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Abstract. A matching M in a graph G is a subset of £(G) in which
no two edges have a vertex in common. A vertex Vis unsaturated
by M if there is no edge of M is incident with V. A matching M is
called a perfect matching if there is no vertex of the graph is
unsaturated by M. Let G be a kedge-connected graph, k=1, on
even /1 vertices, have minimum degree r and maximum degree
r+¢, €21. In this paper we find a lower bound for /7 when G has

no perfect matchings.

1. Introduction

For our purposes, all graphs are finite, loopless and have no multiple edges. For
most part of our notation and terminology we follow that of Diestel [1]. Thus G is a
graph with vertex set I{ G) and edge set £(G). The cardinality of a set A is denoted
by |A. Hence, the number of vertices and number of edges are | G)| and |£(G)|
respectively.

A matching Min G is a subset of £(G) in which no two edges have a vertex
in common. A vertex Vis unsaturatedby M if there is no edge of M is incident with
V. A matching M is called a perfect matching (or 1-factor) if there is no vertex of
the graph is unsaturated by M.

Many problems concerning matching have been studied in the literature, see
[3]. The perfect matchings of almost regular graph have been studied by Caccetta
and Mardiono [2]. Volkmann and Zingsem [4] studied the number of vertices of

connected bipartite graphs G with partite sets X and ¥, | X]=|Y|, each vertex has

degree ror r+1, and G has no perfect matching. Zhao [5] studied the number of
vertices of graphs G, with each vertex has degree 7 or r+1, and G has no odd
component and no perfect matching. The result is as follows.

Theorem 1.1 (Zhao). A graph G on 2n vertices, each vertex has degree r or r+1,
with no perfect matching and no odd component, satisfies |V(G)| 2 3r+4. 0

Let G be a connected graph. An édge cut sét £, of G is a minimal subset of
£(G) such that G- £ disconnected. The 8dgs-connectivity of G is the minimum
cardinality of edge cut sets, and is denoted by K(G). A graph G is k-edge-
connected if k< k(G). Thus every connected graph is 1-edge-connected.
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In this paper we generalize Theorem 1.1. Let G be a #-edge-connected graph,
k=1, on even 71 vertices, have minimum degree 7 and maximum degree 7+ 8,
621, and G has no perfect matching. We obtain the lower bound of /7 and show

that the bound is sharp.
2. The Bounds

Let G be a graph. If Sis a subset of G), G- denotes the graph formed
from G by deleting all the vertices in S together with their incident edges. A
component of G is called 0dd or even according as its number of vertices is odd or
even. The number of odd components of a graph G is denoted by o(@). We need
the following well-known Tutte’s theorem ([1], p39) to establish our results.

Tutte’s Theorem. A graph G has a perfect matching ifan only if (G- S)<|$] for
all Sc (G6). ]

Let G be a kedge-connected graph, =1, on even 71 vertices, G have
minimum degree 1 and maximum degree 7+&, €21. For the trivial case, when
r=@=1, if a graph G has no odd component, and each vertex has degree 1 or
1+1, then G has a perfect matching. Further, when G has minimum degree 1, has
maximum degree 7+ &, and has no perfect matching, then 72 r+ 6+1. Hence we
only consider for the case r=2.

Theorem 2.1. Let G be a k-edge-connected graph, k=1, on even n vertices, G
have minimum degree r and maximum degree r+e, r22, ex1. If G has no
perfect matching, then

a) n23r+4 if e=1, riseven and ks%—l,
b) n=3r+5 ife=1,risodd, and k=1,
c) nz3r+7 ife=t, r=5 isodd and 2< ks%l,
d nz g_r] 2k+2 if 8=1 andﬁ—z-sksr;l,
2 3 2
e) N=24r+2 if e=1 and Irz-g,
) nz2r+2 if2a<esr,
g nzz[””l] ifezr+1.

Proof. Suppose G has no perfect matching. By Tutte’s Theorem, there exists a
vertex set Sc V/(G) such that o(G— S)>|5|. Since G is connected and 7 is even,
then |§|# @ and AG-5)2|8|+223.

Let H be an odd component of G- S joined to Sby at most 7—1 edges and

having / vertices. By counting degree of vertices, we have
Kh=0)+(r-1)2rh,

192



P —(r+Dh+(r-020,

and hence
/IS(,+]) \/ r-iz-l) 4r-1 or hz(r+l)+\/(r-;-l) ar 1)’
h<('+l)"‘/("1)2+4 or hz(”l)*‘/("l)z”
- 2 2 H

h<1 or h>r.

Since /1is a positive integer, then /2> r+1; and since /is odd, then /1> r+2 when
ris odd. Thus, when 7 is even (or odd) each odd component of G—S has at least

r+1 (or r+2) vertices, or each odd component of G- S has at least 2[ {’H

vertices.
Let /m be the number of odd components of G—S joined to § by at most

r—1 edges. Since
(r+ 6|82 mk+ n|§+2-m),
then

EE mk+(2-myr
e
and

nzm(2[ﬂ+1)+2|.s]+2-m

22”{!"4.2(.2@)4.2
2 e

=2”{_r."+2mk+2(2—m)r+2.
2 e

Case1: g=1.

Subcase 1.1: I(sr—;'—].

Let m=0. Then n24r+2.So n23r+4 when ris even, and 7=37+7 when
r=5 isodd.

Let m=1. Then 022‘%]+2r+2k+2. Hence, n>3r+4 when r is even,

nz23r+5 when risoddand #=1,and 7>3r+7 when risodd and ¥>2.
Let m= 2. Then |§|22k22 and o(G-S)24. If each other odd components of

r .
G- S has at least 3 vertices, then
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nz 2(2[£]+1)+2/r+ 2/:{ f'
2 2

> (2/(+4)[—2£]+2k+2

2 6{ —r--l +4,
2
If there is an odd component of G— S has less than -2,- vertices, then |.S] 2 [ -gl+1 ,

and
r r
n22(2[5]+1)+2|ﬂ zs[ﬂﬂ.
We have 7723r+4 when ris evenand /7237+7 when ris odd.

Let m>3. Then nzs(z[ﬂn)u = 6[{’+4 . Again, we have 7237+4 when
is even and n723r+7 when ris odd.

For all m we have:
nz3r+4 ifriseven,

nz3r+5 ifrisoddand k=1,
nz3r+7 if rz5isoddand £22.

Subcase 1.2: L;—%sksg—l.'rhen r2s.
If m=0,then n=24r+2.
If m=1, then. n22[£]+2r+2k+222[%{]+2k+2.

Let m=2.Then |§22k22.1f |82 r, then
r122(z|-2£-|+1)+2|.51
24’_—r.|+2r+2.
2

Let |§| < r-1. Then every odd component of G- has at least three vertices. If
we can show that every odd component of G— S has at least 7—1 vertices, then

n> 2(2[§]+1)+2(r—1)+2

24[£]+2r+2.
2

194



Suppose there exists an odd component of G—S has only X vertices, where
3< x<r-2. Then this component is joined to Sby f= xr— X x—1) edges. Since
3<x<r-2,then f23r-6. Consequently,
(r+1]82 24+ n|S-1)+ 3r-6),
|S|224+2r-621,

this contradicts to |5 < r-1.

Let m=3.Then |§22.1f |52 r, then
”23(2[5’]“)”'51-1

> 6{ 1]+2r+2 .
2
Let |§| S r—1. Then, as for the case /M=2, every odd component of G—S has at
least r—1 vertices, and we have

n> 3(2[—2':-,+1)+(r-1)+2

=6[—r.‘+ r+4
2
r r
Let m=4. Then 024(2[5-‘+1)+|6128(-2--’+5 )

Since 2k < r—1, then for every m we have 712> 2{37,-'+2I(+2.

Subcase 1.3: I(z-zc.

nz 20{-25-’+2mk+2(2-m)r+2
=2k-m+4r+2
24r+2.
Case2: e=2.

Let 2< ¢<r. If each odd component has at least 7 vertices, then
n21+3r>2r+2.
Let the minimum number of vertices of odd components is #, 1<#< r—1. Then

|82 r-t+1, and

nz|9+(8+2)1

2(r=t+)+(r-t+3)t

195



=2r+2-1+(t-Nr+2t-F
=2r+2+(t-1)r-(t-1y>

22r+2.

r+ e+l

If > r+1, then weuse 72 r7+8+1, and nzz{ -’ since 77 is even. 0
3. Construction

In this section we show that the bound in Theorem 2.1 is sharp; we show
that for every integer 7, the same as the bound, there exists a A-edge-connected
graph G, K21, on n vertices, G have minimum degree r and maximum degree

r+€, €21, and G has no perfect matching.

We will use the following graph in our constructions. Let g be odd integer
greater than 2. We construct a graph B‘, as follows. Take a copy of complete graph
K, and delete _p_2—_1_ of its edges which are disjoint. The resulting graph 8, has

p-1 vertices of degree p-2 and one vertex of degree p-1.
Theorem 3.1. Letk, r, 8 and n be integers, \<s k<r, 621, and

a) N=3r+4 if =1, risevenand Irs'T“,
b) n=3r+5 ife=1, risodd, and k=1,
c) nN=3r+7 ife=1, rz5 isoddandZs/rs%l,
d) n=2’_i{-‘+2k+2 ife=1 andr;zslrsr—'—l,
2 3 2
¢) n=4r+2 if 6=1 and Irz;’,
f) n=2r+2 ifez2 and2<e<r,
g) n=2[r+:+1] ifezr+1.

Then there exists a k-edge-connected graph on n vertices, has minimum degree r
and maximum degree r+ e, and has no perfect matching.

Proof.

a)Let =1, rbe even and ks%"—l.

We have r+1-2k= k. We construct a graph G, as follows. Take three copies,
H,, Hy,,and Hj, of complete graph K., and one other vertex V. Join r+1-2K,
k, and k different vertices of H,, H,,and H,, respectively, to V. The resulting G

is a k-edge-connected graph on n=3r+4 vertices, has minimum degree / and
maximum degree 7+1, and has no perfect matching.
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b) Let é=1, risodd, and k=1.

We construct a graph G, as follows. Take a copy H, of graph B,,,. Graph H,
has r+1 vertices of degree rand one vertex of degree r+1. Take 2r+3 vertices
Uylthye.dlpys Yy VoseeiVri, and for each 7=1,2, .., r+2, join v to every 4,
i< j<i+r-1, fis reduced to modulo 7+ 1 if necessary. Then every ¢;, j=1,2,
..y I, has degree r+ 1, every 4., and Vj, i=1,2,.., r+2, has degree /. Then
join 4, to one vertex of degree 7 in H,. The resulting graph G, is a 1-edge-
connected graph on 77=3r+5 vertices, has minimum degree / and maximum
degree r+1, and has no perfect matching.

¢)Let =1, r25 isodd and 25/{5%—1.

We have r+1-2k2k. We construct a graph G, as follows. Take three copies,
H,, H,, and H,, of graph B, and one other vertex V. Each H; has r + 1
vertices of degree r and one vertex of degree 7 + 1. Join r+1-2k, k and &
different vertices of degree rof H,, H,,and H,, respectively, to V. The resulting
graph G, is a k-edge-connected graph on /7=3r+7 vertices, has minimum degree
rand maximum degree 7+1, and has no perfect matching.

d)Let e=1 and ’%25/(5-’;—1.

We construct a graph G, as follows. Take 2/+2k+1 vertices U,lh,...lp fn1>

Y YseoVppg - Foreach 7=1,2,.., r+ k+1, join y; to every Vi, I<jsi+r-1,
/is reduced to modulo 7+ & if necessary. The resulting graph H, has r vertices of
degree 7+ 1, and & vertices of degree 7. When r is even, take a copy H, of graph

Kr41 - When ris odd, take a copy H, of graph B,,,.Graph H, has r+1 vertices

of degree (and one vertex of degree /+1 when 7 is odd). Then join each vertex
of degree 7in H, to one vertex of degree rin H,, different vertices of H, are

joined to different vertices of 4, . The resulting graph G, is a k-edge-connected
graphon /1= 2( %-r—l +2K+2 vertices, has minimum degree 7and maximum degree
r+1, and has no perfect matching.

e)Let =1 and /(er.

We construct a graph G5 as follows. Take 4r+2 vertices U,u,...b,,,
Ys Y5 ¥ap2, and for each /=1,2, ..., 21, join U} to every Vi, IS j<2r-1,jis
reduced to modulo 27 if necessary. Join 1,,,; to every ¥;, 1</<r, and join v,,,
toevery Uj, r+1</<2r. The resulting graph G; is a A-edge-connected graph on
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N=4r+2 vertices, has minimum degree 7 and maximum degree /+1, and has no
perfect matching.

fllet 2<s¢e<r.

We construct a graph G, as follows. Take a complete bipartite graph K .., with
partition sets, say, X and ¥, where |X|=7. Join one vertex of X to other &-2
vertices of X. The resulting graph Gg is a #edge-connected graph on 71=27+2
vertices, has minimum degree 7 and maximum degree 7+, and has no perfect
matching.

g)Let g2 r+1.
We have @2 r+2 or €2 r+1 depend on whether 8 and 7 have the same parity or

different parity. We construct a graph G, as follows. When ¢ and 7 have the same
parity, take a complete graph K ,,, and one other vertex ¥ then join Vto all
vertices, except one vertex of degree 7, of K, ,.,. When ¢ and 7 have the different
parity, take a complete graph K, ., and one other vertex ¥ then join V to all
vertices of K4, . The resulting graph G, is a f-edge-connected graph on

+ 8+ . - .
”=2|'r ; l.l vertices, has minimum degree 7 and maximum degree r+¢, and

has no perfect matching. 0
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