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Abstract. Let A, = (a1,a2,...,ax) and B, = (b1, b2,...,bn) be two
sequences of nonnegative integers satisfying a1 > a2 > --- > an, a; < b;
fori=1,2,...,nand a; = a;+; implies that b; > b; ;1 fori =1,2,...,n—
1. Let I be a subset of {1,2,...,n} and a;: = b; (mod 2) for each i €
I. (An; Br) is said to be partial parity graphic with respect to I if
there exists a simple graph G with vertices v, vs, ..., v, such that a; <
do(v;) < b; fori=1,2,...,n and de(vi) = b; (mod 2) for each i € I. In
this paper, we give a characterization for (An; B.) to be partial parity
graphic. This is a variation of the partial parity (g, f)-factor theorem
due to Kano and Matsuda in degree sequences.
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1. Introduction

A non-increasing sequence 7 = (dy,ds,...,dy) of nonnegative integers
is said to be graphic if it is the degree sequence of a simple graph G on
n vertices, and such a graph G is called a realization of m. The following
well-known theorem due to Erdés and Gallai [2] gives a characterization
for m to be graphic. This is a variation of the classical Tutte’s f-factor
theorem (11] in degree sequences.

Theorem 1.1 (Erd6s and Gallai (2]) Let = = (d;,ds,...,d,) be a
non-increasing sequence of nonnegative integers. Then 7 is graphic if and
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only if i d; is even and

i=1

t n
Zd,- <tt-1)+ E min{t,d;} for each t with 1 <t < n.
i=1 i=t+4+1

There are several survey articles on the subject of degree sequences of
graphs (see Li and Yin (6], Lai and Hu [5] and Rao (10]).

Let A, = (a1,a2,...,an) and Bp = (b1, b2,...,bs) be two sequences of
nonnegative integers with a; < b; fori =1,2,...,n. (Ap; Br) is said to be
graphic if there exists a simple graph G with vertices vy, v2,...,vn such that
a; <dg(v;) <bifori=1,2,...,n. If A, and B, satisfya; > a2 2 -+ 2 an
and a; = a;4) implies that b; > by foré =1,2,...,n—1, then 4, and B,
is said to be in good order. In [1], Cai et al. presented a characterization
for (Ap;Bn) to be graphic, where A, and B, are in good order. This
is a variation of the classical Lovész’s (g, f)-factor theorem [7] in degree
sequences, solves a research problem posed by Niessen [9] and generalizes
Theorem 1.1 (which corresponds to a; = b; = d; for each ¢). They defined

fort=0,1,...,n

and

1 ifa;=0b;foralliecl;and Y b; +t|];] is odd,
s(t) = i€l

0 otherwise.

Theorem 1.2 (Cai et al. [1]) If A, and B, are in good order, then
(An; By) is graphic if and only if

t n
Za,— <tt-1)+ E min{t,b;} — e(t) for each t with 0 <t < n.
i=1 i=t+1

Let G be a simple graph and let g, f : V — Z+ be two functions such
that g(v) < f(v) for all v € V, where V = V(G) is the vertex set of G
and Zt denotes the set of nonnegative integers. Let U be a subset of V,
and let g(v) = f(v) (mod 2) for all v € U. A spanning subgraph F' of G is
called a partial parity (g, f)-factor with respect to U if g(v) < dp(v) < f(v)
for all v € V and dpr(v) = f(v) (mod 2) for all v € U. For any two disjoint
subsets P and Q of V, we write eq(P, Q) for the number of edges of G
joining P to Q.

Theorem 1.3 (Kano and Matsuda [4]) Let G be a simple graph and U a
subset of V(G). Let g, f : V — Z* be two functions satisfying g(v) < f(v)
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for all v € V, and g(v) = f(v) (mod 2) for all v € U. Then G has a partial
parity (g, f)-factor with respect to U if and only if

D =D g+ Y days(v) ~w(S,T) 20
veS veT veT
for all disjoint sets S,T C V, where w(S,T) denotes the number of com-
ponents C of G — (SUT) such that g(v) = f(v) for all v € V(C) \ U and
> f(v) +ec(V(C),T) is odd.
vev(C)

Note that if U = @, then Theorem 1.3 is the classical Lovész’s (g, f)-
factor theorem, and if U = V(G), then Theorem 1.3 is the classical Lovész’s
parity (g, f)-factor theorem [8]. We now consider a variation of Theorem
1.3 in degree sequences. Let I be a subset of {1,2,...,n} and a; = b; (mod
2) for each i € I. (Ap; B,) is said to be partial parity graphic with respect
to I if there exists a simple graph G with vertices vy, vy, ..., v, such that
a; < dg(v;) < b; for each i and dg(v;) = b; (mod 2) for each i € I. The
purpose of this paper is to give a characterization for (An; B,) to be partial
parity graphic with respect to I, where A, and B, are in good order. For
0 <t < n, we define

Le={ii>t+1and b; >t +1}

and
1 ifae;=b;forallie Ly\Iand ) b; +¢t|L| is odd,
¢(t) = i€Ly
0 otherwise.

Theorem 1.4 If A, and B, are in good order, I is a subset of
{1,2,...,n} and a; = b; (mod 2) for each i € I, then (An;B,) is par-
tial parity graphic with respect to I if and only if

t n
Za,- <tt-1)+ Z min{t,b;} — ((t) for each t with 0 <t <n. (1)
i=1 i=t+1
It is easy to see that if I = @, then Theorem 1.4 is a variation of the
classical Lovész’s (g, f)-factor theorem in degree sequences, that is Theorem
1.2, and if I = {1,2,...,n}, then Theorem 1.4 is a variation of the classical
Lovész’s parity (g, f)-factor theorem in degree sequences, that is Theorem
1.4 of (3].

2. Proof of Theorem 1.4

The proof technique of this paper closely follows that of [3]. We first
give a lemma, which is a generalization of Lemma 2.1 of [3]. We define for

271



Jc{1,2,...,n}
Ly ={ili ¢ J and b; > |J| +1}

and
1 ifa;=biforallie Ly\Iand > b;+|J||Ls]is odd,
C(J) = i€Ly
0 otherwise.

Lemma 2.1 Let A, and B, be in good order. If (A,; B,) is partial
parity graphic with respect to I, then

> e < WI(J] = 1) + ) min{|J], b} = ¢(J). )

ieJ igJ

Proof. Without loss of generality, we may assume that b; > 1 for

1 < i < n. There exists a simple graph G with vertices vy, v2,...,v, such

that a; < dg(v;) < b; and dg(v;) = b; (mod 2) foreach i € I. If J = @,

then Ly = {1,2,...,n}. If {(®) = 1, then a; = dg(v) = b; for each
n

i€ {1,2,...,n}\ I and ) b; is odd. However,
i=1

n

> de(w) > dg(vi) + > de(w)

i=1 i€l i€{1,2,..,n\I

(Sbi+ Y b) (mod2)

i€l ie{1,2,.aN\
n

= 3 b; (mod 2) =1 (mod 2),
i=1

a contradiction. Thus ¢{(§) = 0 and therefore, (2) holds in this case. If
J # 0, it follows from theorem 1.1 that

Ya < X de(w)
i€J i€J

71| = 1) + Xigg min{|J], d(vi)} O
TN = 1) + gy min{|J], b:}.

Clearly, (2) holds when ¢(J) = 0. Now suppose ((J) = 1. Then a; =
dg(v;) = b; for alli € Ly\I and Y, b; + |J||L;| is odd. If (2) does not

<
<

i€l
hold for the J, then it follows from (3) that
3" min{|J|,do(vi)} = Y min{]J],b:}, (4)
igJ igJ
and
3 de(w) = JI(J] - 1) + Y _ min{lJ], de ()} (5)
ieJ igJ
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For convenience, let {i|i ¢ J} = LyUAz and LyN] = A;UA;, where A; =
{ils € LynI and dg(v;) > |J|+1} and A = {i]i € LyNI and de(v;) < |J|}.
Since min{]J|,de(vi)} < min{|J|,b;} for each i & J, by (4), we have that
min{|J|,dg(vi)} = min{|J|,b;} for each i & J. Thus dg(v:) = |J| for each
i € Az. Let F be the induced subgraph of {v;|i € L;} in G. The sum of
the degrees of vertices in F equals z de(vi) — |J||Ls| = ( E de(vi) +
|JLs])—2|J||Ls| by (5). But this sum must be odd because z de(vi) +
€L,
[(JILsl = 3 b +|J||Ls| (mod 2) =1 (mod 2), a contradiction. O
i€Ly

Proof of Theorem 1.4 Taking J = {1,2,...,t}, by Lemma 2.1,
the necessity is obvious. For the sufficiency, let A, = (a;,as,...,a,) and
B, = (b1,b2,...,b,) be in good order and a; = b; (mod 2) for each i € I,
Without loss of generality, we may assume that b; > 1 for 1 < i < n. Call
a graph G with vertices vy, v, ..., Vn a subrealization if dg(v;) < b; for all
i, and a realization if b; > dg(v;) = a; for all i. In a subrealization, the
critical index 7 is the largest index such that d(v;) > a; for 1 < i < r.
Initially, we start with n vertices and no edges, so that 7 = 1 unless a; = 0
for all 4, in which case the process is complete. While » < n, we obtain
a new subrealization by iteratively removing the deficiency a, — d(v,) at
vertex v, without changing the degrees of previous vertices.

Let Z = {vr41,Vr42,...,n}. We maintain the condition that Z is an
independent set which must hold initially,. We write v; — v; for “v; is
adjacent to v;’ and v; ¥ v; for “v; is not adjacent to v;”.

Case 1. Suppose v; ¢ v, for some i with d(v;) < b;, then add edge
iUy

Case 2. Suppose v; ¢ v, for some i < r. Since d(v;) 2 a; > a, > d(v,),
there must exist w € N(v;) \ N(v,). If b, — d(v,) > 2, replace uv; with
{uv,,viv.}. If by — d(v,) = 1, then a, = b,. If v, « v} for some v € Z,
then remove viv, and apply the argument of the first part of the case.
Otherwise, v, #» vy for all vx € Z, Case 1 applies unless d(vx) = by, for all
vx € Z. In this case, we write X = {v|]1 <i <r—1 and v; — vy}, and
Y = {v1,v,...,vr1}\ X. If d(v;) > a; for some i € {1,2,...,7—1}, then
replace uy; w1th uvy. If d(v;) < b; for some v; € Y, then add edge v;v,.
We may assume that d(v;) = a; for all i € {1,2,...,r — 1} and d(v;) = b;
for all v; € Y. If v; & vy for some v; € Y and v, E Z, then replace v;ui
with v;u,. So we may further assume that vertices in Y are only adjacent
to vertices in {v;,vs,...,vp1}.

Let X, = {vijv; € X, (Bvx € Z2)(v; — 'Uk)}, X, = {v,'|v,- € X\ X1,a4; =
b;} and X3 = X \ (X; U X3). Now we claim that there must be some
vertex in X; U X3 that is not adjacent to some vertex in {v;,vs,...,v,}.
By contradiction, suppose that v; < v; forallv; € X;UX3;and1<j <.

Let T = {i|v; € X, U X3} and |T| = t. Notice that d(vi) = by <t for
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all v, € Z, since the only vertices adjacent to vx are in X;. In addition,
b; > a; >a, >t+1foralli € {1,2,...,7—1} because of a, —1 = d(v,) > t.
Thus, for all v; € Xo UY, d(v;) = b; > t + 1. Therefore

S ai=tt—1)+)_ min{t,b}. (6)

i€T igT

We shall show that T = {1,2,...,t}. We can see that d(v;) < ¢ for
all v; € Z, d(v,;) < t+|Xa|, d(vs) St +|Xo|+|Y|—-1forall v; €Y,
d(v;) < t+|Xz| +|Y]| for all v; € X3, d(v;) =t +|X2| +|Y] for all v; € X3,
and d(v;) > t+ |Xa| +|Y|+1 for all v; € X;. By d(vi) =@ for1 <i<r
and a; > ap > --- > an, we have that {ilv; € X1} = {1,2,...,|X1]}.
We now show that p < ¢ for p € {ijv; € X3} and ¢ € {ijs; € X2}. To
the contrary, we assume that there exist v; € Xz and v; € X3 such that
i < j. Then a; = d(vj) =t + |Xz| +|Y| = d(vi) = ai, and hence a; = a;.
On the other hand, it follows from v; € X, and v; € X3 that a; = b;
and a; < b;. Thus b; < b;, contradicting the good order. Therefore,
p < q for all p € {iJv; € X3} and g € {i|lv; € X»}, which implies that
{ilvi € X3} = {|Xa| +1,...,t} and T = {1,2,...,t}.

In order to complete the proof of the claim, we define

FI)=tt—1)+ Y _ min{t, b} - Y e = ¢().

igJ ieJ

By (1), we can see that f(T) > 0. Now we consider the graph H induced
by Y U Xz U {v,}. The sum of the degrees of vertices in H is equals to
S d(v)-t|H|= Y a;—t|H|—1. Since this sum must be even,
v, EV(H) v, €V(H)
S a; —t|H| is odd. Furthermore, Lt equals the set of indices in H,
v, €V(H)
ai=bforally; e V(H)and Y bi+t|H|=( Y a;—t|H|)+2t|H|

vEV(H) v EV(H)
is odd, so ¢(T') = 1, contradicting (6) and f(T) = 0. Therefore, there exists
some vertex in X; U X3 that not adjacent to some vertex in {v1,v2,...,vr}.

In other words, the claim is proved. We now can decrease the deficiency at
vy in terms of the following cases.

subcase (2.1). Suppose v; #» v; for some v; € X; and v; € X, then
v; & vx for some vy € Z. Replace {vivk,v;v,} with v;u;. This increases
the deficiency at v, by 1, and the first part of Case 2 applies.

subcase (2.2). Suppose v; ¢ v; for some v; € X, and v; € Y, then
v; & v for some vx € Z. Note that | X| =d(v;) = ar —1 < a;. Sov; & v
for some ve € Y. Replace {vivk,v;ve} with {v;v;,vev,}.

subcase (2.3). Suppose v; ¥+ v; for some v; € X3 and v; € Xp U X3,
then replace v;v, with v;v;. This increase the deficiency at v by 1, and
the first part of Case 2 applies.
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subcase (2.4). Suppose v; #» v; for some v; € X3 and v; € Y, then
v; & vg for some vy € Y. Replace vjve with {v;v;,vev,}.

In the last two cases, we increase d(v;) by 1, this can be done as d(v;) =
a; < b;, by the definition of X3.

Case 3. Suppose v1,v2,...,0-1 € N(v,) and d(vi) # min{r, b} for
some k with ¥ > r. Since d(vx) < bx and Z is an independent set, we
have that d(vy) < 7, and so d(vx) < min{r,b;}, Case 1 applies unless
vp & Vg Since d(vx) < 7, vk ¢» v; for some i € {1,2,...,7 — 1}. There is
u € N(v;) \ N(v;). Replace uv; with {uv,, v;vi}.

Case 4. Suppose v;,v3,...,vr—1 € N(v;) and v; ¢ v; for some i <
j < r. Then there exists vertices u and w (possibly v = w) such that
u € N(v;) \ N(v,) and w € N(v;) \ N(v,). Since vy, vs,...,0r—1 € N(vy),
we have that u,w € Z. Replace {uv;, wv;} with {uv,, vv;}.

Case 5. Suppose d(v;) > a; for some i € {1,2,...,r — 1}, and
V1,2,...,Yr—1 € N(v;). Then there exists u € N(v;) \ N(v,). Replace
uv; with uvy.

If none of these cases apply, then v;,vs,...,v, are pairwise adjacent
and d(vx) = min{r, b} for all k > r. Since Z is independent, we have that

r n

S dw)=r(r-1)+ Y min{r,b}. By (1) and d(v;) = a; for i < r, we
i=1 i

t=r+l
have that
T n r r—1
Za,- <r(r-1)+ Z min{r,b;} = Zd(v.-) = Za,- + d(v,).
i=1 i=r+4l i=1 i=1

Thus, d(v,) = a,. Increase r by 1 and continue.

Finally, we obtain a subrealization G’ with dg:(v;) = a; for 1 <i < n.
By a; = b; (mod 2) for all i € I, we have that dg:(v;) = b; (mod 2) for all
¢ € I. This means that G’ is the required realization of (An; By). In other
words, (An; By) is partial parity graphic with respect to /. O
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