Maximal Flat Regular Antichains

Matthias Bohm
Universitdt Rostock
Institut fiir Mathematik
D-18051 Rostock, Germany
matthias.boehm@uni-rostock.de

February 23, 2012

Abstract

Let 2™ be ordered by set inclusion, and let B C 2(™ be
an antichain. An antichain B is called k-regular (k € N) if for
each ¢ € [m] there are exactly k blocks By, Bs, ..., By € B con-
taining ¢. An antichain is called flat if there exists a positive
integer [ such that ! < |B| <1+ 1 for all B € B, and we call
an antichain maximal if the collection of sets BU {B} is not an
antichain for all B ¢ B. We call a maximal k-regular antichain
B c () u (7)) a (k,m)-MFRAC. In this paper we analyze
(kym)-MFRACs in the cases m < 7,k =m, k =m —~ 1 and
k = m —2. We provide some constructions, give necessary con-
ditions for existence and mention some open problems.
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1 Definitions and notation

For positive integers a, m with a < m, let [a,m] := {a,a + 1,...,m} and
[m] :=[1,m].

Let B be a subset of 2i™), the power set of [m]. The size of B is n := |B|.
We call B an antichain (AC) if there are no two sets in B which are com-
parable under set inclusion. An antichain B is called k-regular (k € N), if
for each i € [m] there are exactly k blocks By, By, ..., By € B containing i.
In this case we say that B is a (k, m,n)-antichain.
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An antichain is called flat if there exists a positive integer ! such that
1<|B|<l+1forall BeB. SoBC ()u(fT). We call an antichain
B maximal if B U {B} is not an antichain for all B ¢ B. If an antichain
BC ([';‘]) U ([’g}) is maximal and regular we say that B is an MFRAC. A
(k,m)-MFRAC is a k-regular MFRAC on [m].

A Completely Separating System (CSS) C on [n] is a collection of
blocks of [n] such that for any distinct points z,y € [n], there exist blocks
A,B € C such that z € A— B and y € B— A. A CSS on [n] without re-
strictions on the size of the blocks in the collection is said to be an (n)CSS.
An (n,k)Completely Separating System ((n, k)CSS) is an (n)CSS in
which each block is of size k.

The volume of a collection C of sets is v(C) := ) _¢c |C|. For a (k,m,n)-
antichain B, v(B) = km. Often we omit brackets and commas in our
notation for sets. For example, we write 1345 instead of {1,3,4,5}.

Let C be a collection of subsets of [m], and let i € [m] be an arbitrary fixed
element. Then we define C; := {C € C : i € C} to be the collection of sets

which contain this element i.

Let C be a collection of subsets of [m]. We say that a set U C [m] is not
covered by C,if U € C for all C €C.

Let B and B’ be collections of sets of A, and of A’, respectively. We say
that B and B’ are isomorphic to each other, if there exists a set preserving
bijection f between A and A’, i.e. B isin B if and only if f(B) is in B/,
where f(B) := {f(b): b€ B}.

Let G = (V,E) be a graph, i.e. a pair of vertices V and edges E. The
number of triangles containing z is t(z) := |{yz € E : zy,z2 € E}|. The
value c of a vertex z is defined by ¢(z) := t(z) ~ d(z). A graph T = (V, E)
is called a c-triangular graph (or short triangular graph) if for all zy € E
there is a z € V such that zyz is a triangle and if c = ¢(z) forall z € V.

2 Motivation

A cornerstone in Sperner Theory is the Sperner Theorem [12]:

Theorem 1 (Sperner’s Theorem). Let B be an antichain on [m]. Then
(a) |B| < (l;l)'
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(b) Egquality holds if and only if

B= {BC[m]:|B|=%} for m even,
"\ {BS[m]:|B| =252} or {BC [m]: |B| = £} for m odd.

In particular, these middle level antichains are maximal flat regular an-
tichains.

The interest in k-regular antichains on [m] comes from the dual problem.
Therefore, we need the following definition:

Let C = {C},C3,...,Cr} be a collection of subsets of [n]. We define the
dual C* of C to be the collection C* := {C},C3,...,Cp} of subsets of [m)]
givenby Cf :={je[m]:i€C;} (i=1,...,n).

A consequence of this duality is the following lemma, which was proven by
Spencer [11] in 1970.

Lemma 2. IfC is a CSS then its dual C* is an antichain and vice versa.
For given parameters k, m, n, it follows that:

Lemma 3. IfC is an (n, k) CSS of size m, then its dualC* is a (k,m,n)-AC
and vice versa.

Completely Separating Systems were motivated by work of Rényi [7] in
1961 and Katona [4] in 1966 and first introduced by Dickson [2] in 1969.
One important question in the area of Completely Separating Systems
is to determine the value R(n,k) := min{|C| : C is an (n,k)CSS}. Us-
ing Lemma 3 we obtain that for given values k and n, a (k,m,n)-AC
exists if and only-if m > R(n,k). On the other hand if we know the
value N := N(k,m) := max{n : 3 (k,m,n)-AC }, then we know that
R(N,k) < m and R(i,k) > m for all { > N. Some work has been done in
this area of combinatorics (see for example [1], [9], [10]). So it is useful to
know more about maximal regular antichains.

We call two antichains B and B’ over the same ground set equivalent if
and only if v(B) = v(B’) and |B| = |B’|. The Flat Antichain Theorem by
Lieby [6] and Kisvdlcsey [5] increased the interest in flat antichains.

Theorem 4 (Flat Antichain Theorem). Let B be an arbitrary antichain,
then there exists an equivalent flat antichain B' over the same ground set.

It is conjectured that every regular antichain has also an equivalent flat
regular one (see also [9]). So it is interesting to learn more about maximal
flat k-regular antichains on [m] and especially about (k, m)-MFRACsS.
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3 The associated graph

In the following we are only interested in (k, m)-MFRAGCS, i.e. in maxi-
mal flat k-regular antichains which are subsets of (7') U (7). Using this
constraint with a given (k,m)-MFRAC we associate the graph G(B) (see
also [3]). This is quite useful, because some constructions are easier to

understand when they are formulated in this way.
Let B be a (k,m)-MFRAC. Then G(B) := (V, E) with

V =[m],
zy€ E:& zy G B for some Be B
(equivalently: zy € E & zy & B)

is the associated graph. Using the fact that zy is not in E if and only if
zy is in B, it follows that G(B) is a triangular graph. The fact that G(B)
is (k — m + 1)-triangular follows from the definition ¢ = ¢(z) = #(z) — d(z)
and k = t(z) + |{y € [m] — {z} : zy € E} = t(z) + m — 1 —d(z). It is also
clear that the associated antichain of G(B) is B, if we define the associated
antichain of a triangular graph inversely in the natural way. We obtain the

following lemma.:

Lemma 5. A collection B of sets is a (k,m)-MFRAC if and only if G(B)
is a (k — m + 1)-triangular graph on [m].

4 Non-isomorphic MFRAC on a small ground
set

The following lemmas are (trivial) consequences of the maximality of an
MFRAC. We list them here, because they are useful in subsequent proofs.

Lemma 6. Let B be a (k,m)-MFRAC, and let a, b, ¢ € [m] be three
pairwise distinct elements. If there exist A,B,C € B withabC A, bc C B
and ac G C, then abc € B.

Lemma 7. Let B be a (k,m)-MFRAC, and let a, b, ¢, =, y € [m] five
pairwise distinct elements with {abz,acy} C B and abc & B. Then bc € B.
Lemma 8. If B is an MFRAC on [m] and B # (I7)), then there exists a
2-set in B.

Corollary 9. If B # (") is a (k,m)-MFRAC with m > 5, then
k<14 (™).

The following three lemmas are useful for the proofs in the following sub-
sections.



Lemma 10. Let m > 4, and let C C () be a collection of sets which has
the following three properties:

(a) [C|=m -2,
() INcec €121,
(c) Ugee C = [m].

There ezists an (m—2, m)-MFRAC B 2 C if and only if C has the following
property (d):
(d) ijz, ijy € C = iyz & C.

Proof. Assume C has property (d). Let D := D(C) := {X € (7)) :
{X} U Cis an antichain} the set of all 2-sets, which are not covered by C.
Now, we show that B:=CUD is an (m — 2,m)-MFRAC.

Using property (d) and the definition of D, the collection B of sets is a
maximal flat antichain. For every ¢ € (g C, |Bc| = m —2 (properties (a)
and (c)). Using (b) we can assume that {1} C Ngee C. Let § € Npee C
and ! € {1,5}. Then either jl is in D or 15l is in C. So |B;| > m — 2.
Because of (d), |B;j| < m—1. Using (c) we know that [B;] = m — 2, and so
B is an (m — 2, m)-MFRAC.

Now, let C be a collection of sets which fulfills the conditions (a) - (c), but
which does not fulfill (d). So there are i € (g C and j,z,y € [m] with
ijz, ijy, iyz € C. Because of maximality of B, jyz has to be in B. Because
ijz N ijy Niyz = i, the elements j, z, y can not be in (e C. Using (c),
for all Il € [m] — {4, 4, z,y}, we obtain that either jl is in B (maximality) or
ijl is in C C B (otherwise B is not maximal or |B;| > |C;| +1 = m — 1).
But that implies |Bj| > 3 4+ (m — 4) = m — 1. And this is a contradiction
to the regularity of B. |
Remark. 1. When we start with a collection C of sets with properties
(a) - (d), then the MFRAC B := C U D is unique. Otherwise there
exists an element ¢ € ncecC and a 3-set z1zox3 which does not
contain 7. Because of (c) and the fact that 7 is just in 3-sets, we know
that there exists a set B; € C with iz; G B; for every j € [3]. Using
Lemma 6 we get that iz,zs, iz123 and izez3 are in C, but this is a
contradiction to property (d).

2. There exist collections of sets such that |(oce C| > 1 in (b). For
example C = {123,124, 125,126}, and so B = {123, 124, 125, 126, 34,
35, 36, 45, 46, 56} is a (4,6)-MFRAC.

Lemma 11. Let B be an (m — 1,m)-MFRAC. If an element i is in one
3-set in B, then i is in at least three 3-sets in B.

241



. <

Ai Az

Figure 1: All triangular graphs on [4]

Proof. Assume B is an (m — 1,m)-MFRAC and i € [m] is in exactly
one (i) or two (ii) 3-sets. Then in (i), |B;| = 14+ (m—3) = m—2 and in (ii),
|Bi] < 2+ (m —4) = m — 2 and this is a contradiction, because it implies
m—1=k=|B;|$m—2. B

Lemma 12. Let m > 4, and let C C ([’;‘)) be a collection of sets with the
following properties:

(e) ICl=m -1,
() Ncec € = {1},
(c) Ucecc = [m].

If there exists an (m — 1,m)-MFRAC B 2 C, then |C;| = 2 for every
z € [2,m].

Proof. Using (c) every element of [m] has to be in at least one 3-set.
Assume that there is an (m — 1,m)-MFRAC B 2 C and an element
z € [2,m] with [C;| = 1. If z is not in any further 3-set, then this would
be a contradiction to Lemma 11. Let 1zy € C and zab € B —C. We can
assume that y # a. Using Lemma 6 and property (c), also 1xa is in C. But
this is a contradiction to [Cz| = 1.

If there exists an element z € [2,m] with |C;| > 3, then because of the pi-
geonhole principle we also know that there is at least one element 2’ € [2,m)]
with |C./] = 1. So we are done.

Now, we characterize all non-isomorphic MFRACs on [m] and non-
isomorphic triangular graphs T = ([m}, E) with m < 7. If m < 4, then the
only triangular graphs are the empty graph En,, the complete graph K,
for m > 3 and the complete graph on four vertices with one missing edge
(see Figure 1). :
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Figure 2: All triangular graphs on [5]

4.1 Thecase m =5
Theorem 13. There are ezactly five non-isomorphic MFRACSs on [5] (see
Figure 2).

Proof. We prove this theorem using a case-by-case analysis, i.e. we analyze
the possible values tr := max;¢(m) |[{B € B; : |B| = 3}|. W.lo.g. we can
assume that [{B € B, : |[B| =3}| =tr.

tr=0

tr=1

tr=2

tr=3

tr=4

tr=5
tr==6

There is only one possibility: A; = ((g]).

We can assume that 123, 14, 15 are in B. Since tr = 1 we know
that 234, 235, 245 or 345 are not in B, so we have to add 24, 25,
34, 35 and 45. But this antichain is not regular since |B;| = 3 and
IB5| = 4.

We get two possibilities for B;: (a) 123, 124, 15 or (b) 123, 145.
In (a), we have to add 25, 34, 35 and 45. So |Bs| > |B|. In (b),
because of maximality of B we have to add 24 and 25. Otherwise
we would get a contradiction to ¢r = 2. But then |B;| > |B,|. So
there is not an MFRAC in this case,

We have to analyze three cases (a) Bf = 123,124,134, 15, (b)
B} = 123,124,125, (c) B§ = 123,124, 145.

In (a), we have to add 234 and since ¢tr = 3 we can not add any
further 3-set. So we have to add all 2-sets which are not covered,
and obtain the MFRAC Az. In the cases (b) and (c), it is only
possible to add all 2-sets, which are not covered (Lemma 10). We
get two MFRACs A3z and A,.

Using Lemma 12 we just have to analyze the following case 123,
124, 135, 145. Because of ir = 4 and maximality of B, we have
to add all 2-sets which are not covered. But then |B;| > |Bz| and
this is a contradiction.

Using Corollary 9, there can not be any MFRAC.

Using Sperner’s Theorem there is only one possibility As. ||
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4.2 The case m =6
Theorem 14. There are ten non-isomorphic MFRACs on (6] (see Fig-

ure 8).

Proof. We use again a case-by-case analysis to prove this theorem, i.e. we
analyze again the possible values tr := maXem) |{B € B; : |B| = 3}|. We
can again assume that |{B € By : |B| = 3}| =tr.

tr=0
tr=1

tr=2

tr=3

There is only one possibility A; = ([g]).

If there is an MFRAC B we obtain w.l.o.g. the following structure:
123, 14, 15, 16, 24, 25, 26, 34, 35, 36. It is impossible that 45 is
in B because otherwise 46 is also in B and we would obtain that
|Bs| > |By]. If we add 456 we get the MFRAC As.

‘We have to analyze two subcases (a) B® = 123, 124, 15, 16 and (b)
B® =123, 145, 16. In both cases we will get a contradiction to the
assumption that there is an MFRAC. In (a), we have to add 25,
26 and 34. Since |Bf| = 4, we also have to add 35, 36, 45 and 46.
If we now add 56 we violate the regularity of B* but otherwise
B° is not maximal. In (b), we have to add 24, 25. Because of
maximality of B we also have to put in 26 or 236. In both cases
we get that |BS| > |B%| which is a contradiction.

We have to analyze the following four cases: (a) B* = 123, 124,
125, 16; (b) B® = 123, 124, 134, 15, 16; (c) B° = 123, 124, 156; (d)
B¢ = 123, 124, 135, 16. In (a), since tr = 3 we can not add any
further 3-set. But, if we put in all 2-sets which are not covered,
then we do not obtain an MFRAC. In (b), we have to put in 234.
Since tr = 3, we can just add all 2-sets which are not covered,
and we have to do that. We obtain the MFRAC As. In (c), we
have to put in 25 and 26 and get a contradiction to the regularity



of B¢. In (d), we have to add 25, 34 and 45. Now, we have to
analyze three subcases: (d1) 236, (d2) 246 or (d3) 26 are in B¢
In (d1), we have to add 46 and 56 and get the MFRAC A;. In
(d2), we have to put in 36 and 56 and get the MFRAC A;s. In
(d3), we have to add 356 as well as 46 and get an MFRAC which
is isomorphic to the MFRAC As.

tr = 4 We have to analyze the following cases: (a) B® = 123, 124, 125,

tr=25

tr>6

126; (b) B = 123, 124, 125, 134, 16; (c) B = 123, 124, 125, 136;
(d) B¢ = 123, 124, 134, 156; (¢) B® = 123, 124, 135, 145, 16;
(f) Bf =123, 124, 135, 146. Using Lemma 10 we know that (a),
(c) and (f) deliver three non-isomorphic MFRACs Ag, A7 and Ag
and we also know that in (d) there is none. So we just have to
analyze (b) and (e). In (b), we have to add 234, 35 and 45. Up
to now the element 5 is in three sets. We can only add either
56 or 256. So |BY| < |B| and this is a contradiction. In (e), we
have to add 25 and 34. The possible sets, which we can add and
which also contain the element 2, are 236, 246 or 26. Because of
regularity of B* we have to put in 236 and 246. Now, all possible
sets which we can add and which contain 6, are 356, 456 or 56.
So again because of regularity of B¢ we have to add 356 and 456
and obtain the MFRAC Ag.

We have to analyze the following cases: (a) 123, 124, 125, 126,
134; (b) 123, 124, 125, 134, 135, 16; (c) 123, 124, 125, 134, 136;
(d) 123, 124, 125, 136, 146; (e) 123, 124, 125, 134, 156; (f) 123,
124, 135, 146, 156. In every case we will obtain that there can not
be any MFRAC. Using Lemma 12 we know that in the cases (a),
(c), (d) and (e) there can not be any MFRAC. In (b), we have
to put in 234 and 235. So we also have to add 26 and 36. But
then |Bg| < |By|. In (f), there also can not be any further 3-set.
Otherwise tr > 5. But on the other hand if we add all 2-sets
which are not covered, then |B;| =4 < |B,| for all i € [2, 6].

We get that v(B) = 6k. So the number of 2-sets is congruent
0 mod 3. If there are not any further 2-sets we get Ao = ([g]).
If there are three 2-sets, then there are two possibilities: Either
all elements are in exactly one 2-set, but this yields the MFRAC,
which we get in ¢tr = 4 subcase (e), or there exists at least one
element ¢ which is in more than one 2-set. But then |B;] < 5 <
6 < tr which is a contradiction. |
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4.3 Thecase m =7
Theorem 15. There are twenty-one non-isomorphic MFRACs on [7).

Proof. Again, we prove this theorem with the help of a case-by-case anal-
ysis. We can assume that every element is in at least one 3-set (we call
this property PR). Otherwise we get a (6, 7)-MFRAC which we also would
obtain by adding one single element and all 2-sets which are not covered
to a (5,6)-MFRAC. In that way we obtain three non-isomorphic MFRACs
Al, Az and Aa.

If there is a (k, 7)-MFRAC with the property that one element is in at least
three 2-sets, then k < 3+ (3) = 6.

If every element is in at most two 2-sets, we can easily check that for every
MFRAC either every element is just in 3-sets (A2;) or there is at least one
element which is in exactly two 2-sets.

Let us assume that the 2-sets 12 and 13 are in a (k,7)-MFRAC B. Now,
we will show that there is at least one further 2-set in [4,7]. Otherwise,
|B;| = 8 and consequently v(B) = 56. So the number of 2-sets has to be
congruent 1 mod 3. Because of that we would have at least two further
2-sets. But we can also have at most two, otherwise, because of the pi-
geonhole principle, there would be an element in {2, 3} which is in at least
three 2-sets. So we get the two subcases (a) 24, 34 or (b) 24, 35 are in B.
In both cases |B7| = 11 and this is a contradiction to |B;| = 8.

So in this case, where the element 1 is in exactly two 2-sets,
k=B <2+ (5) —1="7.

Using Theorem 27 we also know that there does not exist a (7,7)-MFRAC.
So up to now, we showed that if B is a (k,7)-MFRAC, then B = ([’;l) or
k <8.

tr <1 Because of property PR there is no MFRAC in this case.

tr =2 We have the two cases (a) 123, 124 and (b) 123, 145. In (a),

the elements 3 or 4 can not be in any further 3-set. Otherwise
|Bs| < |B1| and |By4] < |By|. Because of property PR we have to
add 567 and all 2-sets which are not covered, and get the (5, 7)-
MFRAC A;.
In (b), we have to add 16, 17, 24, 25, 34, 35. We can not add
26 and 27. Otherwise |Bz| > |B;1|. So we have to add 267. Simi-
larly, we obtain that we have to add 367, 467, 567. But this is a
contradiction, because |B7| > |Bi].

tr = 3 We have five cases. We can always assume that 123 € B. In (a)
124, 125, 16, 17; in (b) 124, 134, 15, 16, 17; in (c) 124, 135, 16,
17; in (d) 124, 156, 17 and in (e) 145, 167 are also in B.
In (a), we have to add 26, 27, 34, 35, 45 and get a problem with 67.



tr=4

This set can not be an element (property PR) or a subset of an
element of B, otherwise |B;| < |B,| for an 7 € 3, 5].

In (b), we have to add 234. If we would add all 2-sets which are
not covered, then we destroy property PR. Since tr = 3 we also
can not add any further 3-set which contain 2, 3 or 4. So we have
to add 567 and all 2-sets which are not covered. But then we do
not obtain a regular collection of sets.

In (c), we have to put in 25, 34 and 45. Now, we have a look at the
elements 2 and 3: Because of tr = 3 and isomorphism, we have to
look at the following five subcases: (c1) 26, 27, 36, 37, (c2) 236,
27, 37, (c3) 246, 27, 36, 37, (c4) 246, 27, 356, 37 and (c5) 246, 27,
357, 36. In (cl), (c2) and (c3), because of property PR and up to
isomorphism we have to add 467. But then |B;| > |By|. In (c4),
because of property PR and regularity of B we have to add 467
and 567. But this is a contradiction to tr = 3. In (c5), either we
can add 47, 56 as well as 67 to obtain the (5,7)-MFRAC As, or
467 and 567 to obtain the (5,7)-MFRAC As.

In (d), because of maximality of B¢ we have to add 34, 45, 46 and
a set which contains at least 4 and 7. So we get a contradiction
to the regularity of B, because |By| > |B|.

In (e), we have to add all 2-sets which are not covered. But then
|B;] > |By| for all i € [2,7].

Up to isomorphism we have the following cases: 123, 124 together
with (a) 125, 126 or (b) 125, 134 or (c) 125, 136 or (d) 125, 167
or (e) 134, 156 or (f) 135, 167 or (g) 135, 146 or (h) 156, 157 or
(i) 135, 145.

In (a), since tr = 4 we have to add all 2-sets which are not cov-
ered. But then we destroy the regularity of B and also obtain a
contradiction to property PR.

In (b), we add 234, 35 and 45. Since tr = 4 we can not add 256
and 257. So the element 5 can be in at most five sets, but 1 is in
SiX.

In (c), we have to add 17, 26, 34, 35, 45, 46, 56. Actually 2, 3, 4, 5
and 6 are contained in four sets. So because of regularity of B we
have to add one further 3-set and three 2-sets, all containing the
element 7. Therefore, we have three non-isomorphic possibilities:
(c1) 237, 47, 57, 67 (A7); (c2) 247, 37, 57, 67 (As); (c3) 367, 27,
47, 57 (Ag), and we obtain three (5, 7)-MFRACs.

In (d), we have to add all 2-sets which are not covered, and get a
contradiction to the regularity of B.

In (e), we have to add 25, 26 and a set, which contains the ele-
ments 2 and 7 as well as the set 234. So |By| > 6 > 5 = |B].
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tr=5

In (f), we have to add 25, 26 and 27. We obtain the contradiction
|B2| > 5 > 4 = |By|. In the exact same way, we get a contradic-
tion in (h).

In (g), we will obtain the two non-isomorphic MFRACs Ajo and
Aj;. We have to add 17, 25, 26, 34, 36, 45, 56. Because of prop-
erty PR we have to add at least one further 3-set which contains
the element 7. Up to isomorphism and because of |B;| = 5 as well
as tr = 4, we have two possibilities, either we add 237 or 357,
and obtain the two non-isomorphic (5,7)-MFRACs 237, 47, 57,
67 (A1o) or 357, 27, 47, 67 (An).

In (i), we have to add 16, 17, 25 and 34. If 67 is in B then be-
cause of |B,| = 6 and property PR we have to add 236, 237, 246,
247, 356, 357, 456 and 457. Otherwise |B;| < 6 for all ¢ € [6,7).
But on the other hand if we add these sets, then |B;| > 6 for
all i € [2,5]. So we can assume that 67 is not in B. Because of
v(B) = 42 we can assume that we have at least two further 2-sets,
and we also can assume that one of them is 26. We look at the
element 2. Because of regularity of B we also have to add 237 and
247. Either we can add 36 or 356. If we assume that also 36 is
in B, then we have to add 357 (because |Bs| has to be six) and
456, 467 as well as 567 (because |Bg| has to be six). But then the
element 7 is in at least five 3-sets and we obtain a contradiction
to tr = 4. So we can assume that 356 and 357 are in B. But then
there can be only one 2-set in B which can contain the element 5.
So |{B € B; : |B| = 3}| > 6—1 =5 > tr which is a contradiction.

Using Lemma 10 we know that 123, 124 together with (a) 125,
126, 127 (A12); (b) 125, 126, 137 (A13); (c) 125, 136, 137 (A1a);
(d) 125, 136, 147 (Ass); (e) 135, 146, 157 (Ass), (£) 135, 145, 167
(A17), (g) 125, 136, 167 (A;s) deliver seven non-isomorphic (5, 7)-
MFRACs and (h) 125, 134, 167, (i) 134, 156, 157 deliver none.
So we just have to analyze (j) 125, 126, 134; (k) 125, 136, 146; (1)
125, 134, 136; (m) 135, 146, 156, (n) 125, 134, 135 and (o) 125,
134, 156.

In (j), (k), (1) and (o), we use Lemma 11 to obtain a contradiction:
In (j), the element 6 can be in at most two 3-sets; in (k), 5 can be
in at most two 3-sets; in (1), 6 can be in at most two 3-sets and
in (0), 6 can be in at most two 3-sets.

In (m), we can construct a (6,7)-MFRAC Aj9. We have to add
17, 25, 26, 34, 36, 45. The element 7 has to be in at least three
3-sets and also every i € [2,6] has to be in at least one further
3-set. So we also have to add 237, 247, 357, 467, 567.

In (n), using Theorem 27 we know that there is no MFRAC.
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[x™[2 3 4 5 6 7 c™]2 3 4 5 6 7
1 [T 1 - - - d1]- 11 2 6 15
2 |- 11 - - - 01 12 2 3 5
3 - - 2 2 - . 1 (- - - - - -
4 |- - - 2 6 - 2 |- - -1 -
5 |- - - - 38 15 5 |- - - - .
6 [- - - 1 - 5 9 |- - - - -
0 (- - - - 1 -

15 (- - - - - 1

> J1 2 3 5 10 21 1 2 3 5 10 21

Table 1: Overview of (k,m)-MFRACs, and c-triangular graphs on [m] re-
spectively with m <7

tr = 6 Using the argument from the beginning, we know that k < 6.
So we just have to analyze the collections of sets which has the
properties of Lemma 12: (a) 123, 124, 135, 146, 157, 167; (b) 123,
124, 134, 156, 157, 167. In (a), we have to add 25, 26 and 27
and can not add any further set which contains the element 2, so
|B2| =5 < 6 =|B;|. In (b), we have to put in 234, 25, 26, 27, 35,
36, 37, 45, 46, 47, 567 and obtain a (6, 7)-MFRAC Ag. n

4.4 Overview

In Table 1 we give a short overview of the number of non-isomorphic (k, m)-
MFRACs, and c-triangular graphs on [m] respectively. We want to remark
that Karsten Schoélzel wrote a computer program and checked the correct-
ness of these values.

5 Necessary conditions for the existence of
(k,m)-MFRACs

Before we analyze special values of ¢, and k, m respectively, we note that
for every negative integer c there exists a c-triangular graph. This is the
content of the next theorem which is inspired by a construction that can be
found in [3]. A natural question is how small the value k can be in terms

of m.
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Figure 4: (—2)-triangular graph on V' = [9]

Theorem 16. Let ¢ < 0. Then there exists a c-triangular graph
T =(V,E).

Proof. We define ¢/ := —¢, V := (Z3)¢ and

{(ilai21 e siC’)a (jl:j?! s 1jc')} € E
& dke [C'] with 7 # jr and VI € [c'] —{k}: 41 =3.
For all z € V we get d(z) = 2¢, t(z) = ¢/, and ¢(z) = t(z) — d(z) =
d—-2d=c u
An example for ¢ = —2 is shown in Figure 4.

Lemma 17. Let B be a (k,m)-MFRAC. Then
szm—%.

Proof. Let B be an arbitrary (k, m)-MFRAC. Choose z € [m]. We define
B2 :={y € [m] : zy € B} and B2 := {y € [m]—{z} : 3B € B with zy C B}.
Because of maximality of B:

|BZ| + |BS| =m —1.
We analyze two distinct cases:

First, let us assume that
m-—1
(B3| > —

Choose an i € B2 with the property that

(ziy,zize B = y=2z2).
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If there does not exist such an element i, then

IBI

|Bz| > 2% + |B2 =m -1

and this fulfills our proposition. So for these fixed elements z and i, there
exists exactly one element j in [m] such that xij € B. Because of maxi-

mality of B we get
vye B - {i,j}: iyeB.

This implies |B3| — 2 < |B?|, and we obtain

184 > 182+ L2

_ 1B, 21+ 128
2 2

> (1B -2) +

—

B} +|B?
(|z|2' I)
-1

— 3-— S ——
13 -1+ 2
>E__1._1+_—_1

4 2
=Z(m—1)—1.

- N

(V)

Secondly, we analyze the case when

m-—1
|32|S—2——

and so |B2| > 21, We obtain:

82 ey

1+ 18% L 1B
2 2

Remark. This inequality is sharp, because there exists a (6,9)-MFRAC.
But, it does not seem to be the best bound if m is large. We can improve
the bound to k > -m - -2- if for all distinct elements z, y with zy G Be B
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for some B = zyz, B3N B3 = {z}. This bound is also attained for the
(6,9)-MFRAC.

Lemma 18. Let B be a (k,m)-MFRAC with the property that every 2-set
of [m] is a subset of at most one element B of B, then

5 3
>k2-m—=
m—-1>k 6m 5"
Proof. 1t is obvious that k¥ < m — 1. So we just have to prove the other

inequality.

Let 123 € B. Then every element in {4,5,...,m} can be with at most one
of the elements 1, 2, 3 in at most one further 3-set. Otherwise, if there is
an element i which is with two of them in one further 3-set, then we obtain
a contradiction to the property that every 2-set is a subset of at most one
element B of B.

Using the pigeonhole principle we know that |B| < 2 + m=3 =2 41 for
at least one j € [3]. For this j we get that |B?| = (m — 1) — |B}| > 22 -2
and so:

|3|

[B;| = + B3|
B B
2 2
-1 m
>t
7 T3 !
5m 3
6 2’

Corollary 19. Let B a (k,m)-MFRAC with the property that there exists
a 3-set Tyz € B with BEN B3 = {z}, BN B = {y} and B} N B = {z}.
Then 5 3

>com—=.
k 6 2

6 General constructions

The following construction is important in the context of (k, m, n)-ACs (see
for example [1]).

Theorem 20. Let B be an (my + t,m1,n1)-AC and let B’ be an (mg +
t,mq,n3)-AC with t > —min{m,,ms} and with the property that each
element of BU B’ has at least cardinality two. Then there exists an (my +
mg + t,my + ma,n1 + ng + mima)-ACC.
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Figure 5: Z-construction

When we look at the proof of Theorem 20 (see [1], for example), we imme-
diately obtain the following result for MFRACs:

Corollary 21. Let B* be a (ki,m;)-MFRAC (i = 1,2). Ifky —m; =
ky — mg, then there exists an (my + ko, my + mg)-MFRAC.

The dual form of this corollary looks simple:

Corollary 22. Let ¢ be an integer, and let T; = (V;, E;) be a c-triangular
graph on [m;] (i = 1,2). Then there also ezists a c-triangular graph T' on
{m1 + my].

The following is slightly stronger:

Lemma 23. Let ¢ be an integer, and let T; = (V;, E;) be a connected c-
triangular graph on m; > 1 vertices (i = 1,2). Then there also exists a
connected c-triangular graph T' on [my + my).

Proof (Z-construction). As E; # 0 (i = 1,2), we can pick an edge e; =
z;y; € E; (i = 1,2) and define T' := (V4 U V;, E’) with

E' =B UEU {x1-’r2, T2y1, y1y2}~

In Figure 5 this construction is illustrated. |

7 (m,m)-MFRACs
7.1 Existence of (m, m)-MFRACs

In the following we describe two constructions which we need to prove the
sufficient conditions for the existence of (m, m)-MFRACs.
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Figure 6: Detail of a 1-triangular graph on 2r vertices

Theorem 24. Let m > 8 be an even positive integer. Then there exists a
1-triangular graph on [m] (see Figure 6).

Proof. Let m = 2r, and let G = (V, E) be a simple graph with V := Z; X Z,
and

{(ilajl) y (i2aj2)} S E
& (i1 # 42 and ji = j2) or {j1,52} €C,

where C := {{1,2},{2,3},{3,4},...,{r — ,,7},{r,1}}. Forallz € V,
d(z) = 5 and t(z) = 6. So G is a 1-triangular graph. [ |

Corollary 25. Let m > 8 be an even positive integer. Then there exists
an (m,m)-MFRAC.

Lemma 26. Let T = ([m), E) be a (connected) 1-triangular graph. Then
there exists a (connected) 1-triangular graph T' on V(T") = [m + 3].

Proof. Let z,y € [m] with zy ¢ E. We define T” := ([m + 3|, E’) with

E :=FEuU{ij:ie{z,y}je€{m+1,m+2,m+3}}
U {(m + 1)(m + 2), (m + 1)(m + 3), (m + 2)(m + 3)}.
We obtain that dr/(m +14) = 4, tp/(m +14) =5 (i = 1,2,3), drv(a) =
dT(a)+3, tr(a) = tT(a)+3 (a € {a:,y}) and d/_rl(b) = dT(b), tr (b) =tp(b)
for all b € [m) — {z,y}. So T" is a 1-triangular graph on m + 3 vertices. See
also Figure 7. a

7.2 Non-existence of (m, m)-MFRACs
Theorem 27. There does not ezist any (7,7)-MFRAC.

254



Figure 7: 1-triangular graph on V = [m + 3]

Proof. Suppose there is a (7, 7)-MFRAC B. Then v(B) = 49. So there are
exactly two 2-sets (case 1), or five 2-sets (case 2), or more than eight 2-sets

(case 3).

Before we analyze these cases we remark (*) that no element is in more
than two 2-sets. Otherwise this element is in at most 3 + (3) = 6 < 7 sets.

case 1:

case 2:

case 3:

Using the pigeonhole principle we know that there exists an ele-
ment j, which is only in 3-sets. We get that 7 = |B;| = (§)~2 = 13
and this is a contradiction.

Using (*) we know that there is none element which is in three or
more 2-sets. So there has to be at least one element, which is in
exactly two 2-sets. W.l.o.g. we get that 12, 13, 145, 146, 147, 156,
157 are in B. Because of maximality and regularity of B, 67 € B
as well as 456, 457.

We know that every element i € (7], especially the elements 4 and
5, have to be in at least one 2-set. Otherwise |B;| = (J) — 5 =
10 > 7. Because of isomorphism we can assume that 24 and 35
are also in B. The possible 3-sets we could add and which contain
the element 2, are 236, 237, 256 and 257. So 7 = |B;| < 6, which
is a contradiction.

Again, using the pigeonhole principle, we know that there is an
element j, which is in at least three 2-sets, and this is a contra-
diction to (*). |

Theorem 28. There does not exist any (9,9)-MFRAC.

Proof. We assume that there exists a (9,9)-MFRAC B. Then v(B) = 81.
So the number ny of 2-sets is divisible by three. (1)

As R(n,9) > 10 for all n > 33 (see [8]), the size of B is smaller than or
equal to 32, and so ny < 15. (2) Otherwise we can not reach a volume

of 81.
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If there is an element of B, which is only in 3-sets, then there are exactly
(3) — 9 = 28 2-sets. This would be a contradiction to (1). If there is an
element j € [9], which is in exactly one 2-set ji, then there are exactly
(7) — (9 — 1) = 13 2-sets on [m] — {i,j} and consequently n; is at least
1+ 13 = 14. According to (1) and (2), n2 has to be 15. So i has to be
in exactly one further 2-set il and so there are (§) — (9 — 2) = 8 2-sets on
[m] — {i,5,!}. Then ! has to be in 13 — 8 + 1 = 6 2-sets. But this is a
contradiction because then 9 =k = |B;| < 6 + (f) = 8. So every element is
in at least two 2-sets (3).

Using these three facts we have to look at the following cases: (a) n2 =9,
(b) ng =12, (c) ny = 15.

(a) Using the pigeonhole principle and (3), we know that every element
is in exactly two 2-sets. Up to isomorphism there are four subcases
(a) 12, 13, 24, 35, 46, 57, 68, 79, 89, (b) 12, 13, 24, 35, 46, 56, 78, 79,
89, (c) 12, 13, 24, 35, 45, 67, 68, 79, 89 and (d) 12, 13, 23, 45, 46, 56,
78, 79, 89. But in every subcase it is easy to verify that there does
not exist a (9,9)-MFRAC.

(b) We know that there must be at least one element, which is in exactly

two 2-sets. W.l.o.g. this is the element 1 and the two 2-sets are 12
and 13. So there are exactly (5) +2 — 9 = 8 2-sets on [4,9] and
12 — 2 — 8 = 2 2-sets on [2,9], which have at least one element from
{2,3}. So we get four subcases: (i) 12, 13, 23, 24; (ii) 12, 13, 24, 35;
(iii) 12, 13, 24, 34; (iv) 12, 13, 24, 25.
We start with (i) and look at the element 2. We know that there are
exactly (3) +3— 9 =4 2-sets on [5,9) and therefore also four further
2-sets, which contain the element 4. We obtain that |B;] < 5+(g) =38,
which is a contradiction.

Now, we have a look at (ii) and especially at the elements 2 and 3.
We know that there are () +2 — 9 = 8 2-sets on {5,6,7,8,9} and
also eight 2-sets on {4,6,7,8,9}. So we know, there are eight 2-sets
on [6,9] and this is obviously a contradiction.

Also in case (iii), we get a contradiction. With the same argument
as before we know that there are eight 2-sets on [5,9]. So there is
at least one element, which is in at least four 2-sets. But then this
element can only be contained in 4 + ((g) — 4) = 6 sets.

In (iv), there can not be any MFRAC, because the element 3 is just
in one 2-set and this is a contradiction to (3).

(c) At first we assume that there is an element, which is in exactly two
2-sets. Again w.l.o.g this is the element 1, and the sets 12, 13 are
in B. We obtain that there are eight 2-sets on [4, 9] and five further
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ones on [2,9], which contain at least one of the elements 2 or 3. No
element can be in five or more 2-sets. We use the pigeonhole principle,
and up to isomorphism we obtain the following two cases: (i) 12, 13,
23, 24, 25, (ii) 12, 13, 24, 25, 26.

We start with (i) and have a look at the element 2. We obtain that
there is 4 + (g) —9 =1 2=set on [6,9. W.lo.g. this is 67. Nine 2-sets
are missing. Exactly two of them contain 3 and so at least 9 —2 =7
have to contain 4 or 5. Using the pigeonhole principle we know that
4 or 5 is in at least 4 + 1 = 5 2-sets. This is a contradiction.

In case (ii), the argument is nearly the same. We look at the element
3. Two subcases are possible, we have to add two 2-sets containing
3 and exactly one on {3,7,8,9}. Up to isomorphism we either can
add {34,37} or {34,35,78}. In the first subcase we have to add
(g) —2— (9 — 3) = 2 further 2-sets on {2,5,6,8,9}. Hence, we have
to add exactly two 2-sets on {5,6,8,9}. Therefore we have to add
15 -5 - 2 — 2 = 6 further 2-sets, which contain 4 or 7. So4 or 7 is
in at least five 2-sets.

In the other subcase we have to add (3) —2—(9—3) = 2 further 2-sets
on {2,6,7,8,9}. So we have to add two further 2-sets on {6, 7,8,9}
and five 2-sets, which contain 4 or 5. But again this is not possible.
Otherwise the element 4 or the element 5 are in at least five two
2-sets. So we get again a contradiction.

From now on, we can assume that every element is in at least three
2-sets. We obtain that there are exactly three elements, which are
in four 2-sets and six elements which are in three 2-sets. W.l.o.g we
obtain that 12, 13, 14, 15 and 67 are in B.

We have to add ten further 2-sets, none of which is a subset of
{6,7,8,9}. Since |B;| > 3 for all i € [6,9], we obtain that every
further 2-set contains exactly one element from [6, 9], and so also ex-
actly one element from (2, 5]. Two elements of {2, 3, 4,5} are in three
further 2-sets. W.l.o.g. we can assume that 2 is one of them. Up to
isomorphism we get the following two cases (*) 26, 27, 28 or (**) 27,
28, 29 are in B. In (*), the element 2 can be at most in the following
3-sets 234, 235, 239, 245, 249, 259. We have to add five of these six
3-sets. But this is a contradiction, because then the element 9 can
be in at most one 2-set, otherwise |B;| < 9. In (**), the element 2
can be in the following 3-sets 234, 235, 236, 245, 246, 256. But this
is also a contradiction, because then the element 6 can be in at most
two 2-sets.

So we are done. ]
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MUK

Figure 8: A connected 0-triangular graph on V = [§]

Theorem 29. An (m,m)-MFRAC and a (connected) 1-triangular graph T
on m vertices exist if and only if m =8 or m > 10.

Proof. That this criterion is necessary follows immediately from Section
4, Theorem 27 and Theorem 28. Using Theorem 25 and Lemma 26 we also

know that it is sufficient. [ ]

8 (m —1,m)-MFRACs

In this section we analyze if for given m a connected 0-triangular graph on
[m] exists. If we do not require that our graph is connected, then for every
m we can choose a graph with empty edge set.

The result of this section will be that there is a connected 0-triangular graph
on [m] if and only if m =4 or m > 6. In Section 4 we presented connected
O-triangular graphs on V € {[4],[6],{7]}. Using these three graphs and
recursive constructions, we will show by induction that for every m > 8 a
connected O-triangular graph exists. It follows from Section 4 that there
does not exist one for m =5 and m < 4.

Using the complete graph on four vertices and Lemma 23 we obtain a
connected O-triangular graph on V = (8] (see Figure 8).

Theorem 30. Let T = ([m], E) be a connected O-triangular graph. Then
there exists a connected 0-triangular graph T’ on [m + 3).

Proof. Let © € |[m] be an arbitrary fixed vertex. @~ We define
T’ := ([m + 3], E’) with

E':=EuU{ij:i,j € {z,m+1,m+2,m+3},i# j}.

‘We obtain dT'(m +1i) = tT:(m +i)=4 (1: = 1,2, 3), dr (z) = dr(z) + 3,
tr(z) = tr(z) +3 and dr (y) = dr(y), tr(y) = tr(y) for ally € [m] - {z}.
This construction is illustrated in Figure 9. n

Corollary 31. A connected O-triangular graph erists if and only if m =4
orm 2 6.
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Figure 9: A 0-triangular graph on V = [m + 3]

Figure 10: A connected (—1)-triangular graph

Proof. The necessity follows from Section 4.

If m = 4,6,7,8 there exists a 0-triangular graph. Using Lemma 30 and
the O-triangular graphs on [6], {7] and [8], we know that there exist also a
connected O-triangular graphs on [m] for every m > 9. |

9 (m—2,m)-MFRACs

In this section we briefly show that for every positive integer m > 3 there
is an (m — 2, m)-MFRAC.

Lemma 32. Let m > 3 be a positive integer. Then there exists a connected
(—1)-triangular graph T = ([m], E).

Proof. Let m > 3 be an arbitrary fixed positive integer. We define
E:={12}u{ij:i e {1,2},j € {3,4,...,m}} (see Figure 10). |

Remark. We remark that Lemma 32 is a special dual case of Lemma 10
with C := {123,124,125,...,12m}. In this way many different construc-
tions can be found. For example, we choose for fixed m the vertex set
V :=[m] and the edge set E := {15 : j € [2,m]}U{23,34,45,...(m—1)m}
or in the dual form C := {123,134,145,...,1(m — 1)m}.

10 Open problems

There are several related questions and open problems, which are unsolved
in general:
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1. For which parameters k,m,n does there exist a (k,m)-MFRAC of
size n?
Especially: What is the maximum size of a (k, m)-MFRAC?

2. For which parameters k, m does there exist a maximal k-regular an-
tichain on {m]?

3. For which parameters k,m does there exist a maximal flat k-regular
antichain on [m]?

4. For which parameters k,m does there exist a maximal k-regular an-
tichain on [m] on r levels?

5. How many non-isomorphic (k, m)-MFRACs exist?
Or more generally: How many non-isomorphic maximal k-regular
antichains on {m] exist?
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