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Abstract

A graph G is a (t,r)-regular graph if every collection of ¢ independent
vertices is collectively adjacent to exactly r vertices. Let p,s, and m be
positive integers, where m > 2 and let G be a (2,r)-regular graph. If
n is sufficiently large, then G is isomorphic to G = K, + mK,, where
2(p—1) +s =r. A nested (2,r)-regular graph is constructed by replacing
selected cliques in a (2,7)-regular graph with a (2,7)-regular graph and
joining the vertices of the peripheral cliques. We examine the network
properties such as the average path length, clustering coefficient, and the
spectrum of these nested graphs.

1 Introduction

1.1 Small World Graphs

The concept of a small-world network describes the network property that,
despite the network being large in size, in most cases there is a relatively
short path between any two vertices. The most popular appearance in the
literature is the“six degrees of separation” concept which was studied by
the psychologist Stanley Milgram [9]. The idea behind the six degrees of
separation is that every person in the world can be linked by acquaintance
to another through at most five individuals. The formal notion of small-
world networks was introduced in the 1998 paper, Collective dynamics of
‘small-world’ networks, by Strogatz and Watts [13). These small-world net-
works tend to have dense subgraphs which they call clusters. The clusters
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are generally sparsely joined, yet the network still has a low average path
length. They defined two network measures to quantify these properties,
the clustering coefficient and the average path length. The clustering coef-
ficient is defined as follows. Given a vertex v has k, neighbors; then there
are at most k,(k, —1)/2 edges that can exist between them. Let C, denote
the fraction of these allowable edges that actually exist. Define the cluster-
ing coefficient C as the average of C, over all v. Note that the clustering
coefficient of a complete graph is equal to one and the clustering coefficient
of a path is zero. In particular, the clustering coefficient lies in the range
from zero to one [10].The average path length, L, is defined as the number
of edges in the shortest path between two vertices, averaged over all pairs
of vertices [13].

Researchers, including Strogatz and Watts and later Albert and Barabdsi
(1], have shown that naturally occurring networks such as the power grid of
the western United States [13] or social networks are examples of the small-
world phenomena. Small-world networks have been found to be generic for
many large, sparse networks found in nature. A few examples are the neural
network of the worm Caenorhabditis elegans and the short-term memory
circuits between neurons [11].

1.2 Pseudofractals and Hierarchical Graphs

Barabési, Erzébet Ravasz, and Tamés Vicsek introduced a deterministic
algorithm to construct small-world networks [3]. The construction of such
networks follows a hierarchical rule, where each iteration uses components
that are created in previous steps. The construction can be described as
follows. Let G = K;. In the next iteration, add two vertices and connect
them to the initial vertex so that we now have constructed a P;. In the
next step, add two more copies of a P; and connect the mid-point of the
initial P; with the outer vertices of the two new Pi’s. This construction
can be continued indefinitely. The Figure 3 is an example of a hierarchical
network using this algorithm [12].

The pseudofractal is another example of a deterministic graph construe-
tion, which has been proposed by S. N. Dorogovstev, et al. to model the
growth of scale-free networks [4]. The graph is constructed in a similar
manner to that of the hierarchical graphs. The graph grows at each step by
connecting together three copies of the graph in the previous step. Figure
2 gives an example of one such graph [12].

1.3 (t,r)- regular Graphs

The join G = G + G2, sometimes denoted G = G1V/ G2, has V(G) =
V(G1) U V(Gz) and E(G) = E(G1) U E(G2) U {uwv|u € V(G1) and v €
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n=2

Figure 1: Hierarchical Network

Figure 2: Pseudofractal Graph

V(Ga)}.

A graph G is (t,r)-regular if every collection of ¢ independent vertices is
collectively adjacent to exactly r vertices. An r-regular graph is therefore
a (1,7)-regular graph. In a 1996 paper by R. Faudree and D. Knisley the
characterization of large (2, r)-regular graphs was given [5).

Theorem 1.1 Letr, s, and p be nonnegative integers and let G be a (2, T)-
regular graph of order n. If n is sufficiently large, then G is isomorphic to
K, +mKp where 2(p— 1) + s =r. There are ezactly | =L | such graphs.

Figure 3 is an example of a (2, 6)-regular graph.

Jamison and Johnson found that this characterization does not hold for
t > 3, but the structure of such graphs is very similar to the case when t = 2
if the order of the graph is sufficiently large [6]. In particular, given the
(2,7)-regular graph is of the form K, +mKp, they denote the central clique
with s vertices to be the Kernel of the graph and the m peripheral cliques
to be the Shell. They show that when ¢ > 3, the kernel has independence
number no greater than ¢ — 1 and the shell is still a collection of disjoint
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Figure 3: a (2,6)-regular graph (Ks + 2K;)

cliques that are mostly joined to the kernel [6].
The (3, 7)-regular graphs were studied by Laffin [8].

2 Nested (2,r)-regular graphs

Recall that the clustering coefficient of a graph ranges from zero to one.
In general, a sparse graph is small-world if the clustering coefficient is high
and the average path length is low. We find that the (2, r)-regular graphs
have a high clustering coefficient and short average path length, but they
are not sparse.

Motivated by the work on pseudofractal [3] and hierarchical graphs [4],
we developed a method to reduce the number of edges in (2,7)-regular
graphs while maintaining the high clustering coefficient and short aver-
age path length properties. In our construction we applied the technique
of ‘nesting’ or replacing specific cliques of the graph with another (2,7')-
regular graph of the same order as the clique and only joining the vertices
of the peripheral cliques. In this section we define the nested ‘s’ and nested

‘p’ graphs.

2.1 Nested ‘s’ Graphs

For a nested ‘s’ graph we replace the center clique, K, with a (2, 7')-regular
graph of the form G; = K, + m1K,,. In the formula n = s + mp where
8 = 81 +m;p; so that we obtain n = s; + m1p1 +mp. The nested ‘s’ graph
is now of the form G, = (K,, |UmKp) + m1Kp,. Figure 4 is the general
form of the nested ‘s’ graphs.

Consider for example the (2,10)-regular graph G in Figure 5 and the
nested graph Gg in Figure 6 where the K is replaced with a K + 4K;.
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Figure 5: (2, 10)-regular graph

2.2 Nested ‘p’

For a nested ‘p’ graph we replace the peripheral cliques, K,’s, with (2,7')-
regular graphs of the form G, = K, + m1 K,,. In the formula n = s + mp
where p = 51 +m;p; we obtain n = s+m(s; +m;p;). The nested ‘p’ graph
is now of the form G, = (K, | Um1Kp,) + m(K,,). Figure 7 is the general
form of the nested ‘p’ graphs.

3 Network Properties

The clustering coefficient and average path length of (2,r)-regular graphs
have been previously studied. Knisley et al. proved the following result for

(2,r)-regular graphs [7).
Theorem 3.1 Let s, m, and p be nonnegative integers and let r = 2(p —

1) +s. Let G be a (2,7)-regular graph of the form K, + mKp. If s and p
are fized constants and m — oo, then L —» 2 and C — 1.
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Figure 6: Gg nested s graph

In the proof of this theorem, the generalized formulas for the average
path length and clustering coefficients of the (2,r)-regular graph were de-
termined. They found the average path length to be

_ (3) + smp+m(5) +2(("}) - m(5)]

L= m;
)

and the clustering coefficient as
a=-1 ml —
s (( 31)+m(3)+ma(s 1)) +mp
c .

(l+";P’1)
s+mp

We give the corresponding values for the nested (2, r)-regular graphs in
the following sections.

3.1 Average Path Length of nested (2, r)-regular Graphs
Theorem 3.2 The average path length of o nested ‘s’ graph is
72(3) +7(3) +simp

(2)
Proof: Since the diameter of the graph is 2, the only possible paths are
those of length 1 and length 2. The total number of paths of length one
are the total number of edges in the graph, therefore there are P, = (’;) +
my (%) +m(8) + symipy + mipymp. By definition of average path length,
we found that the total number of paths of length 2 are P, = (g) - P,.
Average path length, for graphs of diameter 2, is defined as follows

P, +2P,

[=11=2

)

L=1+
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Figure 7: General form of a Nested ‘p’ graph

By substituting in our P; and P,, we obtain the following

(3) +m (’2) + m(g) + symupy + mypymp
(2)
+ AG) - G) +m(B) +m) + simaps +mipimp)
() '

Which reduces to

L

(2) +P2(3) +P3("3) + simp
(2)
Thus the average path length of a nested ‘s’ is
P2(3) +p3("3) + simp
7 -0
(2)
Theorem 3.3 The average path length of a nested ‘p’ graph is
L =14 (B)Usimup +381) +p3("F") + smsy.

2
Proof: The diameter of a nested ‘p’ graph is 4, and the only possible
paths are of length 1, 2, 3, and 4. The total number of paths of length 1

L=

L=1+
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are P, = (3) + m(%) + mmi(%) + msymip; 4+ smmypy, paths of length
2 P, = sms; + p3(™3"), paths of length 3 P; = m2symp) — msymip;
and paths of length 4 P; = s2(7). The average path length, for graphs of
diameter 4, is defined as follows

Py +2P, +3P; + 4P,
(2)
By substituting and simplifying we obtain the following
L = )+ () (Usymapy + 3s}) + pR("F") + smay
(2)
Therefore the average path length of a nested ‘p’ graph is
- (3)(dsymipy + 3s2) + p (™) + smsy -
(2)
3.2 Clustering Coefficient of nested (2, 7)-regular Graphs

By the structure of the nested ‘s’ graph, there are only three distinct values

for the clustering coefficients of the vertices. Let C,, denote the set of vertices
my (1)~ Gm-n (77

L=

L=

whose clustering coefficient is Cy = R , C,, denote the
2
H . . . P1=1+PY_(m—-1){P1? P1—1-
set of vertices whose clustering coefficient is Cy = m(5") (f,T_, +),(l +3"—,é—i
2

and C, denote the set of vertices whose clustering coefficient is Cyw =

ma (P75 ) —(m=1)(°7")
(P—1+2""1P1) *

Theorem 3.4 The clustering coefficient of a nested ‘s’ graph is
Cy) + mip1(Cv) + mp(Cw)
81 +mpr +mp '
Proof: The clustering coefficient of the graph is defined as the sum of

the clustering coefficients of the vertices in the graph divided by the total
number of vertices in the graph. Therefore, the clustering coefficient of a

nested ‘s’ graph is

C=81(

_ 51(Cy) + mup (Cv) + mp(Cw) -
s1 +mip1 + mp )
By the structure of the nested ‘p’ graph, there are only three distinct val-

ues for the clustering coefficients of the vertices. Let C, denote the set of ver-
mm, ("‘;”1)—(mm1—1)(";1) C. de-
1 v

c

tices whose clustering coefficient is Cy = (D)
note the set of vertices whose clustering coefficient is Cy = () ) (
vV = (pl = l-2lﬁ+alj
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and C, denote the set of vertices whose clustering coefficient is Cyw =
mel'””‘) (mx—l)("")

(81 "H""IPI)

Theorem 3.5 The clustering coefficient of a nested ‘p’ graph s

$(Cu) + mmip1(Cv) + ms1(Cw)
s+ ms; +mmip

Proof: The clustering coefficient of the graph is defined as the sum of the
clustering coeflicients of the graph divided by the total number of vertices
in the graph. Therefore, using the counting arguments for Cy, Cy, and
Cw defined above, we obtain the clustering coefficient of a nested ‘p’ graph
as

C=

s(Cy) + mm1py(Cv) + m81(C'w)

C=
s+ msy +mmp,

4 Spectral Properties of (2,r)-regular Graphs
and Nested ‘s’ Graphs

The Laplacian Matrix of a graph G is defined as
L(G)=D-A

where D is the diagonal matrix whose diagonal consists of the degrees of
the vertices, and A is the adjacency matrix of G. The Laplacian of a (2,7)-
regular graph, of the form K, + mKp, is given by

C | 1T
P 0 -0
L=)-1{0 P :
O |
0 0 P

where —1 represents the mp x s matrix in which every entry is —1 and the
matrices C and P are of the form
n—-1 -1 ... =1 g -1 - -1
c=| "1 n-1 " 1 p_|-1 g "
: . . A . . . —1 E . . . . . . —1
s T | I R
with n = s+ mp and ¢ = p + s — 1. The eigenvalues and eigenvectors of L
have a distinctive pattern derived in large part from the fact that K, +mK,

is the join of K, with the disjoint union of m copies of K, In partxcular,
the eigenvalues of L follow immediately from the followmg (14, 15]:
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Theorem 4.1 Let G = Gy + G2 be the join of two graphs Gy and Gy. If
n; is the number of vertices of G;,j = 1,2, then the eigenvalues Ai(G), =
1,...,|V(G)| of L(G) are 0; ny + nz; ng + Ai((G1), 1 £ i < ny; and
n1+/\,-(G'2),1 <i< ng.

The eigenvectors, similarly, follow from a close analogue of the theorem
above. However, before doing so, we need to clarify what we mean by the
Laplacian of a subgraph.

Definition 4.2 If S is a subgraph of a graph G, then L.(S) is the trivial
extension of the Laplacian of S to the same order as L(G). Namely, L.(S)
is the Laplacian of S union |G| — |S| isolated vertices of degree 0.

This leads to the following lemma:

Lemma 4.3 Let G be either the disjoint union or the join of two graphs
G, and G3. Then L(G) commutes with Le (G;),j = 1,2, and as a result,
v is an eigenvector of L(G) only if v is an eigenvector of either L. (G,) or
L. (G3). Moreover, eigenvectors of L. (G1) are orthogonal to eigenvectors

of Le (G2).
Proof: The graphs L. (G:),j = 1,2 are of the form

L@ =Y 3], L@=[0 L@y]

Commutativity follows by direct calculation, and the eigenvector properties
are well-known consequences of commutativity. g

In part, the lemma is based on the idea that if two symmetric matrices
commute, then they are simultaneously diagonalized. Since K,+mKj is the
join of a complete graph with a disjoint union of complete graphs, the eigen-
value problem is reduced to that of finding eigenvalues and eigenvectors of
L. (K,) and L. (K), respectively. However, the eigenspace decomposition
of L (Ky) for any n € Z* is characterized by a 1-dimensional eigenspace of
the eigenvalue 0 and an n — 1 dimensional eigenspace of the eigenvalue n.
This leads to the following theorem.

Theorem 4.4 The eigenvalues of the Laplacian L of a K, +mKp are
o \; = 0 with multiplicity 1
e )y = s with multiplicity m — 1
e \3 = p+ s with multiplicity m(p — 1)

o Ay = n with multiplicity s.
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Proof: The eigenvalues are a direct consequence of the theorem in [14].
The multiplicities of the eigenvalues are a direct consequence of the lemma
and the observations immediately thereafter. g

The eigenvectors and eigenspace decomposition of L are no less inter-
esting. In particular, L is diagonalized by the direct sum of the mutually
orthogonal eigenspaces of the complete graphs used to define it. Moreover,
the eigenspaces of non-zero eigenvalues of the Laplacian of a complete graph
are spanned by vectors in which the sum of the coefficients is 0.

5 Conclusion

In this work we develop algorithms to reduce the number of edges in a (2, r)-
regular graph using a nested graph approach and calculate the clustering
coefficients and average path lengths of these graphs. We then investigate
the Laplacian Matrices of the (2,7)-regular graphs. We were successful in
finding a general form of the eigenvalues of canonical (2, 7)-regular graphs.
We have left the door open for further research into spectral properties of
nested graphs. Some open problems which came out of this research are:

e Determine the Laplacian of the two remaining nested graphs.

e Find the general form of the set of eigenvalues of each of the nested
graphs.

o Define an algorithm to grow a nested graph and examine the scale-free

properties of the resulting graphs.

We have introduced a novel method to construct graphs with desirable
network properties. In keeping with the Open Problems theme of the 25th
Cumberland Conference on Combinatorics, Graph Theory and Computing,
we also provide a number of open problems with respect to this method.
We expect that these graphs will be of interest to those working in the field
of networks and spectral graph theory.

References

(1] Barabési, A-L. and Albert, R., “Emergence of Scaling in Random Net-
works,” Science 286, 509-512, 1999.

[2] Barabisi, A-L. and Albert, R., “Statistical mechanics of complex net-
works,” Reviews of Modern Physics T4, 47-97, 2002.

(3] Barabési, A-L., Ravasz, E. and Vicsek, T., “Deterministic scale-free
networks,” Physica A 299, 559-564, 2001.

37



[4] Dorogovstev, S. N., Goltsev, A. V., and Mendes, J. F. F., “Psuedofrac-
tal Scale-free Web,” Phys. Rev. E 65, 066122 1-4, 2002,

[5] Faudree, R. and Knisley, D., “The Characterization of Large (2,r)-
regular Graphs,” Congressus Numerantium 121, 105-108, 1996.

[6] Jamison, R.E. and Johnson, P.D., “The structure of (t,r)-regular
graphs of large order,” Discrete Mathematics 272, 297-300, 2003.

[7) Knisley, D., Knisley, J., and Williams, D., “Network Properties of
(t,r)-regular graphs for small ¢, International Conference on The-
oretical and Mathematical Foundations of Computer Science, 54-58,
2008.

[8] Laffin, Melanie., (FIXED BLOCK CONFIGURATION GDDs
WITH BLOCK SIZE 6 AND (8, r)-REGULAR GRAPHS,
http://services.lib.mtu.edu/etd/THESIS /2011 /Math/lafinm/thesis.pdf

[9] Milgram, Stanley., “The small-world problem”. Psychology Today 2,
60-67, 1967.

(10] Newman, M. E. J.,Networks: An Introduction, Oxford University Press
INc., New York (2010).

[11] Pegg, Ed Jr., “Small World Network.” From MathWorld-A Wolfram
Web Resource, created by Eric W. Weisstein.

[12] Przulj, Natasa, Knowledge Discovery in Proteomics: Graph Theory
Analysis of Protein-Protein Interactions, Jan. 3, 2005.

[13] Watts, D. and S. Strogatz, “Collective dynamics of ‘small-world’ net-
works,” Nature 393, 440-442, 1998.

[14] Merris, R. Laplacian Matrices of Graphs: A Survey, LINEAR ALGE-
BRA AND ITS APPLICATIONS 197,198:143-176 (1994).

(15] Crone, R. and R. Merris, Coalescence, majorization, edge valuations
and the Laplacian spectra of graphs,Linear and Multilinear Algebra
27:139-146 (1990).

38



