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Abstract

It’s well known that all of the pooling designs constructed in
a finite set or a finite vector space. In this paper, we construct
two families of pooling designs not only based on finite set (resp.
finite vector space) but also partial mappings (resp. partial linear
mappings), and discuss their error-tolerance properties.
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1 Introduction

The basic problem of non-adaptive group testing is to identify the defective
parts as the subset of objects being tested. Pooling design is a mathematical
tool to find the defective items using the minimum number of tests. A
pooling design is usually represented by a binary matrix whose columns
are indexed with items and rows are indexed with pools. An entry at cell
(¢,7) is 1 if and only if the jth pool is contained by the ith item, and 0,
otherwise. A mathematical model with error-correcting presented in [1] is
an s®-disjunct matrix. A binary matrix M is said to be s®-disjunct if given
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any s+ 1 columns of M with one designated, there are s+ 1 rows with a 1
in the designate column and 0 in each of the other s columns (see [2]). An
se-disjunct matrix can be employed to discern s defectives, detect e errors
and correct |e/2| errors (see [3]). The sé-disjunct matrix has become an
important tool for determining pooling design. Most of pooling designs
were constructed by the containment relation of subsets (resp. subspaces)
in a finite set (resp. vector space)(see [4]-[8]). Inspired by these studies,
we will restrict our attention to construct pooling designs based on partial
mappings and partial linear mappings, and the error-tolerant properties are
the same with Macula’s designs but our pooling can contain more items.

2 Construction I

Given integers m, n and prime power g. Then Gaussian coefficient denoted

by
n!n—l!'--!n—m+1! if q= 1;

m! ’
["] ={ M - fox
m q |=n:"m , i q 1.
.I;Il(q"—l)

For convenience, we write (") to substitute [],. And we let [g‘]q =1
and [;]q = 0 whenever m <0 or n < m.

Let [n] = {1,2,--- ,n}. Denote by M(k;n) the set of all k-pairs (C, f)
where C is a k-subset of [n] and f : C — [n] is 2 mapping. The pairs are
called partial mappings. For (C, f) € M(k;n) and (D, g) € M(d;n), the
pair (D, g) is called a d-pair of (C, f) if D € C and f|p = g, where f|p is
the restriction of f on D. If (D,g) is a d-pair of (C, f), we also say that
(C, f) contains (D, g).

Definition 2.1. Given integers 1 < d < k < n. Let M(d,k;n) be the
binary matriz with rows indezed with M(d;n) and columns indezed with
M(k;n), such that M((A, f),(B,g)) = 1 if and only if (B,g) contains
(A, f)-

Note that M(d, k;n) is an n¢(}}) x n*(};) matrix, whose constant row
(resp. column) weight is n*~¢("Z9) (resp. (§)). And {(n*(}))/(n?(2))} :
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((3)/(%3)) =n%=9 > 1, so this pooling can contain more items than Mac-
ula’s in {2].

Theorem 2.2. Given integers 1 < d <k <n, and1 < s < d. Then

M(d, k;n) is an s -disjunct matriz, where e; = (5:: -1.

Proof. Let (Co, fo), (C1, f1),-..,(Cs, fs) be any s + 1 distinct columns
of M(d,k;n). For each j € [s], let Cy; be the largest element in the set
{C € ConCj| folc = fijlc} Then |Co;| < k — 1. Therefore, there exists
an a; € Cp \ Cj such that fo(a;) # fj(a;). Suppose Ag := {a1,a2,...,as}.
Then (Co, fo) contains (Ao, fola,) but (Cj, f;) does not contain (Ao, fo)a,)
for each j € [s]. Note that the d-pair of (Cy, fo) containing (Ao, fola,) is
at least (52°). Therefore e; = (5-°) — 1. O

3 Construction II

In this section, we consider the g-analog of Construction I. We begin with
some useful results.

Let F; be the finite field with g elements, where q is a prime power, and
n a positive integer. Denote by Fq(") the n-dimensional vector space over

Fqn

Theorem 3.1. (f9, Theorem 1.7, Corollary 1.8, 1.9]) Let 0 < k <
m < n. Then the number of m-dimensional vector subspaces of Fq(") is
[ ;]q, the number of k-dimensional vector subspaces contained in o giv-
en m-dimensional vector subspace of F{™ is ['L‘]q , and the number of
m-dimensional vector subspaces containing a given k-dimensional vector
subspace of Fq(") is [':'_’,f]q.

Let Mgy(k;n) denote the set of all k-pairs (P, f*) where P is a k-
dimensional vector subspace of Fq(") and f*: P— Fq(") is a linear mapping.
The pairs are called partial linear mappings. For (P, f*) € My(k;n) and
(@, 9") € My(d;n), the pair (Q,g*) is called a d-pair of (P, f*) if Q C P
and f*|o = g*, where f*|q is the restriction of f* on Q. If (Q,g") is a
d-pair of (P, f*), we also say that (P, f*) contains (Q, g*).
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Definition 3.2. Given integers 1 < d < k < n. Let My(d,k;n) be the
binary matriz with rows indezed with M,(d;n) end columns indezed with
My(k;n) of vector space F{™, such that My((U, f*),(V,g*)) = 1 if and
only if (V, g*) contains (U, f*).

Note that M,(d, k; n) is a g?*™ [:i‘]q x gkxn [Z]q matrix, whose constant

row (resp. column) weight is g™~ [::ﬁ]q (resp. [Z]q), And

(@ e [G]oy: ]/ [8)) = e >

so this pooling can contain more items than Macula et al’s in [3].

Theorem 3.3. Let 1 < d < k < n, and set p = 3%‘;{%2 . Then

M,(d, k;n) is an s°2-disjunct matriz for 1 < s < p, where ez = [";]
k-1 k-2

s[*2 ]q+(s—1)[ p ]q—1.

Proof. Let (Po, f3),(P1, f1)s-..,(Ps, f3) be any s + 1 distinct columns
of My(d,k;n). To obtain the maximum numbers of d-pairs of (P, o)
not covered by (P1, f1),-..,(Ps, fi), we may assume that for 1 < i < j,
(Pos, 31Pys)s is (k—1)-pair of (Po, f3), where Po; be the largest subspace in
{PC PoNPi| f3lp = fi|p} and (Py, f§|p,;) is (k —2)-pair of (Poi, f5|po:)
where P;; be the largest subspace in {P C BoNPNPF; | f3lp = filp =
f;lp}. So, there are [5] many d-pairs of (P, fg), [kzl]q many d-pairs

q

of (Poi, f2]p,,), and [k;2 many d-pairs of (Py, f|p,,)- Therefore all the
q
d-pairs of (Py, f3) not covered by (P1, f1),...,(Ps, f5) is at least

o], -o["3], re-n [,
Since e; = ['j]q —s [k'gl]q +(s-1) [";ﬂq —1 >0, we obtain

o< [5]., - [kzz]q _a¢ -1
= [k;l]q _ [k;z]q g4 -1

This proves Theorem 3.3. O
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