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Abstract

A set § C V is a dominating set of a graph G = (V, E) if each
vertex in V is either in S or is adjacent to a vertex in 5. A vertex is
said to dominate itself and all its neighbors. A set S C V is a total
dominating set of a graph G = (V, E) if each vertex in V is adjacent
to a vertex in S. In total domination a vertex no longer dominates
itself. These two types of domination can be thought of as represent-
ing the vertex set of a graph as the union of the closed (domination)
and open (total domination) neighborhoods of the vertices in the set
S. A set S CVisa total, efficient dominating set (also known as an
efficient open dominating set) of a graph G = (V, E) if each vertex
in V is adjacent to exactly one vertex in S. In 2002 Gavlas and
Schultz completely classified all cycle graphs that admit a total, effi-
cient dominating set. This paper extends their result to two classes
of Cayley graphs.
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1 Introduction

A set S C V is a dominating set of a graph G = (V, E) if each vertex in
V is either in S or is adjacent to a vertex in S. A vertex is said to dominate
itself and all its neighbors. The domination number, v (G), is the minimum
cardinality of a dominating set of G. A set S C V is a total dominating
set of a graph G = (V, E) if each vertex in V is adjacent to a vertex in
S. In total domination a vertex no longer dominates itself. These two
types of domination can be thought of as representing the vertex set of a
graph as the union of the closed (domination) and open (total domination)
neighborhoods of the vertices in the set S. The total domination number,
7¢(G), is the minimum cardinality of a total dominating set of G. Since a
total dominating set is a dominating set, ¥ (G) < ¥ (G) for all graphs G.
A set S C V is an efficient dominating set of a graph G = (V, E) if each
vertex in V is adjacent to exactly one vertex in S [1].

Unlike many domination problems where a vertex dominates itself (closed
domination), efficient domination is a question of existence rather than a
question of optimization. The set of all vertices V always forms a dom-
inating set for every graph G. In a graph with no isolated vertices, the
set of all vertices V also forms a trivial total dominating set. For both
domination and total domination, the existence question is handled quite
easily. In contrast, we can no longer blithely use the set of all vertices in a
graph to form a trivial efficient dominating set. Worse still is the realiza-
tion that not every graph admits an efficient dominating set. The graph
Cs does not admit an efficient dominating set since each vertex dominates
three vertices. When a graph admits at least one efficient dominating set,
the size of each efficient dominating set is the same and, in fact, is v (G).
[1]

A set S CV is a total, efficient dominating set (or TEDS) of a graph
G = (V, E) if each vertex in V is adjacent to exactly one vertex in S where
a vertex no longer dominates itself (open domination). Gavlas and Schultz
define this concept as an efficient open dominating set in [3]. Given the
vast quantity of literature on total domination, use of the term total rather
than open seems more evocative. In [3] Gavlas and Schultz show that
the cardinality of every TEDS in a graph G is the same. In [4] Gavlas,
Slater and Schultz extend this result by showing that if S is a TEDS then
|S] = ¢ (G). This fact lends great support for the change in terminology
from open, efficient domination to total, efficient domination.

Total efficient domination also forces another type of domination. A
set S is a paired dominating set if S is a dominating set and the subgraph
induced by S contains a perfect matching. The paired-domination number,
Ypr(G), is defined to be the minimum cardinality of a paired-dominating set
S in G. In a TEDS S, vertices dominate each other and no single vertex

148



v can dominate two or more other vertices in S since v would then be
dominated more than once. Gavlas and Schultz show that a total, efficient
dominating set is also a paired dominating set.

Figure 1 shows the contrast between an Efficient Dominating Set and a
Total Efficient Dominating Set (TEDS).
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Figure 1: An Efficient Dominating Set in Q3 and a Total Efficient Domi-
nating Set in Q4

As with efficient dominating sets, the question for a TEDS is one of
existence and not of optimization. By using both vertices of K>, a total,
efficient dominating set is constructed. The complete graph K3 does not
admit a total, efficient dominating set since each vertex dominates two
vertices. Thus, a single vertex is insufficient to dominate every vertex and
two vertices will dominate a single vertex twice. Gavlas and Schultz also

show that for a TEDS S in a graph G with n vertices Z deg(v) = n. Such

vES
counting indicates that if the Grotzsch Graph in Figure 2 admits a TEDS
S then Zdeg(v) = 11. With vertex degrees 3, 4 and 5, S must have the

veS
degree sequence 5,3,3 or 4,4,3. In either case paired domination cannot

be satisfied. Furthermore, let G be a k-regular graph with n vertices. If
a TEDS S exists in G then 2k | n. Thus, the Petersen graph in Figure 3
does not admit a TEDS S.
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Figure 3: The Petersen Graph

While 2k | n is a necessary condition, it is not sufficient to guarantee the
existence of a TEDS S as demonstrated by the connected graph in Figure

4.
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Figure 4: No TEDS exists yet (2-4) | 8

We say that G is triangle complete if for every pair of adjacent vertices
i and j there exists a vertex k adjacent to both. Simply put, every K,
is a subgraph of some K3. The connected graph in Figure 4 is triangle
complete.

Theorem 1 If a graph G is triangle complete then G does not admit a
TEDS S.

Proof. Since any TEDS S is also a paired dominating set then should
a TEDS S exist, a pair of adjacent vertices i and j exist in the TEDS S
Since G is triangle complete there exists a vertex k adjacent to both 7 and
j. But now k is dominated at least twice which contradicts the existence

of a TEDS S.
[ ]

Gavlas and Schultz completely classified all path and cycle graphs that
admit a TEDS.

Theorem 2 A TEDS S exists in P, if and only if n # 1 mod 4 [3].

Theorem 3 A TEDS S exzists in Cy, if and only if n =0 mod 4 [9].

We offer the following necessary and sufficient result for k-regular graphs
that admit a TEDS:

Theorenrll 4 A k-regular graph G of order n has a TEDS if and only if
7 (G) = Py

Proof. Let G be any k-regular graph and assume that G has a TEDS. Let

S be a TEDS of G. We know Z deg(v) = n, and since G is k-regular, we
veS

have |S] = 7, (G) = %
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On the other hand, suppose v (G) = % and let D be a 7, (G) set. Since
G is k-regular, we have Z deg(v) = & (%) = n. Since D is an open

veD
dominating set of G, no vertex of D dominates any vertex of G more than
once. If this were not the case, then there would be at least one vertex of
G not dominated by D. Thus D isa TEDS of G. m

2 Circulant Graphs

The cycle graph is one particular type of a more general class of graphs.
The circulant digraph G(Z,,C), where n > 3 and connection set C C
Z, \ {0}, has vertex set V = {1,2,..,n} and the i — j arc exists if and
only if j —i € C. If C is closed under additive inverses, then G(Z,,C)
is a graph, rather than a digraph. The identity element is excluded from
C to prevent loops. Note that C, = G(Zn,{%£1}). Here we extend the
classification of the existence of a TEDS for cycle graphs to circulant graphs.

The graph in Figure dis G(Zs, {+1,%2}). The graph G(Z,,C) is reg-
ular of degree |C|. When closed under additive inverses, the order of C
will be even if and only if 3 ¢ C. Furthermore the circulant graph is
one particular type of an even more general class of graphs. The Cayley
digraph G(H,C) for any group H and C C H \ {e}has as its vertex set
the group elements of H and the i — j arc exists if and only if jilecC.
Again, if C is closed under inverses, then G(H,C) is a graph, rather than
a digraph.

Theorem 5 The graph G(Z,,C), for some connection set C, admits a
TEDS if and only if 2k | n where |C| = k.

Proof. Clearly 2k | n where |C| = k is a necessary condition for the
existence of a TEDS S in G(Z,,C). Is it also sufficient? Based on the
parity of k two cases exist. If k is even then let C' = {£1,£3,---£(k - 1)}.
Now S = {1,2,2k+1,2k+2,4k+1,4k+2,...,2 (3 — 1) k+1,2 (3 — 1) k+
2} is a TEDS for G(Z,,C). Each pair of adjacent vertices, 2jk + 1 and
2jk+2, dominate exactly once, each of the 2k vertices from 2jk+1—(k—1) =
2jk — k + 2 to 2jk + 2+ (k— 1) = k+ 2jk + 1 and only those vertices.
The next set of vertices 2(j + 1)k + 1 and 2(j + 1) k + 2 start at vertex
number 2(j+ 1) k+1—(k—1)=2k(j+1)—k+2=2kj+2k-k+2=
k + 2jk +2. For odd k, Let C = {£1,43,...,x(k-2), 2} Now, §=
{1,1+8,1+k1+k+3,.,1+ (- 1)k 1+ (F — 1) k+ 3} isa TEDS
for G(Zn,C). Clearly, S admits a perfect matching. ®

So, while the graph in Figure 4 does not admit a TEDS, G(Zg, {1, £3}),
a Cayley graph with a connection set of order 4, does admit a TEDS. The
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graph in Figure 5 is an example of the construction given in the proof of
Theorem 5.

Figure 5: G(Zs,{%1,9})

Note the proof of Theorem 5 always generates a connected graph. It is
necessary that the order of a group H is even in order to admit a TEDS.
This is also a sufficient condition since every group H of even order contains
an element, h, of order 2. The Cayley graph G(H, {h}) is a collection of
2 K3’s and the entire vertex set forms a TEDS.

3 Dihedral Groups

As previously noted, the Circulant graph Circ (Z,, X) is a special case
of a larger class of graphs, Cayley graphs: graphical representations of
groups. For a group G with a binary operation, we can define the Cayley
graph on G in the following way:

Definition 6 Let H be a finite group with identity e. Let C be a subset of
H satisfyinge ¢ C andC = C~1, thatis,a € C ifand only ifa~! € C. The
Cayley graph on H with connection set C, denoted G (H,C), satisfies:
the vertices of G (H, C) are the elements of H; there is an edge joining a,b €
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G (H,C) if and only if a=b € C. We do not reguire that the connection
set C generate the group H. We do not include the identity element e to
avoid loops and require C closed under inverses to avoid digraphs.

The elements of the Dihedral group, Dy, are all the possible positions of
a regular n-gon. Note that there are 2n different positions found by the n
rotations and n flips across each horizontal, vertical, and diagonal axis. As
noted earlier, every group of even order contains a TEDS for some connec-
tion set C. Since D, has order 2n, every dihedral group with connection
set C = {f} yields a Cayley graph that admits a TEDS containing every

vertex in the graph.
Theorem 7 The graph G (Dy,{f,7f}) admits « TEDS if and only if 2 | n.

Proof. On the one hand suppose G (Dn, {f,7f}) admits a TEDS. This
graph is a 2n-cycle by definition and since G admits a TEDS, we know that
2n =0 mod 4. Thus 4 | 2n which implies 2 | n.

On the other hand suppose 2 | n. Since our graph is regular of degree 2,
we see that any two adjacent vertices in our TEDS S totally and efficiently
dominate 4 vertices. To construct our TEDS S, we must choose our first
pair of adjacent vertices. Choose the adjacent vertices e and f. We see that
e dominates the set {f,7f} and f dominates the set {e,7""1}.

If this is all of D, stop, and we see that S is a TEDS. If this fails to be
all of D,, we must choose our next pair of vertices to be added to S. The
next set of vertices should be r2 and 72f. We see that 72 dominates the set
{r®f,r*f} and rf dominates the set {r,r2}. If this dominates all of Dy
stop. If not continue in this manner. The final pair of vertices included in
S will be r*~2 and r"*~2f . Where r"~2 will dominate {r"~2f,7"~1f} and
=2 f will dominate {r"~2,7"~3}. Thus our TEDS is

S = {e, f,r3,r2f, ., T3 "2 f )

|
Despite the fact that Z;2 % Ds, it is easy to select connection sets

such that the resulting Cayley graphs are isomorphic. Figure 6 displays an
example of a TEDS in G(Ds, {f,7f}), a graph isomorphic to G(Z2, {£1}).
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Figure 6: G(Ds, {f,7f})

Theorem 8 The graph G (D,,C), for some connection set C, admits a
TEDS S if and only if k | n where |C| = k.

Proof. On the one hand suppose G (Dy,, C) admits a TEDS. Since |C| = k
we know that our graph is k-regular. Choose a TEDS S. Since our graph
G is k-regular, we see that each member v € S must dominate k¥ number
of other vertices. Therefore each adjacent pair of vertices in S dominates
exactly 2k vertices. Since our set S must efficiently dominate all 2n vertices
in G we see that 2k | 2n which implies k | n.

On the other hand suppose k | n, which implies 2k | 2n. Note that 2k
is the number of vertices that each adjacent pair of vertices in our TEDS
S dominates, and that 2n is tfllxe number of vertices in G. This relationship

shows us that we must have T pairs of vertices in our TEDS. Define

C= {f,'rf,rzf,rsf, -")Tk—lf}

and we see that |C| = k. Now we must choose pairs of vertices for our
TEDS. We start with set of adjacent vertices {e,r*~!f} and see that e
dominates the set of vertices {f,7f,72f,...,r*"1f} and r*~1f dominates
the set of vertices {e,r,r?,...,r*"1} this is 2k vertices. Since e and r*~1f
dominate each other and none of the same vertices, we see that {e,7*~1f}
totally and efficiently dominates the set

{e’r’ r27 bR | rk—lf, rf’ rzfl "”rk—lf} )
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which is 2k vertices. If this set is all of D,,, we are done and define S =
{e,r*=1£} as our TEDS. If not, we need to select another pair of adjacent
vertices. Consider the vertices {r¥,72*~1f}. We see that r* dominates
the set of vertices {r*f,rk+1 fork+2f,  r#-1f} and r?*~1f dominates
{rk, v+t rk+2  p2k=11 Thus the set {e,r*,r*=1f,r2=1f} totally and
efficiently dominates the set

- 2 k—
{e, 7':7'2s .“’,’,2k l,f,’rf,'rzf, -"’7'2 lf} .

If this set is the all of D,,, we are done and can define S = {e,7*,r¥=1f,r2-1§
If not, we continue in this manner until we select the set of vertices in our
TEDS: {r(n-1-k rn=1f} which will totally and efficiently dominate the
set of vertices

{r(n-l)—k’ pn=1)—k+1 m,,’.(n—l)’ pn=1)-kjs pa=D—k+lf T(n—l)f} )
We see that a TEDS for G (Dy,C) is

k .2k —1)—k k—1p 2k—1p  3k—1 -
S={e,r ,T ,...,r(" )=k pk-1f g fir froyt™ lf}.

|
Figure 7 displays an example of a TEDS in Dy. Note that this figure is
an example of the construction provided in Theorem 8.
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Figure 7: G(Dq, {f,7,78})

4 Future Work

All groups with an even number of elements contain an element of order
2. Using this element of order 2 as a connection set generates a disconnected
Cayley graph that yields a TEDS. In other words, we can always choose our
connection set to be the element of order 2 to get a graph of n/2 copies of
K. For a connection set with at least two elements, whose order satisfied
the necessary divisibility requirement, one can always find a connection set
which generates a connected Cayley graph that admits a TEDS for Z,, and
D,. Two very different paths for future work exist. Perhaps this property
does not hold for all groups. Thus, we want to find a group of even order
n with divisor k such that 2k divides n but no connection set of order k&
yields a Cayley graph that admits a TEDS. One might want to consider A4
which provides a counterexample to the converse of LaGrange’s Theorem.
Or perhaps this is a property that holds for all groups and we want to
prove it. A smaller next step might attempt to prove a theorem similar to .
Theorem 8 for all finite abelian groups, such as:
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Theorem 9 The graph G (Zz x Zan, {(1,0), (0, 1), (0, —1)}) admits a TEDS
if and only if 3 | n.

One might also exploit graph isomorphisms to prove the existence of this
property in certain groups. For example, Figure 7 above and Figures 8 and 9
below demonstrate the existence of TEDS in Cayley graphs for isomorphic
graphs (of non-isomorphic groups).
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Figure 8: G(Z;s, {£2,9})
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Figure 9: G(Z2 X Zga {(11 O)a (0’ ﬂ:1)})
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