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Abstract: Two kind of authentication schemes are constructed using singular
symplectic geometry over finite fields in this paper. One is an authentication
code with arbitration, another is a multi-receiver authentication code. The
parameters of two kinds of codes have been computed. Under the assump-
tion that the encoding rules of the transmitter and the receiver are chosen
according to a uniform probability distribution, the maximum probabilities
of success of different types of deceptions attacks are also computed.
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1 Introduction

Authentication codes were invented by Gilbertetall!l in 1974, Simmons [@ has
developed the theory of unconditional authentication analogous to Shannon’s the-
ory of unconditional secrecy. The authentication codes without arbitration haven’t
valid to prevent transmitter and receiver from attacking mutual. In order to pre-
vent the mutual deceit of the transmitter and the receiver, Simmons®! put forward
the concept of authentication codes with arbitration again. In Simmons’ model
there is only one receiver. As an extension of Simmons’ unconditionally secure
authentication, multireceiver authentication codes were introduced by Desmexdt,
Frankel, and Yung . This paper makes use of the singular symplectic geom-
etry to get a type of authentication codes with arbitration, at the same time, to
construct a multi-receiver authentication code on this foundation, and the proba-
bilities of success for different types of deceptions are also computed.
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To solve the distrust problem of the transmitter and the receiver in the com-
munications system, Simmons introduced a model of authentication codes with
arbitration, we symply write (A2-code) defined as follows:

Definition 1.1 Let S,Er,Er and M be four non-empty finite sets, and f :
Sx Er — M and g : M x Eg — SU {reject} be two maps. The six tuple
(S,Er,Er,M, f,g) is called an authentication code with arbitration (A2-code),
if

1) The maps f and g are surjective;

2) For anym € M and er € Er , if there is an s € S, satisfying f(s,er) = m,
then such an s is uniquely determined by the given m and er;

3) p(er,er) # 0 and f(s,er) = m implies g(m,er) = s, otherwise, g(m,er) =
{reject}.

Notes: p(er,er) # O implies that any information s encoded by er can be
authenticated by eg.

S,Er,Eg and M are called the set of source states, the set of transmitter’s
encoding rules, the set of receiver’s decoding rules and the set of messages, re-
spectively; f and g are called the encoding map and decoding map respectively.
The cardinals | S |,| Er |,] Er | and | M | are called the size parameters of the code.

In an authentication system that permits arbitration, there are four participants:
a transmitter, a receiver, an opponent, and an arbiter, and there are five attacks:

1) The opponent’s impersonation attack: the largest probability of an oppo-
nent’s successful impersonation attack is P. Then

| {er € Egler C m} |
| Er |

Py = max
meM

2) The opponent’s substitution attack:

An opponent, after observing a message m that is transmitted by the sender,
replace m with another m'. The opponent is successful if 7' is accepted by the
receiver. We denote by Ps the maximal probability of the opponent in performing
a substitution attack on the receiver. Then

max | {er € Erler C mand er cm'}|

Pc = max m#m eM
5T meM [ {er € Egler C m} |

3) The transmitter’s impersonation attack: the largest probability of a trans-
mitter’s successful impersonation attack is Pr. Then

max | {er € Epler C mand p(er,er) # 0} |

meM,ergm

= max
Pr er€Er | {er € Er|p(er,er) # 0} |
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4) The receiver’s impersonation attack: the largest probability of a receiver’s
successful impersonation attack is Pg,. Then

max | {er € Erler C mand p(e,er) # 0} |

max
Pro = er€Ep | {er € Er|p(er,er) # 0} |

5) The receiver’s substitution attack: the largest probability of a receiver’s
successful substitution attack is Pg,. Then

gy | {er € Erler C m,m and p(eg,er) # 0} |

Prp, = max
By = ecEpmeM | {er € Er|p(er,er) # O} |

The following notations will be fixed throughout this paper: p is a fixed prime
and q = p is a fixed power of p. Fy is a field with g elements. V = F?** isa
singular symplectic space over Fy with index v. ¢;(1 <i<2v+1/)is row vector
in V whose i-th coordinate is 1 and all other coordinates are 0. Denote by E the
I-dimensional subspace of V generated by ea2y41,€2042, - ,€2p4:. K; denotes the

matrix
0o IV o
-1 0 o |.
0 0o o0

N(m,n) denotes the number of m-dimensional subspaces of F},N(k,m,n) denotes
the number of k-dimensional subspaces contained in a given m-dlmensnonal sub-
space of F;', N'(k,m, n) denotes the number of m-dimensional subspaces contain-
ing a given k-dimensional subspace of F, N(m,s;2v) denotes the number of sub-
spaces of (m,s) in 2v-dimensional symplectic spaces over Fy, N(my,s1;m,s: 2v)
denotes the number of subspaces of type (m;,s;) contained in a given subspace of
type (m,s) in 2v-dimensional symplectic spaces over Fy, N'(my,s1;m,s : 2v) de-
notes the number of subspaces of type (m, s) containing a given subspace of type
(my,51) in 2v-dimensional symplectic spaces over Fy, N(m, s, k;2v +1,v) denotes
the number of subspaces of type (m,s,k) in (2v +!)-dimensional singular sym-
plectic spaces over Fg, N(m,sy,k1;m,s,k;2v +1,v) denotes the number of sub-
spaces of type (my, s1,k;) contained a given subspace of type (m,s, k) in (2v +1)-
dimensional singular symplectic spaces over Fy, N'(my,s1,ky;m,s,k;2v +1,v)
denotes the number of subspaces of type (m,s,k) containing a given subspace of
type (my,s1,k1) in (2v 4 1)-dimensional singular symplectic spaces over F,.

The reader is referred to [18], geometry of classical groups over finite fields,
for notations and terminology.
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2 The first Construction

In this section, we construct an authentication code with arbitration from singular
symplectic geometry over finite fields.

Letn=2v+l,4<r<t<v+1,v>6,1 <k <l let U be a fixed subspace
of type (r+1,1,1) in V and let Up = UNU-L. Then U+ and Uy are subspaces of
types Qv —r+1,v+1—nrl)and (r—1,0,1) in V, respectively.

Our authentication code is a six-tuple

(S,Er,Ep,M; f,8),
where the set of source states
S = {s|s is a subspace of type (2 —r —2+k,t—r,k) inV,Up CsC U'};

the set of transmitter’s encoding rules

Er = {er|er is a subspace of type (2r—1,r—1,1)inVand U Cer};
the set of receiver’s decoding rules ‘

Eg = {er|er is a subspace of type (2r —3,r—3,1)in Vand U C eg};
the set of messages

M = {m|misa subspace of type (2(t — 1) +k,t —1,k),U C m,
mNU* is a subspace of type (2t —r—2+k,t —r,k) in V};

the encoding function:
f:SXEr — M, (s,er)—m=s+er,;
and the decoding function: g : S x Eg — SU {reject},

(mer)—{ ° if e C m, where s=mnNU*L.
R {reject} ifer & m.

Assuming the transmitter’s encoding rules and the receiver’s decoding rules
are chosen according to a uniform probability distribution, we can suppose that

1 0 0 0 0 0 0 0\ 1
U= 0 0 0 1 o0 0 0 o0}
“lo -2 o 0 0 0 0 0| r2
0 0 0 0 o 0 1 0/ 1
1 r-2 v4l-r 1 r-2 v+l—r 1 -1
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Then

0 I2) 0 0 o0 0 0 r—2
gt=] 0 O (S B B ) 0 0 | vit—r
10 o 0 0 0 JvI-n g v1-r
0 o 0 0 0 0 JONY A’
1 r-2  v+l-r 1 r-=2 vl—r I

and

voe(© =2 O 0 O0 0 0 0\ r=2
°=\o 0 0 0 0 0 1 0 /1
1 r-2 v+1-—r 1 r-2 v+l—r 1 -1

Lemma 2.1 The six-tuple (S,Er,Eg,M, f,g) is a well-defined authentication
code with arbitration, that is

(l)st+er=meM, forallse€ Sander € Er;

(2) for any m € M, s =mnN U~ is uniquely information source contained in m
and there is et € ET, such that m = s +er.

Proof. (1) For s € S, we can suppose that

0 I~2 o 0 0 0 0 o0 0 r-2
s= 0 0 R3 0 0 Re¢ 0 0 Ro 2(t-r)
10 o0 0 0 o0 0 1 0 0 1 ’
0 0 0 0 o0 0 0 &1 9 k-1
1 r-2 v+1-r 1 r=2 v+l-r 1 k-1 -k

where

0 0 0 r-2
o 0 —Rs'R3+R3'Rs O 2(t—r)
sKi's=\ o 0 0
r-2 2(t—r) k
Since rank(sKjs) = 2(t —r), rank(—Rg 'R3 + R3 'Rg) = 2(t —r). For er € Er, we
can suppose that

1 0 0 00 0 0 0\
0 0 0 1 0 o0 0 0 |
oo | O 0 0 0 0 0 0 | r2
™ 1lo o R, OR R, 0 R | r2°
0 0 0 00 0 1 0 /1
1 r~2 vl—r 1 r=2 v+l—r 1 -1
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where rank(Rj3, Rs, Ry, Rg) = r—2, and

01 0 0 0 1

-1 0 0 0 0]
erKi teT = 0 0 0 , , ,RS . 0 r-2
0 0 _Rs —R6 tR3 + R3 ‘RG 0 r-2

0o 0 O 0 0 1

Since er is a subspace of type (2r—1,r—1,1), rank(R's) =r—2.Let R'5 =12,

we can assume that

1 0 0 0 O 0 0 o0 1
0 o 0 1 0 0 0 0 1
o2 o o0 O 0 0 0 | r2
°= 1o o R o012 K 0 R |2
0 o O 0 ©0 0 1 0/ 1
1 r-2 v+l-r 1 r—2 vl—r 1 -1
So
0 1 0 0 0\
-1 0 0 0 0 1
erK;'er = 0 0 O 12 0| r2
0 0 —I2 _Ry'R;+Ry'Rg 0 | r-2
0 0 0 0 0/ 1
0 1 0 0 0\ 1
-1 0 o© 0 0|1
~ 0 0 0 I~-2 o | 2 ,
0 0 -2 o0 0] r2
0o 0 0 0 0/ 1
and
1 0 0 0 O 0 0 o i
0 -2 0 0 o0 0 0 0 r—2
0 o0 0 1 0 0 0 o0 1
m=s+er= 0 O Ry 0o 0 Re 0 Rg 2(t-r)
0 0 Ry 0 12 R 0 Ry | r2
0o 0 0 0 0 0 O ) k
1 r—-2 Vl—r 1 r-2 v41—r k -k

Clearly, m is a 2(¢ — 1) + k dimensional subspace, and dim(mNE) = k. As

mK;'m
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0 0 1 0 0 0\ ,
( 0 0 0 0 1-2) 0} r—2
_ ~1 0 o 0 ) 0| 1
N 0 0 0 —Rs'R3+R3'Rs —Rs'Ry+Rs'Rg 0 | 20-n
0 —I-2 0 —R{'Rs+R,'Rs —RL'Ry +R,'R, 0 | r-2
\ 0 0 o0 0 0 0/ &
( 0 0 1 0 0 0\ 1
0 0 0 0 -2 o | -2
-1 0 o 0 0 0|1
~ 0 0 O —Rs'Rs+R3'Rg 0 0 | 2¢-r) °
0 -I2 ¢ 0 0 0] r=2
\ 0 0 o0 0 0 0/ &

where rank(—Rs 'R3 + R3 ‘Rg) = 2(¢t —r), rank(mK,; ‘'m) =2(t — 1), som is a
subspace of type (2(t — 1) + &,z — 1,k) containing U. Again,

0 (2 0 00 0 0 0 r-2
1o o R 0 O Re 0 Rsg | 20-n
mOU== \y o 0o 00 o0 I® o/«
1 r—2 v+l—-r 1 r—-2 vl=r k -k

this is a subspace of type (2t —r —2+k,¢ —r,k). Hence, we have shown that
meM.

(2) Forany m € M, let P=mnNU~. Then P s the subspace of type (2t —r —
2+k,t —r,k) containing U, and Uy = UNU+ Cc mNUL = P. Thus P is a source
state contained in m.

Since U is a subspace of type (r+1,1,1) and Up a subspace of type (r —
1,0,1), exist an isotropic subspace U, of type (2,1,0) such that U = Uy L Uj.
While P is a subspace of type (2(t — 1) — r +k,t —r,k), exist a subspace Qg of
type (2(t —r)+k—1,t —r,k—1) such that P=Up L Qp. Moreover, Qo =Q; L 0>
where Q is a subspace of type (2(t — ), —r,0) and Q> = QoNE. Hence Q, is a
regular subspace of V, and

V=01 10, m=mnV=mn(Q:1 LO})=0; L(Q{ Nm).
Notice that Q»,Up,U; C Q,J- Nm, so there is a subspace Vp C m, satisfying
Qf‘ﬂm =0 dUgd U, V. Thus
m = Q1 L(G0lolieV)=(21602)e Ul eV
= QoL (Uo@Ui®V)=00 L (UaW).

Leter =Up@® U, ®Vo = U @ Vp. Since m is a subspace of type (2(t — 1) +
k,t —1,k), er is a subspace of type(2(r—1)+1,r—1,1),and U C er. Thus er is
an encoding rule of transmitter satisfying m = P+ er.
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Let s be another source state contained in m. Then s ¢ mNUL = P. Since
. ! . Y . . o o o
dims =dim P, s = P. That is, P is uniquely source state contained in m.

Hence, we have shown that the first construction is a well-defined authentica-
tion code with arbitration.
Next we compute the parameters of the code.

Lemma 2.2 The number of the source states is | S |= g?¢~U-RN(2(t —r),t —
ri2(v+1—r))Nk-1,I-1).

Proof. Lets € S. Since Up C s C U+, s has the form

r-2 v+1-r 1 r-2 v+l—r 1 k-1 1=k

0 It-2) 0 0 0 0 0 0 0 r-2

0 0 R3 0 0 Rs 0 0 Ro 2(t-r)
s= |10 0 0 0 0 0 1 0 0 1 ,

0 0 0 0 0 0 0 /&0 0 ) &k

1

where (Rs,Rs) is a subspace of type (2(t —r),t —r) in the symplectic space
qu("“_'), Ro arbitrarily. Therefore, the number of the source states is

|S|= 2¢-RINQRE—r),t —r;2(v+1-P)N(k—1,I-1).

Lemma 2.3 The number of the encoding rules of transmitter is

Nir+1,1,5;2r=1,r—1,1;2v+ [,y)NQ2r—1,r = 1,1;2v+1, v)
N(r+1,1,1;2v+1,v)

| Er|=

Proof. Since each encoding rule is a subspace of type (2r —1,r —1,1) con-
taining U in singular symplectic space Fy (2‘”"')

Er = N(r+l,l,1;2r—l,r—l,l;2v+l,v)
_ N(r+1,1,152r—1,r— 1,1;2v+4,v)N(2r—1,r—1,1;2v+1,v)
B N(r+1,1,1;2v+1,v) .

Lemma 2.4 The number of the decoding rules of receiver is

N(r+1,1,1;2r—=3,r—3,1;2v+1,v)N(2r—3,r -3,1;2v+1, v)
N(r+1,1,1;2v+1,v)

| Er [=

Proof. Since each encoding rule is a subspace of type (2r —3,r—3,1) con-
F(2v+l)’

taining U in singular symplectic space Fg
|Er| = N(r+1,1,1;2r=3,r=3,1;2v+1,v)
_ N(r+1,1,1;,2r=3,r—=3,1,2v+Lv)N(2r—3,r—3,1;2v +1, v)
B N(r+1,1,1;2v+1,v)
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Lemma 2.5 For any m € M, let the number of encoding rules and decoding
rules contained in m be a and b, respectively. Then

a= q2(r—2)(l—r)+(r-2)(k—l), b= q(r~4) (2(¢~r)+k=-1) N(r—4,r—2).

Proof. Since m is a subspace of type (2(t — 1) + &,z — 1,k) containing U and
mNU* is a subspace of type (2t —r —2+k,t —r,k) in V, we may take

1 0 0 0 0 o 0 0 0 0\ ,
0 -2 o 0 o0 0 0 0 0 0] ,—2
o o /-9 o o0 0 0 0 0 0| +—
o o 0 0 1 0 0 0 0 0|1
=10 o 0 0 0 I3 ¢ 0 0 0] ra2
0 0 0 0 0 o0 [0 ¢ 0 0| ¢-r
0 o0 0 0 0 O 0 0 I® o/ &
1 r-2 t—r v+1—t 1 r=2 t—r v+1—t k 1-k

Let er € Er and er C m. Since er is the subspace of type (2r —1,r—1,1)
containing U,

1 ] 0 0 0 o 0 0 o o0 o0 1
0 0 (i} 0 1 0 0 0 o o0 o 1
0 I3 ¢ 0 0 o 0 0 0 0 0 r-2
1o o &R o o 1) R, 0 0 Ro 0 | r2
0 0 0 0 0o o 0 0 1 0 o 1
1 r-2 t—r v+1—t I r-2 t—r v41—t 1 k-1 I-k

where R3, R; and R are arbitrary. Thus the number of er contained in m is
a= q2(r—2)(t—r)+(r-2)(k—1)_

Let eg € Eg and ep C m. Since eg is a subspace of type (2r —3,r —3,1)
containing U,

1 0 o0 o o0 o 0 o o o o\ 1
o o0 o0 o 1 o 0 0 0o o o |1
| o 12 o o o0 o 0 0 0 o o0 [ r2
1o o m 0 0 Ry Ry 0 0 Ro O | ra
o o0 o0 o o o0 () 0o 1 0o/ 1
1 r=2 t~r v+l-t 1 r-2 t—r vil=t 1 k-1 1-k

where Rs is a (r —4)-dimensional subspace in (r —2)-dimensional subspace, and
R3,R7 and R are arbitrary. Thus the number of eg contained in m is

b= q2(!—r)(r-4)+(k—l)(r—~4)N(r _ 4”, - 2) = q(r—4)(2(l—f)+k—l)N(r _ 4’ r— 2).
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Lemma 2.6 The number of the messages is M| = L-Sllle

Proof. Let Q = {(m,er)|m € M, er € Er,er C m}. Then
12 = %I{er € Erler C m}| =|M|a,
me,

and

Q= ; |{m € Mler C m}|.
er€Er

Since m only contains a source state for any m € M, |{m € Mler C m}| = |S}.
Therefore,
|2 = |S| = ISI|E7].
erebr
Furthermore, |M| = E”afﬂ
By Lemmas 2.1-2.6, we have Theorem 2.1.

Theorem 2.1 The parameters of constructed authentication code with arbi-
tration are

M| =
IS| = g2C-RN2(t — 1)t = r2(v+ 1 —r))N(k=1,I-1);
N(r+1,1,52r=1,r—1,1;2v+ L,v)NQ2r—1,r—1,1;2v+ 1, v)
N(ir+1,1,1;2v+1,v)
N(r+1,1,1,2r=3,r =3, 1;2v+ LVN(2r =3,r =3, 1;2v +1,v)
N(r+1,1,1;2v+1,v)

IS||ET] .
a ?

|Er| =

|Er| =

Lemma 2.7 (!) For any er € E7, the number of decode rules eg contained
inerisc=N(r—4,r-2).

(2) For any eg € Eg, the number of encode rules er containing eg is d =
q4(v+l-r)+2(l—l)_

Proof. (1) Leter € Er. Then er is a subspace of type (2r—1,r—1,1)
containing U. We can suppose that

1 0 0o 0 o0 0 0 0\,
0 o 0 1 o0 0 0 0]
I B 0 0 0 0 0 0| r2
7= 1o o 0 0112 o0 0 0| r2
0 o0 0o 0 o0 0 1 0/ 1
1 r-2 vil—r 1 r-2 vl—r 1 -1
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For any eg € Eg. If eg C er, for eg is a subspace of type (2r —3,r—3,1)
containing U, then we can suppose that

ér =

-~ O 00O O -

0
0
J(r=2)
0
0
r-2

0

0
0
v+l—r

ol = = B = =]

where Rs is a (r — 4)-dimensional subspace in (r —2)-dimensional subspace. Thus
the number of ez contained in er is ¢ = N(r —4,r —2).

(2) Let eg € ER. Then e is a subspace of type (2r — 3,7 — 3, 1) containing U.

We can assume that

0
0
1(r—2)
0
0
r=2

€R

- OO0 OO ™=

o oOooOoQ

0
1
0
0
0
1

vl—r

0
0
0
-4
0
r-4

For any er € Er. If er D e, for er is a subspace of type (2r—1,r—1,1) con-
taining U, then we can assume that

0
0

0

0

0
r—2

er

-~ Q00O O —

-2

0
0
0
0
R3
0

vitl—r

0
1
0
0
0
0
1

0
0
0

) ()]
0

0
r—4

0
0
0
0
Re
0
2

0 0 1
00 1
0 o r-2
0 0 r-4
0 Ry 2

1 0 1

1 I-1

where R3, Ry, Ry arbitrarily, and Rs = I®). Thus the number of er containing eg

isd = q4(v+l—r)+2(l—l)‘

Lemma 2.8 For any m € M and eg € ER. If eg C m, the the number of encode
rules e containing eg and contained in m is 2@ +k=2r-1)

Proof. Let the matrix representation of m be the same as Lemma 2.5. For any
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eg € Eg. If eg C m, then we write

1 0 0 0 0 o0 0 0 0 o 0 1
0 0 0 (] 1 o0 0 ] 0 o 0 1
eq= o 12 0 0 o o0 0 0 0o o0 0 r-2
0 0 R 0 0 Rs Ry 0 0 Rp 0 r-4
0 0 ] 0 o 0 o 0 1 o 0 1
1 r-2 t-r v+l 1 r-2 t—r v+1-¢ 1 k-1 -k

where Rg is a (r — 4)-dimensional subspace in (r — 2)-dimensional subspace. For
any er € Er. If er C mand er D e, then we can write

1 o o0 o o0 o 0 o o0 o0 o 1

0 0 o0 0 1 0 0 o o0 o o0 1

o /-2 o 0 0o 0 0 0 0 0 0 r-2
er= 0 0 R3 0 0 Rs Ry 0 0 Ryo 0 r—4

o o0 R o o R & o o Ry, o] 2

0 o o o o0 o 0 0 1 o o 1

r—2 t—r v+1—t 1 r=2 t—-r v+1-t 1 k-1 1k

where ( 25;’ ) is a (r — 2)-dimensional vector space, R;, R, and R'10 arbitrarily.
Thus the number of er containing ex and contained in m is g2 +5-2-1),

Lemma 2.9 Assume that m, gnd my are two distinct messages which com-
monly contain an encoding rule ey of the transmitter. Assume that sy and s; are
two source states contained in my and my, respectively. Let so = s; N sz, and
dimso = k). Then

(1) r—1<ky <2—r—3+k;

(2) the number of eg contained in my Nmy is N(r — 4,r — 2)q(r—4ki-r+1);
and

(3) the number of er containing eg in my Nmy is qz("l" +1) Jor any eg C
m; Nms.

Proof. (1) Clearly, m; =5 +e'T, and my =52 +e'7-. For m; # ma, 51 # s3.
Again becauseof s DUpands; DUp, r—1 <k S22t —r-3+k

(2) Let s:- be the complementary subspace of so in s;. Then s; = s es; (i=
1,2). Fors; =miNUL(i=1,2),

S0 = (m1 ﬁU'L) N (mzﬂUJ') =m ﬂmzﬂUl =s1Nmy=s3Nmy,

and

! ! 7 [ ’
myNmy = (51 +eg) Nmy = (so + 5, +e7) Nmz = ((So+er) +5;) Nmy.
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Again, for sp + e'T Cmy,
myNmy = (so+e'7~) +(syNmy).

! 7
Furthermore, m) Nmy = so + e for sy Nmz C 51 Nmz = so.
Since dim(m;) = dim(s;) + dim(e7) — dim(s; Ne7),

dim(siNey) =r—1.
Due to dim (Up) =r— 1, and Up C siNer, so siNer = Up (i = 1,2). Therefore,
dim (my Nmy) = dim(so) + dim(e’;-) —dim (so N e'T) =k +r

Without loss of generality, we can assume

1 0 0 0 0 0 0 0\ 1
0 0 0 1 0 0 0 0|
r 0K 0o 0 O 0 0 0] r—2
= 1o o o0 o0 I o o0 0| r2
0 o 0 0 0 0o 1 0/ 1
1 r-2 v+l—r 1 r-2 vil—r 1 -1
Then m; and m; have the matrix representations
1 0 0 0 © 0 o0 O 1
oI o o0 O 0 0 o0 r—2
0 0 Az 0 0 As 0 Ag 2(t—r)
_]lo o 0 1 0 0 o0 0 1
m=1o0 o 0 011 o 0 0 | r2
0 o0 0 0 O 0 1 o0 1
0 0 0 0 0 0 0 Ag/ #1
1 r-2 v+l—r 1 r-2 v+l=-r 1 -1
and
1 0 0 o0 O 0O o0 0 1
0 /2 o o0 O 0o 0 0 r-2
0 0 B; 0 0 Bs 0 Bg 2(1-r)
1o o 0 1 0 0 0 0 1
m=10 o o0 01 o o0 0 |r2 °
0 o 0 o0 0 0 1 o 1
0 0 0 0 0 0 0 By k1
1 r-2 v+l—r 1 r-2 vl—r 1 -1
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respectively. Thus

1 0 0 0 o© 0 0 0\ ;

0o 12 9 0 O 0 0 0 | r2

0 0 G 0 0 Cs 0 Gg 2(t—r)

_lo o 0 1 0 0 0 O 1

mim= |4 o o o011 0 0 0| r2

0 0 0 0 O 0 1 0 1

0 o0 0 0 o0 0 0 Ci/ k1

1 r-2 v4l-r 1 r=2 vl-r 1 -1

Fordim(m)Nmy) =k, +r,

0 0 G 00 Ce 0 G
dm |00 0 00 0 G |=k—r+2
0 1 0

-]

0
00 0 00 O

For any eg € Eg. If eg C my Nimy , then

1 0 0 0 O 0 00 1
0 0 0 1 0 0 0 0 1
ez | O ™~ o0 0 O 0 0 0 | r2
R= 10 o Rs O Rs Rs O Rg | r-4 '
0 o0 0 o0 O© 0 1 0 1
] r-2 v4l—r 1 r=2 vl=r 1 -1

where Rs is a (r —4)-dimensional subspace in (r —2)-dimensional subspace while
everyrowof (0 O R3 0 0 Rs O Rg ) is a linear combination of the

base of subspace

00G 00CGCs 0 G
000000 O0Cy)/

Therefore, the number of eg contained in m Nmy is

gr-k—r+2=ON (4 r —2) = gr-H-rHING —4,r - 2).

(3) Assume that m; Nmy has the form as above. Then, for any eg C m; Nmy,
we can write

1 o0 0 0 0 0 0 O 1
0 o0 0 1 0 0 0 0 1
ene | O “™—-2 o0 0 O 0 0 0 | r2
R= 10 o Rs O Rs Rs O Rg | r—a’
0 o0 0 0. 0 0 1 0 1
1 r-2 v+l—r 1 r-2 v+l-r 1 -1
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where Rs is a (r — 4)-dimensional subspace in (r — 2)-dimensional subspace. For
any er € Er. If eg C er and e C m; Nmy, then

1 0 0 0 O 0 00 1
012 o0 0 O 0 0 0 | r2
0 0 0 1 0 0 0 0 1

er = 0 0 Rla 0 R’s R? 0 R’s r-4
0 0 R, 0 Ry R 0R, |2
0 0 0 0 o0 0 1 0 1
1 r-2 v+l-r 1 r—2 v+l-r 1 I-1

where ( :Is ) is a (r — 2)-dimensional subspace while every row of
5

(0 0 Ry, 00 R, 0 R;)
is a linear combination of the base of subspace

0 0G 00 C 0 Cg
0000000(:8/'

Therefore, the number of er containing eg in my Nmy is g2h—7+1) |

Theorem 2.2 In the A% authentication code that we construct above, if the
encoding rules of the transmitter and the receiver are chosen according to a

uniform probability distribution, then the largest probabilities of success for dif-
; 1 1 -1
Jerent types of deceptions are P, = TR Ps = - Pr= q—(?f—z)j;,

Fry = Wmﬁm. and Pg, = q—lz, respectively.
Proof. (1) Since the number of eg contained in m is b by Lemma 2.5,

_ . |{er€Eglercm}| b _ 1
Pr= max [Ex| T |Er|  gtr-9C—+D+=E)

(2) Because of |[{er € Egler C m,er C m'}| = N(r —4,r — 2)q(r—9ki-r+1)
by Lemma 2.9, where r—1 <k; <2t —r—3+k%,

max | {er € Egler C mand eg cm'}|
eM

P = m#m
s e |er € ErlerCm |
q(r—4)(k2—r+l) N(r—4,r-2)
B b
_ 1
=
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where ky =2t —r—-3+k.

(3) Since
oo o e, | {er € Erler C m and p (e, er) # 0} |
er€Er | {er € Er|p(er,er) # 0} |
E n
o eliex, | {er € Epler C mNer} |
ereEr | {er € Egler Cer} |

Assume thater ¢ m. Leter = U ®W, and m =U & Q. Then dim(W) = (2r —
1)-(r+1)=r—2,anddim(Q) =2(¢t— 1) +k—(r+1) =2t —r+k—3. Because
UCerCernm,

erNer =U® (egNW)
= erNm=U® (erNQ)
2 Us(erNWNQ).

€R

Sodim(eg "W NQ) < r—4,and egNW NQ is at most a (7 —4)-dimensional sub-
space in WNQ subspace. Since er ¢ m, dim(WNQ) <r—3. Whendim(WNQ) =
r—3,

U
er = | WNe
€yir—2

1 0 0 0 0 0 0 0 0\
0 0 0 1 0 0 0 0 0]
0 12 0 0 0 o0 0 0 0| r=2
= 0 o0 0 0 0O 0 0 1 0] ,
0 o0 0 o 13 o 0 0 0] 3
0 0 0 0 0 1 0 0 0/ 1
1 r-2 v4l—r 1 r-3 1 vhl=r 1 1=l

U —
wher«aerﬁm:(an ),andWﬂQ=(0 000 /3 00 0 0).

Sinceeg Cer,

_ U
€R = erNWNQ
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1 0 0 0O 0 O 0 0 0 1
0 0 0 1 0 O 0 o 0 1
_ 0 12 ¢ 0 0 0 0 o0 0 | r2
- 0 0 0 0 0 0 0 1 0 1 !
0 0 0 0 Rs O 0 0 0 r-4
1 r-2 v+l—r 1 r-3 1 v+l-r 1 -1

where eg"WNQR=(0 0 0 0 Rs 0 0 0 0). SoegNWNQisa
(r — 4)-dimensional subspace in W NQ, rank(Rs) = r — 4, and the number of Rs5
is N(r —4,r — 3). The number of eg is N(r — 4,7 — 3) at most. The number of eg
contained in er is ¢ by Lemma 2.7. Thus

_N(r-4,r-3) ¢*-1

Pr c e
(4) For m € M, we can assume
1 0 0 0 0 o0 0 0 0 0\ ,
0 I~2 9o 0 0 o0 0 0 0 0| ,—2
0 o0 [ 9 0 o0 0 0 0 0 | ¢
1o o o 0 1 0 0 0 0 0|1
"=10o 0o o o0 o0 I g 0 0 0/ r2
0 0 o 0 0 o0 [N 9 0 0| ¢=r
0 0 o 0 0 o 0 0o 1® o/ &
1 r-2 t—r v+1—¢ 1 r—2 t—r v4-1—¢ kK I-k
For eg € Eg, if eg C m, then eg has form
1 0 0 0 0 0 0 0 0 0 0\ i
0 0 0 0 1 0 0 0 0 0 0]
e | 012 0 0 0 0 0 0 0 0 0],
B= 10 o0 R 0 0 R R 0 0 Rpo O | ra
0 0 0 o0 o0 o 0 0 1 o0 o0/ 1
1 r—2 t—-r v+l-—t 1 r-2 t—r v+1—t 1 k 1=k

where rank(Rg) = r — 4. At the same time, for er € Er, if eg C er C m, then e
has form

1 0 0 0 0 0 0 0 0 0 0\ ;

0 o 0 0 1 0 0 0 0 0 0],

0 /™ o0 0 0 0 0 0 0 0 0| ra
er= 0 0 Rs 0 O Rs Ry 0 O Ryp O r-4

0 0 R 0 0O R, R, 0 0 Ry 0]:2

0 o 0 0 0 0 0 0 1 0 0/ 1

1 r=2 t—r vil-t 1 r=2 ter vil=t 1 k-1 -k
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Re
Rs

where rank (
containing eg and contained in m is g2(2¢—")+¥=1), Thus

) =r—2,and R}, R, and R are arbitrary. The number of er

max | {er € Erler C mand p(er,er) #0} |
Pr, = max
Ro eR€ER | {er € Er|p(er,er) # 0} |

max | {er € Erler Cmandeg Cer |
meM
= max
| {er € Er|er Cer |

2(2—2r+k~1)
d

1
FO-NF2=k)+8’

(5) Assume that the receiver declares to receive a message m. instead of m,
when s, contained in m;, is different from s contained in m, the receiver’s substi-
tl,ltion attack can be sluccessful. Since eg C er Cm, receiver is superior to select
er, satisfying eg C ep C my, thus my = 52+ e, and dim(s; Ns3) =k, as large as
possible. Therefore, the probability of a receiver’s successful substitution attack
is
qz(ltl —r+1)

Pr, = PEE+E=1)’

where k) =2t —r—3 +k Pg, = 3'5 is the largest.

3 The Second Construction

In this section, from singular symplectic geometry and the first construction, we
construct an authentication code with a transmitter and multi-receivers, and com-
pute the probabilities of success for different types of deceptions. The definition
of multireceiver authentication codes refer to [16].

Letn=2v+l,4<r<t<v+1,v>6,1 <k <l LetU be a fixed subspace
of type (r+1,1,1) in V, then U+ is a subspace of type (2v —r+1,v+1—rl)in
V. Let Up = UNU<, then Up is a subspace of type (r—1,0,1) in V. Let S = {s] s
is a subspace of type (2t —r —2+k,t—r,k)and Ug Cs CUL}; 1et E={e|eisa
subspace of type (2r—1,r—1,1)andU C e}; let M = {m|m is a subspace of type
(2(t=1)+k,t—1,k),U C m,mNU is asubspace of type (2t —r—2+k,t —r,k)},
and let M* = {(my,mz,---,my) € M mNUL =myNUL = ... =my NU*}.
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First, we construct (A + 1) A-codes. Let C = (S,E*, M, f), where S,E* and
M are the sets of source states, keys and authenticators of C, respectively, and f :
SXE* - M*, f(s,e) = (s+e1,5+e, ,S+e,) for e = (ey,e2,--,€3) € E*,
is the authentication mapping of C. Let C; = (S, E;,M;; f;), where S,E; = E and
M; = M are the sets of source states, keys and authenticators of C;, respectively,
and f; : S X E; — M,, fi(s,e;) = s+e; for e; € Ej, is the authentication mapping of
C;. It is easy to know that C and C; are well-defined A-codes.

Our authentication scheme is a (A - 1)-tuple (C;C),Cs, - --,Cy ). Let t;: E* —
E;, ti(e) = e; for e = (e, €2, --,€;) € E*, and let ; : M* — M, ;(m) = m; for
m= (ml,mz,m,ml) € M*. Then

mi(f(s,e)) =m(s+e1,5+e2, -, s+er) =s+e;,

Jills x w)(s,€)) = fil(ls(s), Ti(€)) = fi(s,er) = s +es.

Therefore, ;(f(s,e)) = fi((I; x 7)(s,€)). Thus our scheme is indeed a well-
defined authentication code with a transmitter and multi-receivers.

Theorem 3.1 In the construction of multi-receiver authentication codes, if the
encoding rules are chosen according to a uniform probability distribution, then
the probabilities of impersonation attack and substitution attack are respectively:

1 . 1
q-D@I—+1-k+2) Psli,J] = qr-2)@-2+1-k+5)"

Pili,J) =

where J = {iyia,-+,ij},i € J.
Proof. Lete; = (ei,eiy,-++,ei,), then
wle) =e; 4=*3=("'vel'l""vei/v"')'
It is easy to know that | e € E*|7;(e) = ey |=| E |*~/. And
fi(s,e;) = mi(m),s + e; = my = m;(m). )

From Lemma 2.5, we know the number of ¢; satisfying (1) is a. For any ¢; sat-
isfying (1), the number of e satisfying 7;(e) = e; and wi(e) = ¢; is | E |*~/-1 .
So

|e € E*w(e) = es,mle) = 1, fils, &) = m(m) |=| E [*=I~1.

Anda = q(r—2)(2t—2r+l-l)’ thus

Rfi,J] = max maxmax | {e € E* mi(e) = es,ile) = e, fi(s, &) = mi(m)} |
eyeE’ s€S meM | {e € E)‘ITJ(e) = eJ} |

a
= max maxmax ——
eseE’ seS meM | E |
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gr-2@=2r+k-1)
qU-2@v=2r+1+1)

1
q(r—-2)(2(v—t)+l—k+2) .

Now we compute the probability of substitution attack. We know
m =f(S,€) = (s+e1,s+e2,-- g ,S+eA) = (ml,m21” : »mA)-

and 7y (e) = (ei,, €5, -1 i), Whenevere = (e1,€2," 1€y, €ijs €k, ,€x). While
S
J

| {e € E*lm = f(s,e), () =es} |=| E[*,

| {e € E*m=f(s,e), 1se) = es,i(e) = €1 € B, fils &) =m(m)} |=| E =4~ xb,
and b= q-2ki-r+1) Therefore,

PiJ]
= max max  max "‘eE"l'n=!(!-=),'1(;)=¢1-ft(=)Bﬂeb}Jl(-".=r)=ﬂ:(m')}l
ejB) SESmEM 1y f o {ecEA Im={(s.e), 1y (e)=es }|

max max max rg'l
‘jeEJIESMEM’#’es
- r—2)(2v—2r+i+
cjeE) ESmEM ] 5 q
1
qir-’zﬂiv—21+1—f+5i

where ky =2t —r—3+k%.
The results about multi-receiver authentication codes based on geometry of
classical groups over finite fields are fewer.
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