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Abstract

In this paper, we give a complete solution of the existence of
lattice group divisible 3-designs with block sizes four and six.
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1 Introduction

A t-wise balanced design (tBD) is a pair (X, B), where X is a finite set
of points and B is a set of subsets of X, called blocks with the property
that every t-element subset of X is contained in a unique block. A 2BD
is usually called a pairwise balanced design. If | X| = v and block sizes of
B are all from K, we denote the tBD by S(t,K,v). When K = {k}, we
simply write k for K. An S(t, k, v) is called a Steiner system. An S(3,4,v)
is called a Steiner quadruple system and denoted by SQS(v). The existence
of an SQS(v) has been completely determined by Hanani [1].

Theorem 1.1 [1] An SQS(v) ezists if and only if v = 2 or 4(mod 6).

*Supported by Science and Technology Plan Project of Henan Province NO;
92102210204, Foundation of Henan Educational Committee NO:13B110195 and Young
Core Instructor Foundation of Henan Province NO:2011GGJS-158. Correspondence to:
Zhaoping Meng, School of Information Engineering, Shandong Youth University of Po-
litical Science, Ji'nan 250014, China, E-mail: Mengzhp@gmail.com.

JCMCC 88 (2014), pp. 289-297



When block sizes are 4 and 6, the existence of an S(3, {4, 6}, v) has been
determined.

Theorem 1.2 [2] An S5(3,{4,6},v) ezists if and only if v > 4 and v =
0(mod 2).

Let v be a non-negative integer. Let t be a positive integer and K be a
set of some positive integers. A group divisible t-design (or t-GDD) of order
v and block sizes from K denoted by GDD(t, K, v) is a triple (X, G, B) such
that

(1) X is a set of cardinality v (called points),

(2) G = {G1,Ga,.. .} is a set of non-empty subsets of X (called groups)
such that (X,G) is a 1-design,

(3) B is a family of subsets of X (called blocks) each of cardinality from
K such that each block intersects any given group in at most one point,

(4) each t-set of points from ¢ distinct groups is contained in exactly
one block.

The type of the t-GDD is defined as the multiset {|G| : G € G}. If a GDD
has n; groups of size g; , 1 < i < r, then we use the notation g7 ¢5* ... g7~
to denote the group type.

Mills [6] showed that for n > 3,n # 5, a GDD(3, 4, ng) of the type g"
exists if and only if ng is even and g(n — 1)(n — 2) is divisible by 3, and
that for n = 5, a GDD(3, 4, 5g) of the type g° exists if g is divisible by 4 or
6. Recently, Ji [4] improved these results by showing that an GDD(3, 4, 5g)
of the type g° exists whenever g is even, g # 2 and g # 10,26(mod 48).
When g = 1, an GDD(3,4,7) of the type 1" is just a Steiner quadruple
system of order n.

Let X be a point set and let G = {G1,Gs,...,Gn}, ¢’ = {G},G5, ...,
G!.} be two partitions of the set X. The partitions G and G’ are called
mutually orthogonal if and only if |GiNGj| =1 for i € I and j € I,

Let ¢, n and m be positive integers and let K be a set of positive integers.
Let (X, G, B) be a uniform group divisible t-design of type m™ which block
sizes from K, where G = {G),Ga,...,Gr}. (X,G,B) is called a lattice
group divisible t-design (or t-LGDD) with respect to an orthogonal partition
¢ = {G},G5,...,G.,} of X if and only if for any block B € B and for

G5,j € I, either |IBNGj| <tor BC Gj;. We call Gis, i € Iy,
rows and G”s, j € I, columns. When t = 3, a lattice group divisible
design with n uniform groups of size g and block size k € K is denoted by
LGDD(n, g, K, 3) for short.

For a column G} of LGDD(n, g,{4,6},3), if a 3-subset from G’ is con-
tained in a block B then B € G from definition. Since |G%| = n, all the
blocks B contained in G consist of the block set of an S(3 {J4 6},7n). This
implies that n > 4 and n 0(mod 2) from Theorem 1.2.
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In this paper we are concerned with LGDD(n, g, {4, 6}, 3) for any posi-
tive integer g and prove the following theorem.

Theorem 1.3 Let g be a positive integer. There exists an LGDD(n, g, {4,
6},3) if and only if n > 4 and n = 0(mod 2).

2 Preliminaries

In this section we shall define some of the auxiliary designs and establish
some fundamental results which will be used later.

We begin with some graph theoretical definitions and results. Let G
be a graph with g vertices. We can name the vertices of the graph G with
the numbers in the range 0,1,2,...,9 — 1. The dif ference of the edge
e = {u,v} in G, named so that u < v, is defined to be v —u or g — (v — u),
whichever is smaller; we denote the difference of e = {u,v} by D,y(u,v), or
by D(u,v) if the value of g is clear. So if e = {u,v} with 4 < v then

D(e) = D(u,v) = min{v —u,g — (v —u)}.

With this definition, it is clear that D(u,v) < |g/2]. Notice also that
the number of the edges of difference d in the complete graph K, is g if
d<g/2,and is g/2 ifd = g/2.

The following graph will be very important to us. For any subset D C
{1,2,---,9/2}}, define G(D, g) to be the graph on Z, with the edge set
consisting of all edges having a difference in D; that is, the edge set of
G(D,g) is {{u,v} : D(u,v) € D}. For the existence of the one-factorization
of G(D, g), we have the following result.

Lemma 2.1 (8] Let g be even and D be a set of integers in the range
1,2,...,9/2. Then G(D,g) has a one-factorization if and only if g/gcd(j, g)
is even for some j € D.

H.Mohdécsy and D.K.Ray-Chaudhuri[7] give the fundamental construc-
tion for t-LGDDs.

Theorem 2.2 (7] Let t,n,a and b be positive integers and let K be a set
of positive integers. If for every block A of a t-LGDD of group type a™ there
is a t-LGDD of group type blAl with block sizes from K, then there erists a
t-LGDD of group type (ab)™ with block sizes from K.

We shall give another construction for LGDD designs. We need to
introduce two types of new designs. For two mutually orthogonal partitions
G = {G1,Gs,...,Gp} and G’ = {G1,Gs,...,GI.} of the point set X, a
triple (X, G, A) is called a bias lattice group divisible t-design if
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(1) for any block A € A and for any G, i € I, |[ANG;| =0 or 1, for
any G, j € I, |AﬁG_’1-| =0orl,

(2) every t-subset from t different rows and ¢ different columns is con-
tained in a unique block of A.

When t = 3, a bias lattice group divisible design with n uniform groups
of size g and block size from K is denoted by BLGDD(n, g, K, 3) for short.

For two mutually orthogonal partitions G = {Gy,G3,...,Gr} and G’
= {G},GY%,...,G.,} of the point set X, a triple (X, G, B) is called a curve
lattice group divisible t-design if

(1) for any block B € B and for any Gi,i € I, [BNG;| =0 or 1, for
any G3, j € I, IBNGjl <t,

(2) except for the t-subset contained in any column, every t-subset from
t different rows is contained in a unique block of B.

When ¢ = 3, a curve lattice group divisible design with n uniform groups
of size g and block size from K is denoted by CLGDD(n, g, K, 3) for short.

It is easy to see that the following result is true.

Lemma 2.3 If there exist a BLGDD(n, m, K, t), then there ezists a
BLGDD(m,n, K, t).

Lemma 2.4 Let n be even and g be a positive integer. If there exists a
BLGDD(n, g, K,3), then there ezists a CLGDD(n,g, K U {4},3). Further-
more, if there exists an S(3,K',n), then there exists an LGDD(n,g,K U
K'u {4},3).

Proof. Suppose (X,G,B) be a BLGDD(n, g, K,3) on Z; x Z, with rows
Zy x {i},i € Zy, columns {j} X Zp, j € Z,.

Let E be an edge set of the complete graphon Zy, F = {F, F3, ..., Fh1}
be a one-factorization of the complete graph on Z,,. Let C = {{ia, %5, je, Ja} :
{a,b} is the ith edge of Fi,{c,d} is the mth edge of F, 1 <l,m < n/2,
l#m,1<k<n-1,{ij5}isthe tthedge of E, 1 < ¢ < g(g —1)/2
}. Then BUJC is the block set of a CLGDD(n,g, K U {4},3) with rows
Zg % {i},i € Zy, columns {j} X Zn,j € Z,.

For any column Y; = ({i} x Zy),i € Z,, let (Y3, B;) be an 5(3,K’, n).
The block set BJCU(Uogicq—1 Bi) is an LGDD(n, g, K U K'uU {4}, 3).
a

An ordered design OD(t, k,v) is a k x (})t! array with v entries such
that

(1) each column has & distinct entries, and

(2) each tuple of t rows contains each column tuple of ¢ distinct entries
exactly one time.

L.Teirlinck has worked on OD(3, 4,v). C.Colbourn has revealed by com-
puter search that there is no OD(3,4,7). So we know that the following

results.
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Lemma 2.5 (9], [10] An OD(3,4,v) ezists for v ¢ {3,7}.

Lemma 2.6 (7] Let g be a prime power
(1) There is an OD(2,q,q).
(2) There is an OD(3,q9+ 1,9 +1).

For more information on OD(t, k, v), the reader can refer to [9], [10] and

5]

If we put all the blocks of BLGDD(k, g, k, 3) together, take every block
as a column, then we get an OD(3, k, g). From Lemma 2.5 and Lemma 2.6,
we can get the following results.

Lemma 2.7 (1) Let g > 4 and g # 7. There exists a BLGDD(4, g,4,3).
(2) Let g be a prime power. There is a BLGDD(g+ 1,9+ 1,q +1,3).

Lemma 2.8 Suppose that there exists an S(3, K',v). If there erist a
BLGDD(g,k, K,3) for any k € K', then there exists a BLGDD(g,v, K, 3).
Furthermore, if g is even and there ezists an S(3, K, g), then there exists
an LGDD(g,v, K U {4}, 3).

Proof. We shall construct the desired design on Y = (X x Z,),X = Z,.
Let (X, B) be the given S(3,K’,v). For each block B € B, construct a
BLGDD(y, k, K, 3) on B x Z, with rows B x {i},i € Z,, columns {z} x
Zg,z € B. Denoted its block set by Cg. Then {J Ben CB is the block set of
a BLGDD(v, g, K, 3) with rows X x {i},% € Zg, columns {j} x Z,,j € X.
For any column Y; = ({i} x Z,),% € X, let (V;, B;) be an S(3, K, g). Let
F={R,F,..., F,_,} be a one-factorization of the complete graph on Z,.
Let E be an edge set of the complete graph on X. Let A = {{i,, %, j, Ja}:
{a, b} is the Ith edge of F;,{c,d} is the mth edge of F;, 1 < I,m < g/2,
l#m,1<t<g-1,{i,j}isthekthedgeof E,1 < k < v(v—1)/2}. Then
(Upes€8) U(U;cx Bi) U A is the block set of an LGDD(g, v, K U {4}, 3)
with rows X x {i},i € Z,, columns {j} x Z,,j € X. 0

Lemma 2.9 There ezists a BLGDD(6,5,4,3).

Proof. The BLGDD(S, 5, 4, 3) is constructed on Zsp with rows G; = {i+65:
J € Zs}, i € Zg and columns Gj; = {i+65 : i € Zg}, j € Zs. Developing the
following base blocks by (+6 mod 30) yield the block set of the required
design.

{0,7,14,21}, {0,7,15,20}, {0,7,16,26}, {0,7,17,27},
{0,7,22,29}, {0,7,23,28}, {0,8,13,22}, {0,8,15,25},
{0,8,16,19}, {0,8,17,28}, {0,8,21,20}, {0,8,23,27},
{0,9,13,23}, {0,9,14,25}, {0,9,16,29}, {0,9,17,19},
{0,9,20,28}, {0,9,22,26}, {0,10,13,26}, {0,10,14,23},
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{0,10,15,29},
{0,11,13,27},
{0,11,19,26},
{0,14, 19,29},
{0,16, 20,27},
{1,8,16,29},

{1,9,20,29},

{0,10,17,20},
{0,11,14, 28},
{0,11,20, 25},
{0,14,22,27},
{0,16,23, 25},
{1,8,21,28},

{1,9,23,26},

{0,10,19,27},
{0,11,15,22},
{0,13, 20,29},
{0,15,19, 28},
{0,17,21, 26},
{1,8,22,27},

{1,10, 14,29},

{0,10,21,25},
{0,11,16,21},
{0,13,21,28},
{0,15,23, 26},
{0,17,22,25},
{1,9,17,28},

{1,10,15,23},
{1,11,16,20},

{1,11,15,28},
{1,16,21, 26},
{2,10,17,27},

{1,10,17,21},
{1,14,23,27},
{2,9,16,23},

{1,11,14,22},
{1,15,22,26},
{2,9,17,22},

{1,17,20,27},
{2,11,16,27}

0

Begin with a design in Example 3.22 (3] and delete its two blocks of size
n, we get a CLGDD(n, 2,4, 3).
Lemma 2.10 [3] For any even integer n > 4, there exists a CLGDD(n,2,
4,3).

Lemma 2.11 There ezists a CLGDD(6,3, {4,6},3).

Proof. The CLGDD(6, 3, {4, 6}, 3) is constructed on Z;g with rows G; =
{i+6j:j € Zs}, i € Zg and columns G} = {i+6j : i € Zg}, j € Za.
Developing the following base blocks by (+6 mod 18) yield the block set of
the required design.

{0,1,8,9,16,17},  {0,2,7,10,15,17}, {0,3,7,11,14,16},
{0,4,8,11,13,15}, {0,5,9,10,13,14}, {0,1,10,11},
{0,1,14,15}, {0,2,9,11}, {0,2,13,16},
{0,3,8,10}, {0,3,13,17}, {0,4,7,9},
{0,4,14,17}, {0,5,7,8}, {0,5,15,16},
{1,2,9,10}, {1,3,8,11}, {1,4,15,17},
{1,5,14,16}, {2,3,16,17}

Lemma 2.12 There exists an LGDD(4,7,4,3).

Proof. The LGDD(4, 7,4,3) is constructed on Zag with rows G; = {i+4j :
j € Z7}, i € Z4 and columns G = {i+4j : i € Zs}, j € Z7. Developing the
following base blocks by (+4 mod 28) yield the block set of the required
design.

{0,1,14,15},
{0,2,5,7},

{0,2,21,23},
{0,3,13,14},

{0,1,10,11},
{0,1,26,27},
{0,2,17,19},
{0,3,9,10},

{0,1,2,3},
{0,1,18,19},
{0,2,9,11},
{0,2,25,27},

{0,1,6,7},
{0,1,22,23},
{0,2,13,15},
{0,3,5,6},

294



{0,3,17,18}, {0,3,21,26}, {0,3,22,25}, {0,5,10,19},
{0,5,11,22},  {0,5,14,23}, {0,5,15,26}, {0,5,18,27},
{0,6,9,27},  {0,6,11,13}, {0,6,15,17}, {0,6,19,21},
{0,6,23,25}, {0,7,9,14},  {0,7,10,21}, {0,7,13,18},
{0,7,17,22}, {0,7,25,26}, {0,9,15,22}, {0,9,18,23},
{0,9,19,26}, {0,10,13,27}, {0,10,15,25}, <{0,10,17,23},
{0,11,14,21}, {0,11,17,26}, {0,11,18,25}, {0,13,19,22},
{0,13,23,26}, {0,14,17,27}, {0,14,19,25}, {0,15,18,21},
{0,21,22,27}.

il

From Lemma 2.4, Lemma 2.7 and Lemma 2.12 we have the following
result.

Lemma 2.13 For any positive integer g, there ezists an LGDD(4, g, 4, 3).

Since S(3, K,v) is an LGDD(», 1, K, 3), we have the following result
from Theorem 1.2.

Lemma 2.14 Forn > 4 andn = 0(mod 2), there exrists an LGDD(n, 1, {4,
6},3).

Lemma 2.15 If there ezists an S(3, K|, g) which contains a subdesign S(2,
K',g), where the block sizes of subdesign from K’ C K and others come
from K\ K'. If there exists a BLGDD(n,k,K",3) for every k € K \
K’ and a CLGDD(n,k',K",3) for every k' € K', then there ezists a
CLGDD(n,g,K",3). Furthermore, if there ezists an S(3, K",n), then there
exists an LGDD(n, g, K", 3).

Proof. Let (X, B) be an §(3, K, g) which contained a subdesign S(2, K", g)
(X,A). X =12, |A|€ K'if A€ A, |B| € K\K' if B € B\\A. For every
block B € A, |B| = k', construct a CLGDD(n,k’, K”,3) on B x Z, by
rows {B x {i}}, i € Z, and columns {{z} x Z,}, € B. We denote its

block set by Cg.
For every block B € B\ A, |B| = k,construct a BLGDD(n, k, K", 3) on

B x Z,, with rows {B x {i}}, i € Z, and columns {{z} x Z,}, z € B and
denote its block set by Dp.
Then (Zg x Zn,(UpeaC8) U(Upep 4 PB)) is a CLGDD(n, g, K", 3)
with groups G; = {Z, x {i}}, i € Z,, and columns G} = {5} x Zn,j € Z,.
For Y = Z,, let (Y,£) is a S(3,K",n). Then (Zg x Zn,({UgeaCs)U
(Upes\aPB)U{{k} x B : k € Zg, B € £}) is an LGDD(n, g, K", 3) with
rows G; = {Zg x {i}}, i € Z, and columns G} = {{j} x Z,},j €Z,. [
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3 Main Result

In this section, we will discuss the existence of LGDD(n,g, {4,6},3). We
first give the special case when the block size is four.

Lemma 3.1 Let g be a positive integer. There ezxists an LGDD(n, g, 4, 3)
for n = 2,4(mod 6).

Proof. For a point set X, |X]| = n, let (X,G,B) be an LGDD(n, 1,4, 3).
Apply Theorem 2.2 with an LGDD(4, 9,4, 3) from Lemma 2.13 to obtain
the desired design. |

Lemma 3.2 There exist an LGDD(6, g,{4,6},3) for g = 1(mod 2).

Proof. Let (X U {co},B) be an S(3,{4,6},g + 1) in Theorem 1.2, where
|X| = g = 1(mod 2). Let A= {B:B € B,oo ¢ B}, A' = {B\ {oo}:
B € B,o € B}, then (X, AU A’) is an S(3, {3,4,5,6}, g) which contained
a subdesign S(2, {3,5},9) (X, A’) and for every block B € A, |B| =4 or 6.

From Lemma 2.3 and Lemma 2.7 to get a BLGDD(6,m, {4,6},3) for
m = 4,6. From Lemma 2.11, Lemma 2.4 and Lemma 2.9 to get a CLGDD(6,
n,{4,6},3) for n = 3,5. Apply Lemma 2.15 with an 5(3, {3,4,5,6}, g) and
the designs above, we obtain the desired design. 0

Lemma 3.3 There exists an LGDD(6, g, {4,6},3) for g = 0(mod 2).

Proof. For the case g = 2, begin with a CLGDD(6,2,4,3), add the two
columns as two new blocks, we get an LGDD(6, 2, {4, 6}, 3).

For g > 4 and g = 0(mod 2), apply Lemma 2.8 with S(3, {4,6},g) in
Theorem 1.2 we obtain the desired design. We need a BLGDD(k, g, {4, 6}, 3)
for k = 4,6 and an S(3, {4,6},6) as input design, the formers come from
Lemma 2.7 and Lemma 2.3 the latter comes from Theorem 1.2 . 0

Lemma 3.4 Let g be a positive integer. There exists an LGDD(n, g, {4,

6},3) for n = 0(mod 6).

Proof. For a point set X, |X| = n and n = 0(mod 6), let (X,G,B) be

an LGDD(n, 1, {4, 6}, 3) which exists by Lemma 2.14. Apply Theorem 2.2

with an LGDD(4, g,4,3) from Lemma 2.7 and LGDD(6, g, {4, 6}, 3) from

Lemma 3.2 and Lemma 3.3, we obtain the desired design. 0
Combining Lemma 3.1 and Lemma 3.4, we have established the follow-

ing result.

Theorem 3.5 Let g be a positive integer. There exists an LGDD(n, g, {4,

6},3) if and only if n > 4 and n = 0(mod 2).
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