random
process converges to a stationary distribution in O(nlog(n)) steps.
We then consider two generalizations: we allow multiple states for
each edge, and restrict the process to a fixed host graph H. We
then analyze the general case and obtain convergence results for any
graph H.

1 Introduction

Let G = G(V,FE) be a finite, simple graph. For a vertex v € V, the
operation of switching at v transforms G to a new graph G, by deleting all
edges adjacent to v, and adding all potential edges from v to vertices not
previously connected. This operation is known as vertez switching, node
switching, or Seidel Switching. It was originally introduced by J.H. van
Lint and J.J. Seidel [11] as tool to study equilateral point sets in elliptic
spaces.

Two graphs Go and Gy are said to be switching equivalent if there is a
sequence of vertices vy, vo, ..., Uk such that G; is obtained by switching v;
in Gy_; for i = 1,...,k. It is easy to see that performing the sequence of
operations in reverse order will transform G; back to Gy, and so the rela-
tion is both reflexive and symmetric. Also note that this demonstrates each
switching operation is invertible, a fact that will be needed later. Transi-
tivity follows immediately from the definition, and so this is an equivalence
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Figure 1: Seidel Switching on 4 vertices. We begin with a graph on 4
vertices, select one vertex, then switch the adjacency relations for that
vertex.

relation among graphs on a fixed number of vertices. The equivalence
classes are known as switching classes. The number of switching classes on
n vertices is equal to the number of two-graphs with n vertices [10] as well
as Euler graphs (7].

Seidel Switching has applications to spectral graph theory as illustrated
by the following theorem, also due to Seidel (9}.

Theorem 1.1. Let G and G' be two regular graphs of degree d in the same
switching class. Then G and G' are cospectral.

In this paper, we consider a randomized switching process. At each
step we randomly select a vertex, and apply a switching operation at that
vertex. We analyze this random process, and obtain results about the times
of convergence to the stationary distribution. Our method can be outlined
as follows:

1. The set of compositions of switching operations is an abelian group,
which we denote I'(n).

2. There is an isomorphism v: I'(n) — Z3™!

3. The random process can be understood as a lazy random walk on a
Cayley graph of I'(n).

4. The eigenvalues of the transition matrix of this random walk can be
found using the irreducible representations of I'(n), and can be used
to bound the convergence time to the stationary distribution.

We remark that this same outline can be used to analyze other processes
on graphs, and a paper using the same techniques to analyze a randomized
version of the Lights Out process [1,5] on graphs is in preparation.

This paper is organized as follows. In Section 2 we state known results
concerning Markov chains, random walks on graphs, and representation
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theory that we will use. In Section 3 we formally introduce randomized
Seidel Switching, and show that the stationary distribution is uniform and
give bounds on the convergence time. We omit proofs in this section as
results are special cases of more general results stated in the following sec-
tion. In Section 4 we introduce two generalizations of Seidel switching. We
consider both switching with multiple colors and restricted to a fixed host
graph. We then study a randomized version of this generalized switching,
again showing how it can be viewed as a random walk on a graph and use
spectral methods to bound the convergence times.

2 Preliminaries

We consider switching actions on a finite, simple graph G = (V, E). We let
n = |V|, the number of vertices of G. For each vertex v € V, we let d, be
the degree of v. For two vertices v and w, we write v ~ w if v and w are
adjacent. Let D be the diagonal degree matrix with entries D,, = d,, and
let A be the adjacency matrix with entries

A = 1 ifv~w
Y 71 0 if otherwise.

While initially our graphs are undirected, in our analysis we will consider
both directed graphs and graphs with weighted edges. If G has weighted
edges, then Ay., will encode the weight on the edge between v and w. If G
is directed, we will say v — w to denote there is an edge from v to w, but
not necessarily from w to v.

A walk on a graph is a sequence of vertices (vo, vy, ..., Ux) where (v;,vi41) €
E. A random walk of length k is a sequence of random vertices (zo, ..., Zx)
where the starting vertex zo is chosen according to an initial distribution,
and 1/d;, if

Pr(zit1 = v|z:) = { 0/ o ;f :: w: .

The transition probability matrix for a random walk on G is given by
W = D71A. As the transition probabilities do not depend on %, this ran-
dom process is a time-homogeneous Markov chain. For any initial distri-
bution f (viewed as a row vector, which will be the convention throughout
thiskpaper) on the vertices of G, the distribution after ¢ steps is given by

W,

The process is ergodic if there is a unique stationary distribution 7 such

that for any vertex v,
lim fW'(v) = m(v)
t—o0

for any initial distribution f. The random walk on a strongly connected
weighted graph G is ergodic if and only if
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1. G is irreducible. That is, for any u,v there is a time ¢ such that
Wt(u,v) >0

2. Gisaperiodic. That is, the greatest common factor of the set {t: W(u,v)
0} is 1.

[4, Section 1.5].

Aperiodicity can be artificially imposed by considering a lazy random
walk, which has transition matrix W’ = }(W + I). This can be thought
of as either the original random walk where half the time no action is
taken (hence the name). Alternately, one can view it as a random walk
on a modified graph where each vertex is given a self loop and weights are
redistributed accordingly.

One can measure the “distance” from the stationary distribution in a
variety of ways. Here we will use the x-squared distance.

Definition 1. Let W be the transition matrix of an ergodic random walk
on a graph G. Let 7 be the stationary distribution. The x-squared distance
after ¢ steps, A’(t), is defined by

1/2
MO = max ( > (Wt(x,w—vr(y))z) ‘

v \ S m(y)

We work with this metric because in cases where G has a large amount of
symmetry, there is an elegant expression for A’(t) in terms of the spectrum
of the transition matrix.

Definition 2. A graph automorphism is a function f: V(G) = V(G) such
that for all vertices z,y € V(G), A(z,y) = A(f(z), f(¥)).

Definition 3. A graph G is vertez transitive if for any two vertices u,v
there is a graph automorphism f: V(G) = V(G) such that f(u) = v.

Informally, a vertex transitive graph is a graph where vertices are in-
distinguishable except for labels.
For such vertex transitive graphs, we can bound the A’ distance, see

for example (4, Theorem 1.18].

Theorem 2.1. Let G be o vertex transitive graph on n vertices, and let W
be the transition matriz for an ergodic random walk on G. Let A; be the
eigenvalues of W, with —1 < A\; < Ay £ ... < Ay = 1. Then the x—squared
distance after s steps is given by
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1/2
A'(t) = (Z ,\,?*) .

i#En

Let I' be a group, and w a probability distribution on I". The Cayley
graph with respect to w, Cay(G,w), is the weighted, directed graph with
vertex set I' and weighted adjacency maltrix A(g,h) = w(g~'h). For S C G,
Cay(G, S) corresponds to w(g) = { (])-ﬂ ;:Z ;3 . In this case, g = h
if and only if g7'h € S, i.e. if there is an s € S such that h = gs. We
say that S is symmetric in G if h € S = h~! € S, and similarly that
w is symmetric if w(h) = w(h~!) for all h. When w is symmetric then
Cay(G,w) is undirected. We will use the following well known fact about
presentations of abelian groups, see for example [6]:

Theorem 2.2. Let T be a finite abelian group. Any irreducible represen-
tation of a finite abelian group is one dimensional. Let p: T — C be a
irreducible representation of I', and let W be the probability transition ma-
triz of a lazy random walk on Cay(G,w). If p is viewed as a row vector in
CITl, then p is an eigenvector with eigenvalue

== + Y w(g)p(~g).

ger

Since w is a probability distribution, the Weighted degree of every vertex
of Cay(G,w) is one, and so D = I. Therefore W = (I+D~1A) = L(I+A),
and so the spectrum of W is simply the spectrum of A shifted by 3. Thus
the problem of determining the eigenvalues of a random walk on the Cayley
graph of an abelian group comes down to understanding the irreducible
characters. Thankfully, these are simple to compute due to the following
theorem (6]

Theorem 2.3. LetI' = Zy, x ... X Zy,, and let 0, = % for any positive
integer q. For each & € T' define pz: T' — C be the homomorphism where
pz(e:) = On, where e; is the cartesian product of the the additive generator
1 in the i-th group, and the identity 0 in all other groups. Then pz is an
irreductble character of T', and moreover every irreducible character of T" is
pz for some T €.

3 Randomized Seidel Switching

We wish to consider the behavior of the random process arising from a
random sequence of switchings on graphs with n vertices. It will be useful
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to think of the switching actions as functions on the state space of all
graphs on n vertices. Let G(n) denote the set of all graphs on n labeled
vertices. Let s,: G(n) = G(n) be the action of switching at vertex v, so
that s,(G) = G, for any graph G. We let sp denote the identity function,
and let K, € G(n) denote the empty graph on n vertices.

Let {z:}{° be a sequence of vertices, independently chosen uniformly
at random among the n vertices. Consider the random process X (t) where
X(©0)=X,, and for each t > 1, X(t+1) = s5,(X(t)). As we will see later,
this sequence may be periodic and so will not converge to a stationary
distribution. To eliminate this concern, we consider a “lazy version” of this
process where half the time no action is taken. We define the sequence
X (t) where X(0) = Kn, and X (¢ + 1) = sy, (X(t)) where Pr(y, = 0) =
and Pr(y, = z) = §

Our goal is to analyze X(t). In particular, we wish to consider the
following questions.

1. How can we understand or interpret X (t)?
2. What is the stationary distribution of X (t)?
3. How fast does X (t) converge to its stationary distribution?

We begin by examining the algebraic structure of compositions of switch-
ing functions s,. Proofs in this section are omitted, as the results stated
are special cases of results that appear in Section 4

Theorem 3.1. Let I'(n) be the group of all compositions of the swztchzng
operators {s,, }., with respect to composition. Then I'(n) = z3!

For our analysis, we will need to explicitly understand the isomorphism

between the groups, and in particular the image of the switching functions

SU.
For the groups Z3 X ... X Za, let e; correspond to the cartesian product
of the the additive generator 1 in the i-th group, and the identity 0 in all

other groups.
Corollary 3.2. There ezists an isomorphsim v: I'(n) — Z3~! with
€; ifi=1,...,n—1
— n-1
Vow) =1 T ifi=n
i=1
The key idea in our analysis is recognizing that X (t) can be viewed a
lazy random walk on a state graph. Moreover, we will show that this state

graph is isomorphic to a Cayley graph of I'(n).
We begin by defining the Switching State Graph as follows:
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Definition 4. The Switching (State) Graph of n vertices, denoted SG,, is
a graph with vertex set the set of all graphs on n (labeled) vertices in the
same switching class as the empty graph. For two graphs G and H G~ H
if there is a vertex v such that s,(G) = H.

The notion of the Switching Graph is useful because it allows us to
view our random process X (t) as a lazy random walk on a graph. At each
step in a random walk on SG, one moves to a neighbor with probability
%, and stays at the same vertex with probability -21- Since moving to a
random neighbor is equivalent to picking a random vertex v and applying
the switching function s,, we have the following proposition.

Proposition 3.3. The random process X (t) described above is identically
distributed to a lazy random walk on the switching graph starting from the
empty graph.

Thus we have reduced the problem of analyzing X (t) to that of under-
standing the lazy random walk on SG,,. We begin by recognizing that we
can fully understand the structure of SGy, in terms of the switching group
I'(n).

Proposition 3.4. The Switching State Graph SG,, is isomorphic to Cay(Z3~,T),
-1
where T = {e;}7]} U{nz e;} and e; is the standard basis element of Z3~!.
i=1
This is the hypercube of dimension n — 1 with diagonal chords added.

Using Propositions 3.3 and 3.4, along with the tools presented in Section
2, we can answer the questions posed at the beginning of this section.

Theorem 3.5. Let X(t) be the random graph at time t obtained from the
randomized Seidel Switching switching process described above. Then

1. X (t) converges to a uniform distribution on all graphs in the switching
class of K,,.

2. The x-squared distance from the stationary distribution after t steps

8 bounded by
n~1 n—1 .\ 2t %
s (507 (-2))

j=1

8. A'(t) <ecift> inlog(n)+c foranyc>0
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Figure 2: The Switching State Graph on 4 vertices. The “vertices” of the
state graph are the graphs on 4 vertices that are in the same switching
class as the empty graph. Two graphs are adjacent if they differ by a single
switching operation. Note that the graph is bipartite, which demonstrates
why we consider a lazy random walk to guarantee convergence.

4 Restricted and Multi-colored Switching

One can generalize the switching operation to colorings of graphs in a
number of ways. Consider if instead of two states (off or on) for any of
the edges, there are g states (for some fixed integer g). It is natural to
think of these as different colors an edge. The switching operation is then
some permutation 7 on the set of potential colors of an edge. Brewster
and Graves [2] considered the action of an arbitrary, fixed permutation
7 and studied homomorphisms between colorings of graphs. Cameron and
Tarzi [3] considered the action under all transpositions, as well as restricted
cases where not all transpositions were allowed. We will consider the case
where T is the cyclic operation “+1 mod ¢”, though many of the techniques
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generalize to arbitrary permutations.

AN
\‘
™,
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.

Figure 3: An example of multi-color switching with ¢ = 3. No edge corre-
sponds to state 0, a grey edge to state 1, and a black edge to state 2. After
selecting bottom left vertex, we increment the state of each adjacent edge
by 1 mod 3

Figure 4: Switching restricted to the host graph H = C;. Note that
switching at the bottom left vertex only creates new edges that are in the

host graph

We consider a further generalization simultaneously. Previously, any
non-edge could become an edge. We consider instead when only certain
edges can be created. For a fixed host graph H, we can define switching
actions that are restricted to colorings of the edges of H.

We let Cy(H) be the set of all edge-colorings of H using g colors, that
is all functions 7: E(H) — {0,1,...,¢ — 1}. We call T a g-coloring of the
edges of H.

Definition 5. We define the g-H-switching of a vertex v to be the operator
sy: Cq(H) — Cy(H) where s,(7)(e) = 7(e)+1 mod gq. s will refer to the
identity map on C,(H). The operators s, for v € V will be called the
elementary ¢-H-switching operators.

Note that the Seidel Switching as explored in Section 3 is g- H-switching
with ¢ =2, and H = K.
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4.1 The ¢-H Switching Group

It is clear from the definition that the elementary switching operators com-
mute and that s§ = sy for every v. Thus each elementary operator s, is
invertible with s;! = s3~1. Letting I';(H) be the set of all compositions of
elementary g- H-switching operators, we see the following.

Proposition 4.1. ['y(H) is an abelian group under composition.

We call ['j(H) the g-H-switching group, or just switching group if ¢ and
H are clear from context. We begin with a somewhat surprising result; we
can view I'g(H) as the vector space over Z, spanned by {sy }sev, where here
s, is viewed as a vector in Zf with 1 for all edges with endpoint v. Thus,
T',(H) is the column space over Z, of the edge-vertex adjacency matrix. It
seems that such an object should vary depending on the structure of the
graph H, but it turns out only to depend on whether H is bipartite or not,

and on the parity of g.
Theorem 4.2. Let H be a connected graph on n vertices.

zz! if H is bipartite
T (H)=< Z3 if H is not bipartite and q is odd
231 x Z, if H is not bipartite and ¢ = 2r

Proof. Let us index the n generators of Z} by the vertices of H, and denote
them by vectors {f,}vev, where f, corresponds to a 1 in the v coordinate
and O elsewhere. We define the map ¢: Z7 — ['(H) by &(fv) = Sy,
extended linearly so that ¢ is a homomorphism.

We first note that ¢ is surjective, as any element in Iy (H) occurs from
switching vertices of H some number of times less than g. By the First
Isomorphism Theorem, T'q(H) & Zy / ker ¢.

It remains to analyze ker ¢. We will view I'y(H) as a module over Z,.
Suppose that g = 3" o f, € ker ¢, where o; € Zg. The value on e is only

influenced by s, an':i Sy, 5o if (u,w) € E(H), then
oy = —0n. (1)
So if vi,, Viy, .., Vi, is a walk on the vertices of H, then
oy, = (1), (2)

That is, values alternate between c and g—c € Z, for a fixed c as one moves
along the path. We now split into cases based on the structure of H.

Case 1. H is bipartite
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Let A and B be the independent sets with respect to which H is bipar-
tite, and without loss of generality suppose that v; € A. Let ¢ = ;. Since
H is connected, for any vertex v;, there exists a walk v; = v;;, v, ..., Uy, =
vj for some k; € N. Thus a; = (~1)*~1a;. Because H is bipartite, k;

is even precisely when v; € A. Therefore a, = c_c gz :g . It fol-

lows that ker¢ = { Z cfy + Z (¢ — ¢)fw}2Zs, and thus ker ¢ & Z, and
q(H) Z"/Z o~ n—l_
Case 2. H contains an odd cycle
Suppose H contains a cycle of length j for some odd integer j. Let
v1 be a vertex in that cycle, and let v; = v;,,v;,, vy Vijy, = V1 be a walk

around the cycle, starting and ending at v;. Then oy = (—-1)ax = —0;.
Therefore 2¢a; = 0.

Subcase 1. q is odd
If g is odd, 2a; = 0 implies a; = 0. Since H is connected, for every

vertex v; there is a walk from v, to v;. Thus by Equation 2, o; = 0 for all
i. Thus ker¢ =0, so I';(H) = Z7
Subcase 2. q is even

If g is even, ¢ = 2r, and 2¢; = 0 implies a; =0, or @; = . As above, if
o1 = 0, then o; = 0 for all i. Similarly, if a; = r, oy = %7 for all i. But since
g=2r, -t =rin Z,;, so o; = for all i. Thus ker¢ = {0,3"rf,} = Z,.

v

Thus ker ¢ = Zj, and therefore [y(H) = 2} /Z; = 27~ x Z,.
O
For calculations later, it will be necessary to explicitly construct the

isomorphism. In particular, we will need to determine the image of the
elementary switching operators s,,.

Corollary 4.3.

1. When H is bipartite with respect to two disjoint subsets A,B C V,
there ezists an isomorphsim v: T'o(H) — Z3~1 with v(sy,) = e for
iSn—1,andv(sy,)= Y e&— Y e

V€A, iF¥n v;€B,j#n

2. When H is not bipartite, and q is odd, there exists an isomorphsim

v:Lo(H) = Z7 with v(sy,) = e; for all i.
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3. When H is not bipartite, and q is even, there exists an isomorphsim
v: Tg(H) — Z77' x Z, with v(sy,) = e; for all i. Note the final
generator e, = (0,...0,1) is of order r, whereas all the other e; are
order q = 2r.

Proof. As in the proof of Theorem 4.2, we let {f, }ocv denote the standard
basis of Z7}, indexed by the vertices of H. We let {ei} denote the standard
generator of Zy,, X ...Zy, with a 1 in the i-th spot and 0 elsewhere.

To construct v, we simply follow the standard proof of the First Iso-
morphism Theorem.

Case 1. H is bipartite
The use of the First Isomorphism Theorem in the proof of Theorem 3.1

above yields the isomorphism ¢: Z" /ker¢ — I'y, 4 given by ¢(a. +kerg) =

#(a). Thus I';(H) corresponds to the cosets of ker¢g={) cfu+ E (g—-
veEA

c)fu}? c—O Without loss of generality, suppose that v, € B. There are q
elements in each coset, and we define the map ¢: Z7'/ ker¢ — Z""1 to be
the map sending a+ker ¢ to its representative with the coefficient of en=0.
This is an 1somorph1sm, and so we define v: Tng — Z3~! x Z, to be the
composition of #-! and 9. Tracing back through the composition of maps
we see that v(s,,) =e; fori <n—1,and v(sy,) = 3, e— Y, &
v;€A,i¥n v;E€EB,j¥n
Case 2. H is not bipartite, ¢ is odd
Let v: [y(H) — Z7 be the inverse of ¢, that is v(sy,) = e; for all 4.

Case 3. H is not bipartite, g is even, g > 2
As in the first case, the use of the First Isomorphism Theorem yields the

isomorphism ¢ Z3[ker¢ — T'q(H) given by ¢(a + ker¢) = ¢(a). Thus
T, (H) correﬁponds to the cosets of ker¢ = {0, Erfu }. There are two

elements in each coset, and we define the map 7: Z" /ker¢ — Z"‘l X Zy to
be the map sending a+ker ¢ to its unique representative with the coefficient
of en lying in the set {0,1,...,7 — 1}. This is an isomorphism, and so we

define v: I'y(H) — Z"‘l X Z, to be the composition of (b' and 7. Then
V(sy,) = e; for all i as reqmred

Case 4. H is not bipartite, g = 2 As above, the use of the First Isomor-
phjsm Theorem yields the isomorphism ¢: Z7/ker¢ — I'y(H) given by

#(a + ker @) = ¢(a). Thus, To(H) corresponds to the cosets of ker¢ =
{o, E fu}. There are two elements in each coset, and we define the map

Z" [ ker¢ = Z"‘1 to be the map sending a + ker ¢ to its unique repre-
sentatlve with the coefficient of e, equal to 0. This is an isomorphism, and
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so we define v: Ty(H) — Z2~! x Z, to be the composition of ¢~ and .
Then v(sy;) =e; forall i <n—1, and v(s,,) = Ze"

O

We have identified I';(H) for all connected H, but it remains to con-
sider the case when H is disconnected. Fortunately, the switching group
decomposes as a product of the switching groups of the connected com-
ponents in the most natural way possible. Suppose that H is the disjoint
union of H; and Hj. Then for v; € Hj, s,, only changes the color of edges
in H;. Therefore there is no interaction between the switching functions
on H; and H;. In other words, we have the following;

Proposition 4.4. If H is the disjoint union of two subgraphs Hy and H,,
then T'g(H) = Tg(H,) x Tq(Hy).

Proof. We note that if v € Hy, w € Hp, then s,Lls,, when viewed as
vectors in ZP!. Thus span{s, }ver, Lspan{s, },en,, and so

Lq(H) = span{s,}uen = span{s,}ven, @span{sy }ven, = Ty(H1)xTy(Hy)
]

We can now give a classification of the structure of the abelian groups
that are isomorphic to I'y(H) for some ¢ and H.

Theorem 4.5.

1. Let H be a graph on n vertices. Then there exist b,c > 0 such that
2b4+3c<n and

o f Z3TXT ifq=2r
To(H) = { Zg‘“ if q is odd

2 Ifq = 2r, and b,c > 0 such that 2b + 3¢ < n, then there exists
a graph H on n vertices such that To(H) = ZP=b-¢ x Zi. If q is
odd and 2b < n, then there erists a graph H on n vertices such that
To(H)=2Z73~*

Proof. Let Hyx...x Hy be the connected components of H, and let N1y eey Nk
be the number of vertices in each component. Then by Lemma 4.4, T,(H) =
Thyq X ... x Ty, o. We first consider the case when g is even. By Theorem
3.1,

I ~ Z;"“l X Z, if H; is not bipartite
Hig = Zy-t if H is bipartite
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Let b be the number of non-bipartite connected components and c the
number of bipartite connected components. Then I'j(H) 2 Z{;‘"‘“ x Zi.
For a component H; to be bipartite, n; > 2, and to be non-bipartite, n; > 3.
Thus 2b+ 3¢ < n. The case when q is odd is simpler; let b = 0 and let ¢ be
the number of bipartite components. Then since

r ~ ) 23 if H; is not bipartite
Hea = 23! if H is bipartite ’

T (H)=Z7

For the other half of the proof, suppose ¢ = 2r and 2b + 3¢ < n.
Let H be the disjoint union of ¢ 3-cycles, b — 1 edges, and one path of
length n + 2 — 2b — 3c. Then H is a graph on n vertices and I'((H) =
Z¥ x T3 x Tt x Zpti-B-8e 2 ga-be x 7,

If ¢ is odd, and 2b < n, let H be a disjoint union of b—1 edges, and one
path of length n + 2 — 2b. Then H is a graph on n vertices with switching
group T',(H) = Zb- x Zp+1-26 = 7730 o

4.2 Random ¢-H-Switching

We wish to consider the process generated by a sequence of randomly chosen
g-H-switching operators. We introduce one further generalization. While
in Section 3 the operators were chosen uniformly at random, we now allow
an arbitrary probability distribution on the vertices. Formally, let w: V —
(0,1) be a probability distribution on V. Let H be a connected graph with
vertex set V, and ¢ > 2 a positive integer.

Let 7p refer to the 0 coloring of the edges; that is, 7p(e) = O for all edges
e € E. For an elementary switching operation s, recall that its inverse
871 = 5271, Also, recall that sy refers to the identity operator.

Let {x.}$° be a sequence of independent identically distributed random
vertices, where Pr(z; = v) = w(v). We consider the following random pro-
cess. Starting from the empty coloring, we pick a vertex at random and
apply either the g-H-switching operator or its inverse (with equal probabil-
ity) at that vertex. To guarantee convergence, we consider a lazy random
process where half the time no action is taken. Formally, this is the se-
quence X (t) where X(0) = 7p, and X (¢ + 1) = 0:(X(t)) where {0:} is a

sequence of random independently chosen switching operators where for
w{v

g> 2, Pr(os = sp) = 3, Pr(o: = 80) = ——g—l, and Pr(o; = s3!) = “44—1.

When g = 2 and s;! = s,, we let Pr(o, = sp) = 3 , Pr(o; = 8,) = 5231
Our immediate goal is to interpret X (t) as a random walk on a weighted

graph, then use the myriad of tools available for studying such processes.

For an arbitrary probability distribution w on V, we define the symmetric
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distribution @ on I'y(H) by

wlv) jf Y=38,VEV
dy)=9¢ 4 ify=slveV .
0 if otherwise

We define the switching state graph to be the directed, weighted graph
Go(H) = Cay(Ty(H),o).
Thus G4(H) has weighted adjacency matrix given by

w)  gf T =S(Ti),veEV
A(Ti,Tj)'—-‘:’(Ti OTJ._I)= @ iij =8;1(Ti),'l}€ 14
0 if otherwise

That is, the weight on the edge from 7; to ; corresponds to the ele-
mentary operator or its inverse that sends 7; to 7;.

We will show that X (t) is equal in distribution to a lazy random walk
on the weighed graph G,(H) starting at the empty coloring. In order to
guarantee that G4(H) is connected we only consider distributions w whose
support on G is a generating set.

Let W be the transition matrix of the lazy random walk on G,(H).

Proposition 4.8. For any coloring 7; in the g-H switching class of 7y,
Pr(X(t) = n) = () W¥(r:), where 1{,} a row vector with a 1 in the
entry for g and 0 elsewhere.

Proof. We must show that P(X(t+1) = 7| X (t) = 1;) = W(r;,7;) for any
t. W is the transition matrix of a lazy random walk on G,(H), so W =
%(I +D~1A), where I is the identity matrix, D the weighted diagonal degree
matrix, and A the weighted adjacency matrix of G4(H) = Cay(L'y(H),w).
Since w is a probability distribution, the weighted out-degree of each vertex
is 1, and so W = (I + A). If 7, = 7j, then W(m;, ) = L = Pr(X (¢t +1) =
7| X (t) = 7). For 7; # 75,

1 wlv) jf sy(T) = 7; for some v e V
W(ri,7;) = 5-4(7':',7';') = iiﬂ if s;1(r;) = 7j forsomeveV .
0 if otherwise

But this is precisely equal to Pr(X (t+1) = 7;]X(t) = 7;). We have demon-
strated that X (¢) is a Markov chain with transition matrix W, proving the

proposition.
0O

137



Since we can now understand X (t) as the lazy random walk on a con-
nected graph, it remains to analyze that graph. Since G,(H) is a Cayley
graph with respect to the symmetric distribution w, it is a connected, vertex
transitive, undirected, weighted graph. Thus a lazy random walk converges
to the uniform distribution 7. It remains to understand how quickly the

walk converges.
We remark that in the case where g is odd and H is not bipartite, this

reduces to the case of a geometric random walk on Z7, see for example [8].
By Theorem 2.1, the x—squared distance can be calculated as A'(t) =

1/2
(Z A2t , where A\; < Az < ... £ A, = 1 are the eigenvalues of the
i#n

transition matrix. Thus to understand the rate of convergence of X(t) to
its stationary distribution it remains only to understand the eigenvalues of

w.

Theorem 4.7. Let H be a connected graph on n vertices, w a probability
distribution on V, and let 0, = e%F denote a gth root of unity. Let W be
the transition matriz of the random walk on the state graph G,(H). Then
the spectrum of W depends on the parity of q¢ and the structure of H as
follows:

1. If ¢ = 2, there is one eigenvalue of W corresponding to each vector
£ € Zy ! with

n—1 n—1
Az = % (1 +w(wa) [[ (-1 + Zw(ve)(—l)“)
i=1 i=1

2. If H is bipartite with respect to subsets A,B C V, then there is one
eigenvalue of W corresponding to each vector T € Z;“l with

1 RITRATE =
de=o | 1 +wlua)p | ZELER | w(v:)R(Z*)
2 I1 6 i=1
v;€B,j#n =

where R(-) denotes the real part.

3. If H is not bipartite and q is odd, then there is one eigenvalue of W
corresponding to each vector € Z3~! with

s = % (1 + iw(vi)%(ag‘)) .

i=1
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4. If H is not bipartite and q > 4 is even, ¢ = 2r, then there is one
eigenvalue of W corresponding to each vector T € Z;"l X Zy with

Ay =

[ ST

-1
(1 + Z w(v)R(6Z*) + w(v,)R(OZ ))
i=1
Proof. We prove the case that H is bipartite. The proofs of other cases are
similar. By Theorem 2.2, the eigenvalues of W are A, = —21- + Y w(g)p(—g)
er

g
where p is a one dimensional irreducible representation of I'q(H). Theorem
2.3 states the irreducible representations of Zg are the functlons pz for

% € Z7! where
P:’:‘(Z a;e;) = H 63:%.

i=1

Let A, B C V be the subsets of vertices w1th respect to which H is bipartite.

Thus the irreducible representations of I';(H) are pzov where v: T'y(H) —

Z3~! is the isomorphism defined in Corollary 4.3 with v(s,,) = e; for

z<n-la.ndu(su)— Y. e— Y e Letgz:Ty(H)—> Che
V€A i#n v;€B,j#n

the composition for pz and v. Since the jz are the irreducible characters

of I'q(H), we have that for each Z € R} there is an eigenvalue

S 0(@)pe(-9) = 5+ 3 L 0@helsn) + 5)e(sr")

gelq(H)

|3 ]

1
/\55=§+

= % L Zw(v,)p,(u(sv‘ ) + w(vi)pz(v(sy, 9))

Let Ga(3) = w(vi)pe(v(su)) + pe(¥(551)))- Then Az = } +} 3= Ga(i). For
i<n-1, =

Cz(3) = w(w) (p(v(sw;)) + pz(v(s;1)))
= w(v;) (pz(e:) + pz(—e:))

1
= w('U,') (0:' + 9‘,7‘)

= w(w) (65 + )
= w(v)2R(6)
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It remains to calculate {z(n).

Cz(n) = w(vn) (P(V(sv,)) + pz(v(s;))))

= w(vn) (pa Doe— D edtes( ), —et D ej))

Vv EA,iFn v;€B,j#n V€A, i¥n v;€B,j#n
1 & I 67
V€A iFn v;€B,j#n

= w(v, = + -
SOl S B | B

v;€B,j#n V€A, i¥n
o
\'GA)-
= wlon) 2R | 2T
v;€B,j#n
Thus
1 1 b\ na
iGA,‘#n .
de =g 45 |wm)R v_]'[‘_ef,‘_f + ) w(v)R(63)
i=1

UJGij¢"
O

Combining Theorems 2.1 and 4.7 gives our desired bounds on conver-
gence times of the random generalized switching process.

Theorem 4.8. Let H be a connected graph on n vertices, and let w be
a probability distribution on the vertices. Let 8, = e*¥ denote a qth
root of unity. The random walk on G4(H), and hence the random q-H-
switching process after t steps has x? distance from the stationary distribu-
tion bounded as follows:

1. Ifg=2,
n—1 n—1 267 4
NS 5 [ 3 (1 +w(va) [T (1) + wa,-)(—l)z-‘) ]
Fezp~! i=1 i=1
2. If H is bipartite with respect to subsets A,BCV,

. 2t
e

1 viEA,t#N ety .
N Sq | 3 (1R | S |+ weIRE)

gezg™! v;€B,j#n
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3. If H is not bipartite and q is odd,

2t %
A < [ > <1+Zw(v,)82(8" )) }

562: i=1

4. If H is not bipartite and q > 4 is even, q = 2r,

n—1 2t
A< 5 [ > (1+Zw(v¢)%(9$‘)+9?(9f")) }

ZeZ3 %2, i=1

3

Corollary 4.9. When ¢ = 2 and w(v;) = 1, and H = K, then we are
considering randomized Seidel Switching as discussed in Section 3. In this
case, we obtain the bounds

3
1. A'(t) < ( (n—l)(l l)2t)

2. A'(t) < e ift > inlog(n) +c.
Proof. There will be (”'1) vectors ¥ € Z3~! with j 1's, and (n—1—j) 0's.

For each of these, Az = (1 + 1(11—1—2_7)+—L <(1- 1)
For the second fact, we note that

B9

Jj=1

1

-1 2
Z e log(n—1)— 2Lt
Jj=1

< ((’ﬂ - 1)e(ﬂ—1) l°g("—1)—1("T"‘2£) 3

sn—lllofzgn—l! ~{n=1log(n—1)¢
=€ n

IA

<e™*
if .
(n—-l)lo2g (n-1) (n—l)lt:lg(n—l)t <_ 3)
Solving for ¢ and simplifying shows that (3) is satisfied when
¢ > e |
2
O

141



References

(1] M. ANDERSON AND T. FEIL, Turning lights out with linear algebra,
Mathematics Magazine, 71 (1998), pp. 300-303.

[2] R. BREWSTER AND T. GRAVES, Edge-switching homomorphisms of
edge-coloured graphs, Discrete Mathematics, 309 (2009), p. 5540-5546.

[3] P. J. CAMERON AND S. TARZI, Switching with more than two colours,
European J. Combinatorics, 25 (2009), pp. 169-177.

[4] F. CHUNG, Spectral graph theory, vol. 92 of CBMS Regional Confer-
ence Series in Mathematics, Published for the Conference Board of the
Mathematical Sciences, Washington, DC, 1997.

[5) S. V. GERvacio AND H. MAEHARA, A note on lights-out-puzzle:
Parity-state graphs, Graphs and Combinatorics, 27 (2010), p. 109-119.

[6] G. JAMEs AND M. LIEBECK, Representations and Characters of
Groups, Cambridge University Press, 2 ed., 2001.

[7) C.L. MaLLows AND N. J. A. SLOANE, Two-graphs, switching classes
and euler graphs are equal in number, SIAM Journal on Applied Math-
ematics, 28 (1975), p. 876-880.

[8] I. PAk AND V. H. VU, On mizing of certain random walks, cutoff phe-
nomenon and sharp threshold of random matroid processes, Discrete
Applied Mathematics, 110 (2001), pp. 251-272.

[9] J. J. SEIDEL, Strongly regular graphs with (-1,1,0) adjacency matriz
having eigenvalue 3, Linear Algebra and Appl., 1 (1968), p. 281-298.

, A survey of two-graphs, in Colloquio Internazionale sulle Teorie
Combinatorie (Rome, 1973), Tomo I, Accad. Naz. Lincei, Rome, 1976,
p. 481-511.

(10]

[11] J. H. vaN LINT AND J. J. SEIDEL, Egquilateral point sets in elliptic
geometry, Nederl. Akad. Wetensch. Proc. Ser. A, 28 (1966), p. 335-348.

142



