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Abstract

Let R be a commutative ring with identity and A*(R) be the
set of non-zero ideals with non-zero annihilators. The annihilating-
ideal graph of R is defined as the graph AG(R) with the vertex set
A*(R) and two distinct vertices I; and I» are adjacent if and only
if hIo = (0). In this paper, we study some connections between
the graph-theoretic properties of AG(R) and algebraic properties of
commutative ring R.

Keywords: zero-divisor graph, annihilating-ideal graph,
semiprimitive ring, domination parameters.

1 Introduction

The study of algebraic structures, using the properties of graphs, became an
exciting research topic in the past twenty years, leading to many fascinating
results and questions. In the literature, there are many papers assigning
graphs to rings, groups and semigroups. Let R be a commutative ring with
identity. In [2], D. F. Anderson and P. S. Livingston associate a graph
called zero-divisor graph, T'(R) to R with vertices Z(R)*, the set of non-
zero zero-divisors of R, and for two distinct z,y € Z(R)*, the vertices z
and y are adjacent if and only if zy = 0 in R. In ring theory, the structure
of a ring R is closely tied to ideal’s behavior more than elements, and
so it is deserving to define a graph with vertex set as ideals instead of
elements. Recently M. Behboodi and Z. Rakeei[4, 5] have introduced and
investigated the annihilating-ideal graph of a commutative ring. For a non-
domain commutative ring R, let J(R) be the Jacobson radical of R, (z) be
the ideal of R generated by « and A*(R) be the set of non-zero ideals with
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non-zero annihilators. We call an ideal I; of R, an annihilating-ideal if there
exists a non-zero ideal I» of R such that I1 Iz = (0). The annihilating-ideal
graph of R is defined as the graph AG(R) with the vertex set A*(R) and
two distinct vertices I; and I are adjacent if and only if I I, = (0). We
investigate the interplay between the graph-theoretic properties of AG(R)
and the ring-theoretic properties of R. An ideal I of R is called nil-ideal
if there exists a positive integer n such that I = 0 and I™~! # (0).
An Artinien ring is a ring that satisfies the descending chain condition on
ideals. An Artinian ring has only finite number of maximal ideals and every
ideal in an Artinian ring is a nil-ideal. A ring R is called semiprimitive if
its Jacobson radical J(R) is the zero ideal. For basic definitions on rings,
one may refer (3, 8].

Let G = (V, E) be a simple graph. The distance between two vertices
z and y, denoted d(z,y), is the length of the shortest path from z to y.
The diameter of a connected graph G is the maximum distance between
two distinct vertices of G. For any vertex z of a connected graph G, the
eccentricity of x, denoted e(z), is the maximum of the distances from z to
the other vertices of G. The set of vertices with minimum eccentricity is
called the center of the graph G, and this minimum eccentricity value is
the radius of G. The cligue number w(G) is the number of vertices in a
largest complete subgraph of G. The corona of two graphs G; and G is
the graph G, o G, formed from one copy of G; and |V(G1)| copies of Ga,
where the it? vertex of G; is adjacent to every vertex in the i** copy of G,.
For v € V(G), the neighborhood(degree) of v, denoted by N(v)(degc(v)),
is the set (number) of vertices other than v which are adjacent to v and
N[v] = N(v) U {v}. We denote by 6(G) and A(G) the minimum and
maximum degrees of the vertices in G respectively. For basic definitions on
graphs, one may refer[6].

A set D C V of vertices in G = (V, E) is called a dominating set if for
every vertex v € V — D, there exists a vertex v € D such that v is adjacent
to u. A dominating set D is said to be minimal if no proper subset of D is
a dominating set. The domination number of G, denoted by ¥(G), is the
minimum cardinality of a dominating set of G. A dominating set D in G
with cardinality « is called y-set of G. A dominating set D is a connected
dominating set if the subgraph (D) induced by D is a connected subgraph
of G. The connected domination number of G, denoted by 7.(G), is the
minimum cardinality of a connected dominating set of G. A dominating
set D is a total dominating set if for every vertex v € V, there exists a
vertex u € D such that v # u and v is adjacent to u. The total domination
number of G, denoted by v(G), is the minimum cardinality of a total
dominating set of G. A dominating set D is a cligue dominating set if
the subgraph (D) induced by D is complete in G. The cliqgue domination
number v,(G) of G equals the minimum cardinality of a clique dominating
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set of G. A dominating set D is a paired-dominating set if the subgraph
induced (D) by D has a perfect matching. The paired-domination number
Ypr(G) of G equals the minimum cardinality of a paired-dominating set
of G. A set S of vertices is said to be irredundant set of G if for every
vertex v € S, pn[v,S] = Nv] — N[S — v] # 0. An irredundant set S is a
mazimal irredundant set if for every vertex u € V — S, the set SU{x} is not
irredundant. The érredundance number ir(G) is the minimum cardinality
of maximal irredundant sets. There are so many domination parameters
in the literature and for more details one can refer[7). In this paper, apart
from domination number, we are also concerned with connected domination
number v.(G), total domination number v,(G), cligue domination number
Yel(G), paired-domination number vp-(G) and irredundance number ir(G)
of the annihilating-ideal graph of certain non-domain commutative rings.
The purpose of this article is to study the basic graph-theoretical proper-
ties of AG(R). In section 2, we characterize the degree of a maximal ideal in
the annihilating-ideal graph of a commutative semiprimitive Artinian ring
with identity. Also, we find the maximum degree of the annihilating-ideal
graph of a commutative Artinian ring. In sequel, we prove that if R; = Z%
and R; = @, Fi, where F; are fields and n > 2, then AG(R;) & I'(R)).
In section 3, a dominating set of AG(R) is constructed using elements of
the center when R is a commutative Artinian ring. Also we prove that the
domination number of AG(R) is equal to the number of factors in the Ar-
tinian decomposition of R and we also find several domination parameters
of AG(R). In section 4, we characterize all commutative Artinian rings(non
local rings) with identity for which AG(R) is planar. In this attempt, we
obtain the clique number of AG(R) when R is a commutative semiprimitive
Artinian ring. The following results are useful for further reference in this

paper.
Theorem 1.1. (3, Theorem 8.7] An Artinian ring is uniquely (up to iso-
morphism) a finite direct product of Artinian local rings.

Proposition 1.2. [7, Proposition 3.9] Every minimal dominating set in a
graph G is a mazimal irredundant set of G.

Theorem 1.3. [8, Theorem 12.1.22] Let R be a commutative ring with
identity. If R is semiprimitive Artinian, then R is a direct sum of finite
number of fields.

Corollary 1.4. [4, Corollary 2.4] Let R be an Artinian ring such that R
is not a field. Then there is a vertez of AG(R) which is adjacent to every
other vertez if and only if either R = Fy, ® F> where Fy, F; are fields, or R
15 a local ring.

Hereafter by R we mean R is a commutative Artinian ring. By The-
orem 1.1, R = ®]_, R; where R;’s are Artinian local rings. Let J; be the
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unique maximal ideal in R; with nilpotency n;. Note that M az(R) =
{My,....Mp:Mi=R1® - ®Ri10Ji®Ris1®---®Rn, 1 <i<n}is
the set of all maximal ideals in R and n > 2. Also throughout this paper,
we take S as a commutative semiprimitive Artinian ring. By Theorem 1.3,
S is a finite direct sum of fields. Let us take S = @}, F; where Fi’s are
fields. Due to this, the number of proper non-zero ideals in § is 2" — 2
and so |A*(S)| = 2" — 2. Also note that Maz(S) = {M{,..., M} : M{ =
Fio-®F_1®(0)®Fiy1®- - ®F,,1<1i<n} is the set of all maximal
ideals in S and every ideal of S is of the form [y @ I; ® -+ ® I, where I; is
an ideal of F;, n > 2.

2 Properties of annihilating-ideal graph

In this section, we study about annihilating-ideal graph and use the same
further.

Theorem 2.1. Let S be a commutative semiprimitive Artinian ring and
let M be an ideal in S. Then M is mazimal if and only if degag(s)(M) = 1.

Proof. As mentioned above, Maz(S) = {M{,.... M, : M{=F1&---®
Fi 16(0)®Fiy1®---®F,,1 <i<n}is the set of all maximal ideals in S.
Note that MM # (0) for alli # j. Suppose M ismaximalin S. Then M =
M for some i. Clearly MI = (0), where I = (0)®- - -&(0)®F:®(0)®- - -®(0)
and so degag(s)(M) > 1.

Suppose degag(sy(M) > 1. Then there exists a non-zero ideal I’ of §
such that MI' = (0), ' # (0)®---®(0)® F; & (0)®---®(0) and I' # M;
for all . Note that every ideal of S is of the form I; ® I ® - - - ® I,, where I;
is an ideal of F;. Therefore I’ = ®7.,I; where I; € {(0), F;}. Since I' 5 (0)
and I' £ (0)®--- 0 0)0F,®(0)® - &(0), I; = F; for some j # i.
From this (0)®---® (0)® F; ® (0)®--- @ (0) C MI' and so MI' # (0), a
contradiction. Hence degag(s)(M) = 1.

Conversely, let degag(s)(M) = 1. Suppose M is not maximal. Then
there exists a maximal ideal M’ in S such that M C M’. By the previous
part, degag(s)(M') = 1 and let M’ = M] for some j. Suppose M = &L, ;.
Then I; = (0). Since M'-((0)®---® (0)® F; & (0) ® --- & (0)) = (0),
M({(O)®---(0)® F; ®(0)--- & (0)) = (0). Since M is not maximal, there
exists k # j such that I = (0). From this M- ((0)®---®(0)® Fi. ® (0) ®
..+ @ (0)) = (0) and so degag(s)(M) > 1, a contradiction. O

In view of Theorem 2.1, we have following corollary.

Corollary 2.2. Let S be a commutative semiprimitive Artinian ring. Then
AG(S) is neither Eulerian nor Hamiltonian.
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Lemma 2.3. Let R be a commutative Artinian ring with identity and
R = ®]_;R; where R;’s are Artinian local rings and n > 2. Let J; be

the unique mazimal ideal in R; with nilpotency n;. Then degag(r)(M;) =
degag(r;)(Ji) where M; is a marimal ideal in R for1 <i < n.

Proof. Note that Mi =R1 @+ O Ri_1®J;®Rip1® - - ®Rafor1<i <
n. Clea.rly NAG(R)(Mi) = {(0) b---D (0) 2] Ii ® (0) S (0) : IiJi =
(0), I; is a non-zero ideal in R;} and hence degag(r)(M:) = degag(r.)(Ji)
forl1<i<n. O

Theorem 2.4. Let R be a commutative Artinian ring with identity and
R = @}, R; where R;’s are Artinian local rings and n > 2. Let J; be the
unique mazimal ideal in R; with nilpotency n;. If D; = (0)® - ® (0) ®
J:“_l ®0)®---®(0) for1 <i < n, then A(AG(R)) = degAG(R) (D;) for

someti, 1 <i<n.

Proof. As mentioned above, Maz(R) = {M,,....M,: M;=R1 ®--- &
Ri1®Ji®Rip1®---®R,, 1 <i<n}is the set of all maximal ideals
in R. By the assumption J* = (0) and J™~! # (0) for all i. Then
NA(;(R)[D,’] = {I = ®?=1L' o I yé (0), I; is an ideal in R; and I; #* Ri}.
Thus degag(r)(D:) = |[Nag(r)[Di]l — 1. Let m; be the number of ideals in
R; for 1 < i < n. Rearrange the indices such that m; < my < ... < m,.
Note that J™~L.R; # (0) for every i. This implies that degagr)(D;i) =
myms... mi_l(mi—l)mi.,.l ...Mp—1 and so degAG(R) (D,-) < degAc(R) (Dn)
forall1<i<n-1.

Let I be any non-zero ideal of AG(R) and I # D; for 1 < i < n. Then
I = @}, 1; for some ideals I; in R; and I; # (0) for some 3.
Case 1. If I is maximal, then I = M; for some i and so degpgr)(I) <
m; — 1 < degag(r)(Dn).
Case2. f I=1®oLL,®- -©I,, then I; C J; for all i. Then degag(r)(I) <
(m1—1)(mg = 1)+ (my — 1) < degag(r)(Dn).
Case 3. If I; = R; for some i, then degag(r)(I) < degag(ry(Dn)-
Thus, for any non-zero ideal I in R, I # D; for 1 < i < n, degacr)(I) <
d;BgAG(R) (Dn). Hence A(AG(R)) = degag(r)(Dn) = mimg -+ mp_1(m, EI
1)-1.

Corollary 2.5. Let R be a commutative Artinian ring with identity and
R = @1, R; where R;’s are Artinian local rings and n > 2. Then AG(R)
s not Eulerian.

Proof. Let m; be the number of ideals in R; for 1 <i < n. Rearrange the
indices such that m; < my < --- < m,. By Theorem 2.4, degag(r)(D;) =
mimg - mi_1(m; — 1)mip1+--m, —1 for 1 <7 < n. Note that at least
one of the products mymg - - - m;_y (m; —1)my4q - - - m, — 1 is 0dd no matter
whether mis are odd or even and so degag(r)(D;) is odd for exactly one i
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and degag(r)(D;) is even in all other cases. Hence AG(R) is not Eulerian.

One can prove the following in analogous to the above.

Theorem 2.6. Let S be a commutative semiprimitive Artinian ring and
S= GB,_.IF where F,’s are fields andn > 2. If D; = (0)® (0) ®- eF e
(0)®--- @ (0) for 1 <i < n, then A(AG(S)) = degag(s)(Di) = 2"" -
forallz, 1<ign.

Now we prove that the annihilating-ideal graph of one particular ring is
isomorphic to the zero-divisor graph of another ring.

Theorem 2.7. Let Ry = Z3, Ry = &}_, Fi where F; are fields and n > 2.
Let T(Ry) be the zero-divisor graph of Ry. Then AG(R;) = T'(Ry).

Proof. Note that V(AG(Rp)) = {I = & [i : I € {(0),F3}, 1 <i <
n} ~ {(0), Rz}, V(T'(R1)) = {a = (a1,a2,..-,85) : a; € {0,1}, 1 <i <
n}~ {(0,0,...,0),(1,1...,1)} and IV(AG(Rz))l =[V(I(R)| =2" -2

Define f : V(AG(Rz)) — V(I'(R1)) by f(HL) = (a1,02,..-,05)

i=1

bl i L=F
710 if Ii=(0)

where

Clearly f is well-defined and bijective. Let I = @},I; and I' = @1.,I]
be two non-zero ideals in Rp. Suppose I and I' are adjacent in AG(Rz).
Then II' = (0) and so I;I{ = (0) for all <. Hence I; = (0) or I] = (0) for all
i. Suppose f(I) = (b1,ba,...,bn) and f(I') = (c1,¢2,...,¢n). Then either
b; = 0 or ¢; = 0 and so b;c; = O for all i. i.e, f(J)f(I') =0 and so f(I)
and f(I') are adjacent in I'(R;). Similarly one can prove that f preserves
non-adjacency also. Hence AG(Rz) = I'(R,). O

Theorem28 Let By 2 Z, a1 X Zy, a2 X - X Zpzn andR2=Za1 X Z, 22 X
- X Zgam , where p; and q, are dtstmct prime 'mtegers and a1 >1 zs an
mteger for 1< i< n. Ifn=m, then AG(R;) = AG(R,).

Proof. If Ry & Ry, then the result is obvious. Suppose R; % Rj. Note that

VAG(Ry)) = {I x -+ x In : I; € {{0), (i), (P2) .., (#*™ 1), Z,e },1 <

i < n}\{(0),R,} and V(AG(Rz)) ={H;x--xHy: H.- € {{0), (q,) (%),
() B, 1 <4 < {(0), Ra)

Define f: V(AG(R;)) — V(AG(Ry)) by f(HI) = HI’ where

=1 t=1
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(@) if Li=(p}
=90 if L=(0)
Ty L=

Clearly f is well-defined and bijective. Let 4, B € V(AG(R))), A =[] A

i=1

and B = HBi. Suppose A and B are adjacent in AG(R;). Then A;B; =
i=1
(0) for all i. Let f(A) = [J Ai and f(B) = [[ Bi- Since A;B; = (0),
i=1 i=1
ALB! = (0) for all i and so f(A)f(B) = (0). ie. f(A) and f(B) are
adjacent in AG(R2). Similarly one can prove the non-adjacency also. Hence
AG(R;) = AG(Ry). a

Now we have the following corollary.

Corollary 2.9. Let R, = @7, F; and R, = ®7.,K; where F; and K; are
fields for 1 <i<nand1<j<m. If Ry % R,, then n =m if and only if
AG(R;) = AG(R,).

3 Center sets of annihilating-ideal graph

In this section, we find certain central sets in the annihilating-ideal graph
and use the same to obtain the value certain domination parameters of the
annihilating-ideal graph.

Theorem 8.1. Let R be a commutative Artinian local ring with identity.
Assume that M is the unique mazimal ideal R. Then the radius of AG(R) is
0 or1 and the center of AG(R) s {I C ann(M) : I # (0)is an ideal in R}.

Proof. If M is the only non-zero proper ideal of R, then AG(R) 2 K,,
e(M) = 0 and the radius of AG(R) is 0. Assume that the number of non-
zero proper ideals of R is greater than 1. Since R is Artinian, there exists
m € N, m > 1 such that M™ = (0) and M™~! & (0). For any non-zero
ideal I of R, IM™1 C MM™ ! = (0) and so d(M™~1,I) = 1. Hence
e(M™~1) =1 and so the radius of AG(R) is 1.

Suppose I and K are arbitrary non-zero ideals of R and I C ann(M).
Then IK C IM = (0) and hence e(I) = 1. Suppose (0) # I' ¢ Ann(M).
Then I'M # (0) and so e(I') > 1. Hence the center of AG(R) is

{I C ann(M) : I is a non-zero ideal in R}
O
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In view of Theorem 3.1, we have the following corollary.

Corollary 3.2. Let R be a commutative Artinian local ring with identity
and M is the unique mazimal ideal of R. Then the following hold good.

(1) V(AG(R)) =1
(it) D is a y-set of AG(R) if and only if D C ann(M).

Proof. (i) Trivial from Theorem 3.1.

(ii) Let D = {I} be a y-set of AG(R). Suppose I ¢ ann(M). Then
IM # (0) and so M is not dominated by I, a contradiction. Conversely,
suppose D C ann(M). Let I be an arbitrary vertex in AG(R). Then
IJ C MJ = (0) for every J € D. i.e., Every vertex I is adjacent to every
J e D. If |D| > 1, then D — {K} is also a dominating set of AG(R) for
some K € D and so D is not minimal. Thus |D| =1 and so D is a -set

by (i). O

Theorem 3.3. Let R be a commutative Artinian ring with identity. Then
the radius of AG(R) is 2 and the center of AG(R) is {I : I is an ideal of R,
I #(0),I C J(R)}.

Proof. Since R is a commutative Artinian ring with identity, R = @7, R;
where R;’s are Artinian local rings and n > 2. Let J; be the unique maximal
ideal in R; with nilpotency n;. Note that Maz(R) = {My,..., M, : M; =
Ri® - ®Ri_10Ji®Ri41®- O Rn, 1 <i<n} is the set of all maximal
ideals in R. Consider D; = (0)®---® (0)® J" '@ (0)®--- & (0) for
1< i < n. Note that J(R) = J; ®---® J, is the Jacobson radical of R and
any non-zero ideal in R is adjacent to D; for some i.
Let I be any non-zero ideal of R. Then I = @], I; where I; is an ideal in
R;.
Case 1. If ] = M; for some i, then ID; # (0) and IM; # (0) for all
j #i. Note that N(I) = {(0)®---®(0)e K;a(0)®---&(0) : iK; =
(0), K is a non-zero ideal in R;}. Clearly N(I)NN(M;) = (0), d(I, M;) #
2 and so I — D; — D; — M; is a path in AG(R). Therefore e() = 3 and so
e(M) = 3 for all M € Maz(R).
Case 2. If I # D; and I; C J; for all i. Then ID; = (0) for all . Let K
be any non-zero ideal of R with IK # (0). Then KD; = (0) for some j,
I-D; — K is a path in AG(R) and so e(I) =2.
Case 3. If I; = R; for some i, then ID; # (0), IM; # (0) and ID; = (0)
for some j # i. Thus I — D; — D; — M; is a path in AG(R), d(I, M;) =3
and so e(I) = 3. Thus e(I) =2 for all I C J(R).

Further note that in all the cases center of AG(R) is {I : I is a non-zero
ideal of R and I C J(R)}. O

In view of Theorems 3.1 and 3.3, we have following corollary.
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Corollary 3.4. Let S be a commutative semiprimitive Artinian ring and
S = @, F; where F;’s are fields and n > 2. Then the radius of AG(S) is
1 or 2 and the center of AG(S) is U}, D;, where D; = (0)&® --- & (0) &
FFo0)®---0(0) forl <i<n.

Theorem 3.5. Let R be a commutative Artinian ring with identity and R =
©% R; where R; are Artinian local rings and n > 2. Then v(AG(R)) = n.

Proof. Let J; be the unique maximal ideal in R; with nilpotency n;. Let
Q={Dy,D,,...,D,}, where D; = (0)®---® (0) @ J* '@ (0)®--- & (0)
for 1 < ¢ < n. Note that any non-zero ideal in R is adjacent to D; for some
i. Therefore N[Q] = V(AG(R)), Q is a dominating set of AG(R) and so
Y(AG(R)) < n. Suppose S is a dominating set of AG(R) with |S| < n.
Then there exists M € Maz(R) such that MI # (0) forall € 5, a
contradiction. Hence y(AG(R)) = n. O

In view of Theorem 3.5, we have following corollary.

Corollary 3.6. Let R be a commutative Artinian ring with identity and
|[Maz(R)| =n > 2. Then

(a) ir(AG(R))=n

(b) 7(AG(R)) = n

(¢) %(AG(R)) =n

(d) 7i(AG(R)) = n

_n if n is even
(¢) 1r(AG(R)) = {n+ 1 ifnisodd

Proof. Consider the v-set Q of AG(R) identified in the proof of Theorem
3.5. By Proposition 1.2, Q is a maximal irredundant set with minimum
cardinality and so ir(AG(R)) = n. Clearly (Q) is a complete subgraph of
AG(R). Hence 7.(AG(R)) = 7 (AG(R)) = 71(AG(R)) = n.

If n is even, then (Q) has a perfect matching and so Q is a paired dom-
inating set of AG(R). Thus v,-(AG(R)) = n. If n is odd, then (QU {I})
has a perfect matching for some I € V(AG(R)) — Q and so QU {I} is
a paired dominating set of AG(R). Thus 4,-(AG(R)) = n if n even and
Yor(AG(R)) = n + 1 if n is odd. o

Suppose R is a commutative Artinian ring. Then by Theorem 3.3,
radius of AG(R) is 2. Further, by Theorem 3.5, the domination number
of AG(R) is equal to n, where n is the number of distinct maximal ideals
of R. However, this need not be true if the radius of AG(R) is 1. For,
consider the ring R = F} & F» where F; and F, are fields. Then AG(R) is a
star graph and so has radius 1, whereas R has two distinct maximal ideals.
The following corollary shows that a more precise relationship between the
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domination number of AG(R) and the number of maximal ideals in R, when
R is finite. Now we generalize the Corollary 1.4 proved by M. Behboodi
and Z. Rakeei[4].

Corollary 3.7. Let R be a finite commutative ring with identity that is not
a domain and 7(AG(R)) = n. Then either R = F; ® F; where I, F> are
fields or R has n mazimal ideals.

Proof. When v(AG(R)) = 1, proof follows from Corollary 1.4. When
v(AG(R)) = n, then R cannot be F1 ®F where F}, F; are fields. Hence R =
@7, R; where R; are Artinian local rings. By Theorem 3.5, v(AG(R)) = m.
Hence by assumption m = n. i.e, R = @7, R; where each R; is a Artinian
local ring and n > 2. One can see now that R has n maximal ideals. O

4 Planarity of annihilating-ideal graph

In this section, we discuss about the planarity condition of the annihilating-
ideal graph of a commutative ring. In that attempt, at the first instance
we find the clique number of the annihilating-ideal graph.

Lemma 4.1. Let S be a commutative semiprimitive Artinian ring with
identity, S = ®F_,F; where F; are fields and n > 2. Then w(AG(S)) = n.

Proof. Let Maz(S) = {M{,....M, : M{=F& - - &6F,_1060)® Fi;1 ®
.- ® F,,1 <i < n}. If n =2, then AG(S) = K> and so w(AG(S)) = 2.
If n = 3, then AG(S) = K3 o K; and hence w(AG(S)) = 3. Assume that
n>4 Let Q ={D,Dy....0n :D;=(0)0---00)0Fd(0)®
.+ ®(0),1 £ < n}. Then (Q) is complete. Thus w(AG(S)) > n. Let
I =&, I; € V(AG(S)) — Q be any non-zero ideal. If I is maximal, then
by Theorem 2.1, degag(s)(I) = 1 and so (QU {I}) is not complete. Thus
I is not maximal and so I = @&7.,/; implies that I; = Fj for at least two
k and I; = (0) for at least two 7, k # j and 1 < k, j, < n. Now IDy # (0)
for at least two k and so I is not adjacent with at least two Dy and hence
{Qu {I}) is not complete. Hence w(AG(S)) = n. 0

Theorem 4.2. Let S be a commutative semiprimitive Artinian ring, S =
@7, F; where F; are fields and n > 2 is an integer. Then AG(S) is planar
if and only if n =2 or 3.

Proof. If n =2, then AG(S) & K. If n = 3, then AG(S) = K3oK;. Hence
in both the cases AG(S) is planar. Conversely, suppose AG(S) is planar
and n > 3. Let n = 4. Let z; = F1©(0)®(0)®(0), z2 = (0) @ F>®(0)&(0),
23=F0Fe(0)0(0), 5 =(00(0)0F:0(0),y: = (0)e(0)8(0)8 Fy,
y3 = (0) ® (0) ® F5 & F;. Then z;y; = (0) for all 4,5 and so K33 is a
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subgraph of AG(S). Hence AG(S) is non-planar. Suppose n > 4. Then by
Lemma 4.1, w(AG(S)) = n, K5 is a subgraph of AG(S) and so AG(S) is
non-planar. Hencen =2 or n = 3. a

Theorem 4.3. Let R be a commutative Artinian ring with identity and
R = @}, R; where R; are Artinian local rings and n > 2. Let J; be the
unique mazimal ideal in R; with nilpotency n;. Then AG(R) is planar if
and only if n = 2 end Jy, J2 are only non-zero proper ideals of R, and R,
respectively and JZ = JZ = (0).

Proof. Suppose n = 2, R = R, ® Ry, J,J2 are only non-zero proper
ideals of R; and Rj respectively and J2 = JZ = (0). Then V(AG(R) =
{h & J2,J1 ®(0),(0) ® J2,J1 ® Ry, Ry & Jo, Ry @ (0),(0) ® Rz}, The
corresponding AG(R) is given in Figure 4.1 and one can verify that AG(R)
is planar.

Conversely assume that AG(R) is planar. Suppose n > 3. Consider
Q= (o], &L, 1, (0@ 6 (08 S 0 (0)®:-&(0) : 1 <i < n).
Since n > 3, |2] > 5 and so Kj is a subgraph of (). From this AG(R) is
non-planar, a contradiction. Hence n = 2.

(0) xRz ¢ ﬁ{ Ry x (0)
J1 X Jz

Ji X Ry o— o Ry x Jo
J1 % (0) (0) x J2

Figure 4.1. AG(R)

Suppose n; > 2 and ng = 2. If Q) = {1 @ Jo, Il (0),J{“_2 =)
J2,J7* 7% @ (0),(0) ® J;}, then K5 = (1) is a subgraph of AG(R), a
contradiction to AG(R) is planar. Similarly one can get a contradiction in
the case of n; =2 and ny > 2. Hence n; = 2 and ny = 2.

Suppose I; is any non-zero proper ideal in Ry and I; C Ji. Since
le = (0), 112 = (0) Now if Qg = {J],@Jz, J1 Q(O), (O)EBJQ, LelJ, I, @(0)},
then K5 = (Q;) is a subgraph of AG(R), which is a contradiction. Hence
J is the only non-zero proper ideal in R;. Similarly one can prove that Jy
is the only non-zero proper ideal in R,. a
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