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Abstract

Using the spectral invariants of graphs, we present sufficient con-
ditions for some stable properties of graphs.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow that in [2]. A graph G is
Hamiltonian if G has a Hamiltonian cycle, a cycle containing all the vertices
of G. A graph G is traceable if G has a Hamiltonian path, a path containing
all the vertices of G. A graph G is pancyclic if G has a cycle of length !
for each I between three and the order of G. The concept of stability was
introduced by Bondy and Chvétal in [1]. Let P be a property defined on
all graphs of order n. Let k& be a nonnegative integer. The P is said to be
k - stable if whenever G 4 uv has property P and dg(u) +dg(v) > k(n, P),
where uv € E, then G itself has property P. It is well known that the
Hamiltonicity and traceability are respectively n - stable and (n — 1) - sta-
ble. The k - closure of a graph G, denoted cli(G), is a graph obtained from
G by recursively joining two nonadjacent vertices such that their degree
sum is at least k.

For each k, where k =1 or 2, Q (n > 2k) is defined as a graph obtained
by joining k distinct vertices of the complete graph K,_j to each of k -
independent vertices. We also use Kn_; + e to denote Q7. Kn_; + v is
defined as a graph that consists of a complete graph of order n — 1 together
with an isolated vertex v. Let EP, be the set of graphs of the following
three types of graphs on n vertices: (a) a regular graph of degree 2-1,(b)
a graph consisting of two complete components, or (c) the join of a regular
graph of degree & — 1 — r and a graph on r vertices, where 1 < r < 2-L
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Let EC,, be the set of graphs of the following two types of graphs on n
vertices: (a) the join of a trivial graph and a graph consisting of two com-
plete components, or (b) the join of a regular graph of degree !-‘g-l- —r and
a graph on r vertices, where 1 < r < 231 — 1. We use C(n,r) to denote
the number of r - combinations of a set with n distinct elements.

Let £1(G) < p2(G) £ ... £ pa(G) denote the eigenvalues of the graph G
of order n. The Laplacian of a graph G is defined as L(G) = D(G) — A(G),
where D(G) is the diagonal matrix of the degree sequence of G and A(G)
is the adjacency matrix of G. The eigenvalues 0 = A (G) < A2(G) <
.. € An(G) of L(G) are called the Laplacian eigenvalues of the graph G.
Define T2(G) := Y5, M(G). Since 0 = M(G) < M(G) < ... < A2(G)
are the eigenvalues of L%(G), we have that ¥3(G) is the sum of the diag-
onal entries in L3(G) = Y51 (d2(G) + di(G)) = Y-, d2(G) + 2¢(G). By
Lemma 13.1.3 in [4], we have that A;(G®) = n — Aq—i42(G) for each ¢ with
2 < i < n. Then X3(G¢), which will be used in our theorems below, is equal
to Yno(n — Ai(G))?. The signless Laplacian of a graph G is defined as
L*(G) = D(G) + A(G), where D(G) is the diagonal matrix of the degree
sequence of G and A(G) is the adjacency matrix of G. The eigenvalues
1(G) € %2(G) < ... £ 1(G) of L*(G) are called the signless Laplacian
eigenvalues of the graph G.

The following interesting results were obtained by Fiedler and Nikiforov

[3]-

Theorem 1 Let G be a graph of order n.
(i) If pn(G®) < v/n—1, then G contains a Hamiltonian path unless G =

Kn-l +v. .
(4) If pa(G®) < +/n—2, then G contains a Hamiltonian cycle unless

The following results obtained by Zhou [8] are also interesting.

Theorem 2 Let G be a graph of order n.
(%) If %o(G°) < n and G ¢ EP,, then G contains a Hamiltonian path.
(#) If n > 3, y2.(G®) < n—1 and G ¢ EC,, then G contains a Hamiltonian

cycle.
The following results were obtained by Li (7] .

Theorem 3 Let G be a graph of order n.
(4) If 2(G°) € (n —1)(n +2), then G contains a Hamiltonian path unless

G=Kn-1+v.
(4) If £2(G°) < (n—2)(n+1), then G contains a Hamiltonian cycle unless

G=Kn-1+e
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Theorem 4 Let G be a 2 - connected graph of order n > 12.
() If pn(G°) < \/M}l@—_ll, then G contains a Hamiltonian cycle or

G=Q35.
() If 32(G°) < (2n — T)(n + 1), then G contains a Hamiltonian cycle or

G=qn.

Motivated by the theorems above, we will prove the following theorems
on stable properties of graphs.

Theorem 5 Let G be a graph of order n. Suppose that P is a r(n, P)
- stable property and the complete graph K, of order n has property P.
Moreover, if e(G) > I(n, P), then G has the property P. Then

(2) If un(G®) < \/ @nor(n,P)- 1)(0(" 2=lrP)  then G has property P.
(#) If £o(G°) < (2n—r(n, P)+1)(C(n, 2)— l(n, P)), then G has property P.

Theorem 6 Let G be a graph of order n. Suppose that P is a r(n, P)
- stable property and the complete graph K, of order n has property P.
Then
(2) If pn(G°) < \/ (n—r(n,P )_1)(2""'("'P )=2) then G has property P.

(zz) If 2,(G°) < (2n—r(n, P) + 1)(2n — r(n, P) - 2), then G has property

(m) If y.(G°) < (2n — r(n, P) — 1), then G has property P.

2. Proofs

Proof of Theorem 5. Let G be a graph satisfying the conditions in The-
orem 5 and G does not have property P. Then H := cl.(, p)(G) does
not have property P and therefore H is not K,. Thus there exist two
vertices z and y in V(H) such that zy ¢ E(H) and for any pair of non-
adjacent vertices u and v in V(H) we have dy(u) + dy(v) < r(n, P) — 1.
Hence for any pair of adjacent vertices u and v in V(H®) we have that
due(u) +dpe(v) =n—1-dg(u)+n-1-dy(v) > 2n—~r(n,P)—1. So

> dpe(u) +dye(v) > (2n — r(n, P) — 1)e(H°).
uv€E(H*<)
Moreover, we have that

> dh@) = > dye(u) +dpe(v) > (2n —r(n, P) — 1)e(HE).
veV(H¢) uv€E(H<)

(¢) Suppose that p,(G°) < \/ (Zn-r(nP) -l),(,c("'z)_l(""p )
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From the inequality of Hofmeister [6], we have that

np2(HS) > Y dhe(v) 2 (2n—r(n, P) — L)e(H®).
veV(H<)

Since H° is a subgraph of G¢,

2 (4 2
c nuq (H€) nyz(G°)
H°) S g P =1 S In—r(n,P)=1'

Hence

na(GY) i(n, P).

e(H) =O(n.2) - e(H) 2 C(n.2) - 5= 5 =7 2

Therefore H has the property P, a contradiction. Thus we complete the
proof of (z) in Theorem 5.

(#%) Suppos that 2(G°) < (2n — r(n, P) +1)(C(n,2) — l(n, P)).
From Theorem 13.6.2 in [4], we have that X2(G°) > L2(H®) =
S, d2(H®) + 2e(H®). Therefore

c Z2(G°)
) < o PIAT

Hence

Za(C) 5 !(n, P).

e(H) = C(n,2) - e(H) 2 O(m2) = 5——0 =gy 77 2

Therefore H has the property P, a contradiction. Thus we complete the
proof of (i?) in Theorem 5.

Proof of Theorem 6. Let G be a graph satisfying the conditions in
Theorem 6 and G does not have property P. Then H := cl,(» p)(G) does
not have property P and therefore H is not K,. Using the same proof as
in the Proof of Theorem 5, we have that

Y dhe(w)= ) due(u)+dpe(v) 2 (2n —r(n, P) — 1)e(H°).
veV(He) ww€E(H®)

Since H is not complete and there exist two vertices, say = and y, in V(H)
such that dg(z)+dg (y) < 7(n, P)—1. Then e(H) < C(n—2,2)+r(n, P)-1.
Thus e(H®) > C(n,2) — C(n —2,2) —r(n,P) + 1 =2n —r(n, P) - 2.
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(2n—r(n, P)-l)(2n—r(n P)—2)

() Suppse that u,(G°¢) < \/
From the inequality of Hofmeister (6], we have that

np(HY) 2 Y dhe(v) 2 2n—r(n, P) = 1)(2n — r(n, P) - 2).
veEV(H*e)

Since H* is a subgraph of G¢,
npZ(G°) = np2(H®) 2 (2n — r(n, P) — 1)(2n — r(n, P) — 2),
a contradiction. Thus we complete the proof of (i) in Theorem 6.

(7) Suppose that £3(G¢) < (2n —r(n, P) + 1)(2n — r(n, P) — 2).
From Theorem 13.6.2 in (4], we have that X5(G*) > Z3(H®) =
Yoieq d2(H®) +2e(H®) again. Therefore

22(G%) > (2n — r(n, P) + 1)e(H®) 2 (2n — r(n, P) + 1)(2n - r(n, P) — 2),
a contradiction. Thus we complete the proof of (ii) in Theorem 6.

(#i3) Suppse that v,(G°) < (2n — r(n, P) —1).
From Lemma 3 in [8] and the fact that H® is a subgraph of G¢, we have
that

W(G) 2 Wm(H) 2 Z"evgf’,}’f" > (on—rn,P) 1),

a contradiction. Thus we complete the proof of (iii) in Theorem 6.

3. Applications of Theorem 5 and Theorem 6
In this section, we will present some applications of Theorem 5. From The-
orem 9.1 in [1], we have the following theorem.

Theorem 7 The property that a graph of order n has cylces of lengths
between 4 and n is (2n — 4) - stable.

Obviously, the property that a graph of order n has cylces of lengths
between 4 and 7 is very close to the pancyclicity of graphs. The following
thereom was proved by Héggkvist, Faudree, and Schelp [5].

Theorem 8 Every Hamiltonian graph G of order n and size ¢(G) >
‘"—l)— + 2 is pancyclic or bipartite.
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Theorem 9 Let G be a graph of order n > 6. If 4, (G®) < 4/ M then
G has cycles of lengths between 4 and n.

Proof of Theorem 9. Let P be the property that a graph of order n has
cylces of lengths between 4 and n. Let G be a graph satisfying the conditions
in Theorem 9. Recall that the largest eigenvalue of a bipartite graph Kj;

is V/st. Since pp((Kn-1+€)€) = vn =2 and pa(G°) < \/M Thus

G # K,_1 + e. Notice that u,(G°) < \/J%"gl < v/n—2. Hence by (it)
in Theorem 1 we have that G is Hamiltonian. Now we can apply Theorem
8 to the graph G. We first observe that G cannot be bipartite. Suppose,
to the contrary, that G is a bipartire. Then G is a subgraph of K ;, where
s>1,t>1,and s+t =n. Then

g —1 < max{s — 1,t — 1} < pn((Kot)®) < un(G°) < -3(”25 2

a contradiction. Let 7(n, P) = 2n—4 and l(n, P) = ‘";L + 2 in Theorem
5. By (i) in Theorem 5, we complete the proof of Theorem 9.

Theorem 102 Let G be a 2 - connected graph of order n > 12. If
22(G) < ﬂf‘%g)-, then G has cycles of lengths between 4 and n or bi-
partite.

Proof of Theorem 10. Let P be the property that a graph of order n has
cylces of lengths between 4 and n. Let G be a graph satisfying the conditions
in Theorem 10. Since Z2((Q%)°) = 4(n— 4)+2(n -3)24+2(n—4)+2(n-3) >
5w =9) G # Qp. Notice that Tp(G°) < 5°=9) < (2n — 7)(n +1). Thus,
by (m) in Theorem 4, G is Hamiltonian. Now we can apply Theorem 8 to
the graph G. Let 7(n, P) = 2n — 4 and {(n, P) = m:-L + 2 in Theorem 5.
By (4i) in Theorem 5, we complete the proof of Theorem 10.

Obviously, we can use the theorems proved by Bondy and Chvital in
Appendix of [1] and Theorem 6 to obtain the spectral conditions for stable
properties of graphs. The details of those conditions are omitted here.
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