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Abstract

Dudeney’s round table problem asks for a set of Hamilton cycles
in K having the property that each 2-path in K, lies in exactly one
of the cycles. In this paper, we show how to construct a solution
of Dudeney's round table problem for even n from a semi-antipodal
Hamilton decomposition of K,,—;.

1 Introduction
Dudeney’s round table problem is the following problem.
“Seat n people at a round table on (n — 1)(n — 2)/2 consec-
utive days so that each person sits between every pair of other
people exactly once.”
This problem is equivalent to asking for a set of Hamilton cycles in K,

having the property that each 2-path (a path of length 2) in K, lies in
exactly one of the cycles. We call this set a Dudeney set in K.
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It has been conjectured that there is a Dudeney set for every complete
graph. The conjecture is still unsettled in general (see (1, 3] for the details);
however, when n is even it is known that the conjecture holds.

Theorem A [2] There erists a Dudeney set in K, when n is even.

The proof of Theorem A is complicated and long, so a simple proof is
desirable.

A Hamilton decomposition H of K,, (n is odd) is called semi-antipodal
if the set of chords at distance (n — 1)/2 of the cycles in H is the edge set
of K,. (A chord of a cycle C is an edge not in the edge set of C' whose
endvertices are in the vertex set of C. A chord at distance k of a cycle C is
a chord of C whose endvertices lie at distance k in the cycle C.)

In this paper, we prove the following theorem which will be useful to
have a simple proof of Theorem A.

Theorem 1.1 Let n > 5 be an odd integer. A Dudeney set in Kpy is
constructed from a semi-antipodal Hamilton decomposition of K,,.

2 A proof of Theorem 1.1
For two sequences X = (z1,2,...,Z5) and ¥ = (y1,92,...,%a) of length
n, define a sequence X x Y of length 2n as

XxY= (271, Y1,Z2yY2y - - - vxnayn);

where z; and y; are variables. Define Y™ and s’Y™ (0<j<n—1) as

Yrev = (yn, Yn—1y--- !yl)s
= (yn—jyyn—j—ls (ER Jyﬂ"j'i'l)?

where the subscripts of the z; and y; are calculated modulo n and s0yrev =
Yrev. Then we have

X x Y™ = (21,Yn—j, T2, Yn—j—1, T3, Yn—j=21 -+ - y Tn, Yn—j41)-

Let n > 5 be odd and H a semi-antipodal Hamilton decomposition

of K,. Let H = (aj,a2,...,an) be a Hamilton cycle in . Consider
(ay,as,...,an) as a sequence of length n, then we obtain

H x gH™ = (al,an—jy a2,8n—j-1,23,0n—j—-2,.: - yQn, an—j+1)
(0<j<n-1).
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Put H x sH™ = (c1,¢z,...,C2n), then we have ¢; = ciy1 and cjpp =
Citn+1 for some ¢ (1 < ¢ < n), where the subscripts of the ¢; are calculated
modulo 2n.

We define a Hamilton path P(H x s H™V) as

P(H X strev) (ci-l-l’ Cit2ye0y c'i+n)

= (Ci+n+laci+n+2y «e1C2n,yC1,C2 .. .y ci)a

and put )
PH)={PHxH™)|0<j<n-1}.

Then P(H) is a set of n Hamilton paths in K,. This set is well-defined.
In fact, a Hamilton cycle H has many representations, for example, H =

(a1,a2,...,a) = (a2,a3,...,an,a81) = (@n,an_1,...,a2,a1), etc, but the
set P(H) is uniquely determined.
Put
P = UHE'HP(H)7

then P is a set of n(n — 1)/2 Hamilton paths in K,.
Lemma 2.1 P has each 2-path in K, ezactly once.

Proof. Let (a,b,c) be any 2-path in K,,. The edge {a,c} is contained
in some Hamilton cycle H in H, then we have H = (a,c,...). There is an
integer j with 0 < j < n — 1 such that

HxsTH™ = (a,b,¢,...,¢,bya,...),

that is, a Hamilton path P(H x s? H™") has the 2-path (a, b, ¢). Therefore
the 2-path (a, b, c) belongs to P at least once.

Since the number of 2-paths in K}, is n(n —1)(n — 2)/2 and the number
of 2-paths in a Hamilton path in K, is (n — 2), P has each 2-path in K,
exactly once. O

Lemma 2.2 Each pair of distinct vertices of K, is the pair of endvertices
of exactly one of the Hamilton paths in P.

Proof. Let a,b be any distinct vertices of K,,. There is a Hamilton
cycle H in H such that a, b are semi-antipodal vertices in H. Then q, b are
endvertices of P(H x H™") or P(H x s"1Hr®v),

Since the number of the pairs of distinct vertices of K, is n(n — 1)/2
and the number of the pairs of endvertices in P is n(n — 1)/2, we obtain
Lemma 2.2. O
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Let K,41 be the complete graph with the vertex set V(Kn) U {o0},
where V(K.,) is the vertex set of K, and oo ¢ V(Kp).

For a Hamilton path P € P, we define P(c0) to be a Hamilton cycle in
K41 putting the vertex oo between the endvertices of P. Define
D= {P() | PP},
then D is a set of Hamilton cycles in Kn41 with |D| = nr.

Proposition 2.1 D is a Dudeney set in Kny1.

Proof. Let Q = (a,b,c) be any 2-path in Kn41. We only need to
consider the cases (i) a,b,c & oo, (ii) b = oo and (iii) @ = oo.

When a, b, ¢ # 00, Q is contained in D by Lemma 2.1. When b = o0, Q
is contained in D by Lemma 2.2. When a = oo, there is a Hamilton cycle
H in H satisfying that {b,c} € H. Then we have H = (b,c,...) and

H x s""1H™ = (b,b,c,...).

Hence we have
P(H x s"1HTY) = (b,c,...).

Therefore the 2-path Q = (00, b,c) is contained in P(H x s"~1HV)(c0),
so contained in D.
Since the number of the 2-paths in Ky, is (n + 1)n(n — 1)/2 and the

number of the Hamilton cycles in D is n(n — 1)/2, D has each 2-path in
K41 exactly once. Therefore D is a Dudeney set in K,yy. O

Thus we complete the proof of Theorem 1.1.

3 Neighbour-balanced Hamilton decomposi-
tions and an open problem

Neighbour-balanced Hamilton decompositions (NBHDs) of K|, are defined
in [4] as follows. Let n > 5 be an odd integer and k an integer with
2 <k < (n-1)/2. A k-neighbour-balanced Hamilton decomposition H of
K, is a Hamilton decomposition such that the set of all chords at distance
k of the cycles in H is the edge set of K,. In this terminology, a semi-
antipodal Hamilton decomposition is an (n —1)/2-NBHD. It is known that
the existence of an (n — 1)/2-NBHD is equivalent to that of a 2-NBHD:
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Theorem B [4] Let n > 5 be an odd integer. There exists a semi-antipodal
Hamilton decomposition of K, if and only if there exists a 2-neighbour-
balanced Hamilton decomposition of K,,.

With the aid of a computer, we found that there exist semi-antipodal
Hamilton decompositions of K, for n with § < n < 29 except n = 9. But
nothing else is known, so we propose an open problem.

Problem 3.1 Construct a semi-antipodal Hamilton decomposition or equiv-
alently a 2-neighbour-balanced Hamilton decomposition of K,, for every odd
n>11.
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