Counting tilings by taking walks
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Abstract

Given a graph G we show how to compute the number of (per-
fect) matchings in the graphs GO P, and GOC, by looking at ap-
propriate entries in a power of a particular matrix. We give some
generalizations and extensions of this result, including showing how
to compute tilings of kxn boards using monomers, dimers and 2x2
squares.

1 Introduction

One of the most popular and well known problems in enumerative combi-
natorics is counting the number of tilings of some board where the tiling
pieces are drawn from some finite collection of types of tiles. Perhaps the
most famous example of this is using dominoes to tile an mxn board. In
this case an explicit formula for the number of distinct tilings is known (see
[3]) and is given by
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This formula can be found by relating the problem of tilings to the prob-
lem of finding perfect matchings in a graph, which can be connected to
finding permanents of a particular matrix. This permanent can then be
computed explicitly. Another common technique in counting tilings is to
derive recurrence relationships and then solve the recurrence.

In this note we will present a different way to count some simple tilings
based on an idea introduced in Butler et al. [2] used to count domino
tilings of 3x2n boards. We will look at “boards” that can be described
as the Cartesian product of a graph with a long path or a graph with a
long cycle. For these graphs we will count the tilings by first relating the
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construction of a tiling to a walk in an auxiliary graph. Since walks in a
graph can be counted by taking powers of the graph’s adjacency matrix,
we can then count such tilings by reading off entries in some appropriate
matrix to a power.

Notation

The Cartesian product of two graphs G and H, denoted G H, is the graph
with vertex set

V(GOH) = {(u,v) :u€ V(G) and v € V(H)}

and edges (u1,v1)~(uz2, v2) where either u; = u; and v;~v2 in H; or uj~up
in G and v; = va. As an example, the mxn board can naturally be asso-
ciated with the graph P,, O P,.

A matching in a graph is a subset of edges where no vertex is used
twice. The number of matchings of the graph G will be denoted m(G). A
perfect matching in a graph is a matching which uses all of the vertices.
The number of perfect matchings of the graph G will be denoted pm(G).

Given a subset U of the vertices of G, then we will let G[U] be the
induced subgraph of G on the vertices of U.

2 Counting matchings and perfect matchings

The most basic problem of counting tilings is related to using dominos
(1x2 pieces). Such tilings are in one-to-one correspondence with perfect
matchings. If we allow ourselves to tile with dominos and monomoes (1x1
pieces) then we are in a one-to-one correspondence with matchings. Our
first result is how to count matchings and perfect matchings in GO P, or
GOC, where G is a (small) fixed graph.

Theorem 1. Let G be a graph on the vertez set [k] = {1,2,...,k}. Define
A to be the 2Fx2% matriz with rows/columns indezed by subsets of [k] and
with entries defined as follows: for any subsets S and T of k],

0 if SNT #9,
{ m(G[V\ (SuUT))) otherwise,

then m(GOP,) = (A™)gp and m(GOC,) = trace(A™).

Similarly, if we define B to be the 2%¥x2* matriz with rows/columns
indezed by subsets of [k] and with entries defined as follows: for any subsets
S and T of [k],

AsT =

]

P ifSNT #0,
ST = { pm(CIV\(SUT)])  otheruise,
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then pm(G O P,) = (B")p,9 and pm(GOC,) = trace(B™).

Before giving the proof, we note that the construction of these matrices
can be completely automated and Sage code is available to produce the
matrices discussed in this note.

Proof. Consider the graph GOP,. This can be viewed as n copies of G
placed sequentially with edges joining the corresponding vertices of G (see
Figure 1 for an illustration).
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Figure 1: An illustration of the graph GO P,.

The edges which are used in a matching can now be placed into two
groups. Namely (i) the edges which lie with both vertices in one of the
copies of G and (ii) the edges which bridge between two copies of G.

We now construct an auxiliary multi-graph G whose vertices are all
possible ways to place edges between two copies of G (i.e., the type (ii)
edges in a matching). There will be 2% such vertices, one for each subset of
G and so we will index the vertices by the subsets of G.

The edges of G will be used to count the type (i) edges in the matching.
Given two vertices of G, we view them as a matching coming in on one
side and going out on the other. If there is any overlap between these two
vertices then we cannot have a matching, as a vertex of G would be used
in more than one edge, so such vertices of G will not be connected. When
there is no overlap then we will add an edge for each legal use of the unused
vertices of G. Here, unused means that we will not use the vertex for edges
in the matching running between copies of G. More particularly, if we are
constructing a graph to count the matchings then we will add an edge for
each matching using the unused vertices of G; if we are constructing a graph
to count the perfect matchings then we will add an edge for each perfect
matching using the unused vertices of G.

With G constructed we note that there is a one-to-one correspondence
of tilings of GO P, and walks of length n beginning and ending at the
vertex labeled @ in G. Namely, each tiling can be viewed as a sequence of
how the vertices in each one of the copies of G are used, which corresponds
to the vertices of G, and how edges between copies of G are used, which
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correspond to the edges of G, giving us the desired walk. We need to start
and stop at @ so that no edges used in the matching are sticking out at the
ends. Similarly there is a one-to-one correspondence of tilings of GOC,
and all walks of length n in G. In other words, the only difference is that
we need to be able to close up the two ends of the tilings.

Finally, to count walks in a multi-graph it suffices to take powers of the
adjacency matrix, where in a multi-graph the entry between two vertices
corresponds to the number of edges between those two vertices (see [1]). O

Tiling boards and tori

As an example, suppose that we want to count the number of different
domino tilings of C40 P, and C,0C,. Then we would construct the
following matrix (where the vertices of C; are labeled sequentially with
1,2,3,4 and on the left side of the matrix we indicate the labeling of the

subset):

-
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/

The entry of 2 comes from the existence of two different perfect matchings
in Cy (i.e., 1,2 and 3,4; 1,4 and 2, 3) so is a multi-edge in the graph.
Taking large powers and reading off the first entry or reading off the

~
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trace we get the number of perfect matchings in C; 0P, and C,0C,,.

n | pm(C,0OF,) n | pm(C,0C,)
1 2
2 9
3 32 3 50
4 121 4 272
5 450 5 722
6 1681 6 3108
7 6272 7 10082
8 23409 8 39952
9 87362 9 140450
10 326041 10 537636

We note that pm(C,0P,) corresponds to A006253 in the OEIS [4],
while pm(C4 0 Cy,) has not yet appeared. In general many of the sequences
in the OEIS involving tilings of boards with one dimension fixed can be
found using this method, and many exotic new sequences could be formed.
For example, the sequence counting the number of perfect matchings in
PO P,, starting with n = 1, where P is the Petersen graph, is

6,472, 14508, 616945, 23310528, 919890493, 35726458296, . . . .

and the sequence counting the number of perfect matchings in Q3 0C,,
starting with n = 3, where Q3 is the hypercube of dimension three, is

13680, 589185, 8569929, 275875712, 5108424393, 145226575873, .. ..

We also note that having the matrix gives us a lot of useful information
about these sequences. For example, suppose that f(z) is the minimal
polynomial for A (or B). Then since f(A) = 0 it follows that f(A)s,s =0,
so that f(z) is a recurrence for the desired sequences. For example the
minimal polynomial for the above matrix for G = Cy for perfect matchings

1S
f(z) = 2% — 42" — 625 + 282° — 282% + 622 + 4z — 1.

So that if a, is one of the above sequences then it will satisfy
0 =ant+s — 4an+7 — 6ani6 + 280545 — 28an+3 + 6anyz + 40,41 — Qp.

Going a little further, we can also use the matrix to find explicit solu-
tions, namely we have A = Y. A\;P; where P; is the projection onto the ith
eigenspace. It follows that A™ = Y, \?*P;, from which we can recover our
exact values by summing appropriate combinations of powers of the A; and
entries of P;.
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Tiling twisted tori

The difference between GO P, and GOC,, is that we loop back around
and glue the two ends in the natural way. However we can decide to glue
slightly askew and produce new graphs. Let the vertices of GO P, be
represented by (i,5) where i € {1,2,...,k} and j € {1,2,...,n}, and let
7 be a permutation of {1,2,...,k}. Then the graph (GO P, ), will be the
graph GO P, with the addition of edges of the form (i,n)~(m(é),1). So
as noted above we have GO C, = (GO P, ).. Another well known graph is
the Mdbius ladder which is (P2 O Pn)(12)-

We can count matchings in (GO P,), by allowing ourselves to allow
edges to stick out at the two ends of GO P, but ensure that they are
consistent when we connect the two ends as dictated by (GO FP,),. It

follows that
pm((GDPn),,) = E (Bn)g,,r(s).
S

We obtain a similar variation when we count general matchings. (Note that
when 7 = e then this becomes the trace and so is consistent with what was
done before for GOC,.)

By way of comparison, in Figure 2 we show the graphs (C4 O Pg) (1234
and (C4 0 Pg)(13)(24)- We can count the perfect matchings in these various
graphs using the above formula. Below we compare their values and we
see there are differences, sometimes substantial, in the number of perfect

matchings.

n | pm((GO Pr)e) | pm((GO Pa)zse)) | pm((G O Pr)iz)ae))
3 50 80 54
4 272 194 260
5 722 888 726
6 3108 2702 3096
7 10082 11040 10086
8 39952 37634 39940
9 140450 146024 140454
10 537636 524174 537624

Counting statistics

We can modify the matrices to count some basic statistics about the result-
ing tilings. This is done by using polynomials for the entries of the matrix
instead of numerical values where we interpret the polynomial appropri-

ately.
As an example, suppose we want to count the number of “vertical” tiles

used when tiling a mxn board with dominoes. Then when we construct the
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(C40P) 1934 (CaDOPs) 1324

Figure 2: An example of the results of twisting the graph.

auxiliary graph G, as in the proof of Theorem 1, we assign a weight of z*
to the edges where & is the number of tiles used in covering the remaining
vertices of G. Therefore the entries of our matrix become polynomials in
z. If we were to evaluate this polynomial at 2 = 1, it would reduce to the
polynomial we have already discussed.

If we carry this out for Ps 0 Ps and look at the corresponding entry of
the matrix we get the polynomial

2184302642814 +10647'% +19882°+198828 +-106425 + 28124 + 3022 +1.

The exponent corresponds to the number of vertical tiles and the coefficient
corresponds to the number of tiles using that number of vertical tiles. So
for example, we can conclude that there are 1064 tilings of a 6x6 board
that uses 12 vertical tiles.

Similarly we can count the number of tilings using a fixed number of
monomoes in a tiling of a board using dominoes and monomoes. In this case
we weight each edge according to the number of monomoes which appear in
the corresponding matching. So for example of the 2989126727 ways there
are to tile the 6x6 board using dominoes and monomoes we can further
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refine the count by the number of monomoes used to get the following:

# monimoes | # tilings # monimoes | # tilings
0 6728 20 | 146702793
2 363536 22 | 48145820
4 5580152 24 | 11785382
6| 39277112 26 2135356
8 | 154396898 28 281514

10 | 377446076 30 26172
12 | 613605045 32 1622
14 | 693650988 34 60
16 | 562203148 36 1
18 | 333518324

3 Counting tilings with squares

We can expand our repertoire of tiles to include squares (or Cy's if we think
of them as a graph). This requires some modification to the construction

of the matrices.

Theorem 2. Let G be a graph containing no four-cycle on the verter set
[k = {1,2,...,k}. Let C be a matriz indezed by the set of all possible dis-
joint union of edges (i.e., no vertez can be used more than once). Further,
the entries are defined as follows: for any subsets S and T of [k],

Com = 0 if S and T share a common vertex,
ST=11 otherwise,

then the number of ways to tile GO P, using squares and monomoes is
(C™)o,0 while the number of ways to tile G O C, using squares and monomoes
is trace(C™).

Let D and € be matrices indexed by the set of all possible disjoint union
of edges and vertices (i.e., no vertex can be used more than once). Further,
the entries are defined as follows: for any subsets S and T of (K],

D 0 if S and T share a common vertex,
ST m(G[V\ (SUT)))  otherwise,

Eam = 0 if S and T share a common verter,
ST =1 pm(GV\ (SUT))) otherwise,

then the number of ways to tile GO P, using monomoes, dominoes and

squares is (D™)g g while the number of ways to tile GOC, using monomoes,

dominos and squares is trace(D™). Similarly, the number of ways to tile

GO P, using dominoes and squares is (E™)p ¢ while the number of ways to

tile GO C, using dominos and squares is trace(E™).
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The techniques to prove Theorem 2 are the same as those used in Theo-
rem 1 and so we will omit the proof. We note in passing that by assumption,
the squares must bridge between two copies of G. Hence, we keep track of
the edges in G which correspond to the squares in a bridge between copies
of G, as well as the vertices in G which correspond to dominoes in a bridge
between copies of G.

The above theorem allows us to count many different tilings. By way
of comparison we have the following counts (M, D and S correspond to
monomoes, dominoes and squares respectively):

Tilings of PsO P, | Using M, S | Using D, S Using M, D, S
n=1 1 1 34
n=2 34 171 12190
n=3 171 1037 2326760
n=4 2115 48605 527889422
n=>5 16334 550969 114411435032
n==~6 159651 16231655 25111681648122
n=7 1382259 | 242436361 5492577770367562
n=2_§8 12727570 | 5811552169 | 1202536689448371122
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