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Abstract

A cyclic base ordering of a connected graph G is a cyclic ordering
of E(G) such that every |V (G)—1| cyclically consecutive edges form a
spanning tree of G. Let G be a graph with E(G) # 0 and w(G) denote
the number of components in G. The invariants d(G) and ~(G) are
respectively defined as d(G) = rri5{Llz and 7(G) = max{d(H)},
where H runs over all subgraphs of G with E(H) # 0. A graph G
is uniformly dense if d(G) = v(G). Kajitani et al. [8] conjectured in
1988 that a connected graph G has a cyclic base ordering if and only
if G is uniformly dense. In this paper, we show that this conjecture
holds for some classes of uniformly dense graphs.

Key words: cyclic base ordering, cyclic ordering, uniformly dense graphs, uni-

formly dense matroids

1 Introduction

We consider finite loopless graphs with possible multiple edges, and follow
[2] for undefined notations and terminology. In particular, w(G) denotes
the number of components of a graph G.
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Let G be a nontrivial graph (that is E(G) # 0). Following the termi-
nology in [5] or [4], d(G) and «y(G) are respectively defined as

|E(G)I

4C) = o - wic)

and ¥(G) = max{d(H)},

where H runs over all nontrivial subgraphs of G.

As in (5], a graph G satisfying d(G) = 7(G) is said to be uniformly
dense.

A cyclic base ordering of a connected graph G is a cyclic ordering
of E(G) such that every |V(G)| — 1 cyclically consecutive edges form a
spanning tree of G.

Kajitani et al. [8] posed the following cyclic base ordering conjecture.

Conjecture 1.1. (Kajitani et al. [8]) A connected graph G has a cyclic
base ordering if and only if G is uniformly dense.

Actually, they proved the necessity of the conjecture.

Theorem 1.1. (Kajitani et al. [8]) For a connected graph G, if G has a
cyclic base ordering, then G is uniformly dense.

For the sufficiency, they were able to prove the following special cases.

Theorem 1.2. (Kajitani et al. [8]) The following graphs have cyclic base
orderings.

(i) Any uniformly dense simple connected graph with at most 5 vertices.
(i) Any graph consisting of two disjoint spanning trees.

(iii) Any complete graph.

(iv) Any 2-tree (See the definition in Section 5).

In this paper, we shall show that Conjecture 1.1 holds for several classes
of graphs, including complete bipartite graphs, k-maximal graphs (See the
definition in Section 4) and 3-trees (See the definition in Section 5). These
provide with further evidence, in addition to Theorem 1.2, to support con-
jecture 1.1.

In next section, some properties of uniformly dense graphs will be intro-
duced. In the subsequent sections, we will investigate cyclic base orderings



in some classes of uniformly dense graphs. In the last section, we will intro-
duce the matroid version of the cyclic base ordering conjecture and some
former results for matroids.

2 TUniformly dense graphs

Let G be a nontrivial graph. Recall that d(G) = TW%:{%:‘@Y and y(G) =
max{d(H)} where H runs over all nontrivial subgraphs of G. If d(G) =
Y(G), then G is uniformly dense. Following the terminology in [5], we

further define 7(G) = min ﬁﬂ@ Let 7(G) be the maximum number
of edge-disjoint spanning trees in a graph G. If E(G) = @, we define
7(G) = co. A fundamental theorem of Nash-Williams [11] and Tutte [14]
implies the following. (See also Catlin et al. [5])

Theorem 2.1. (Nash-Williams [11] and Tutte [14]) For a connected graph
G, 7(G) = |n(G)J.
From the definition of d(G), 7(G) and v(G), we immediately have, for
any nontrivial graph G,
7(G) < d(G) < 7(G).

Theorem 2.2. (Catlin et al. [5]) The following are equivalent for a non-
trivial graph G.

(1) d(G) = 7(G).

(#) n(G) = d(G).

(i) 7(G) = ¥(G).

3 Cyclic base ordering in complete bipartite

graphs

Theorem 3.1 is the main result in this section. Let G be a complete bipartite
graph K, , with bipartition (X,Y’) such that |X| = m and |Y| = n. We
will give E(G) an ordering and prove that it is a cyclic base ordering.
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Figure 1: Examples of cyclic base ordering in complete bipartite graphs

Suppose that X = {a1,a2,**+,am-1,a0} and Y = {b1,ba,- - -, bp_1, bo}.
Let k=ged(m,n)~land = a%}‘n’—n;.

Let O = (e1,e2," " *,emn) be an ordering of edges in G such that e; =
asbey; where s=i (modm)andt=i (modn)forl <s<m-1and
1<t<n-1 whenjl+1<i< (j+1)lforj=0,1,2,- -,k In particular,
(8) If m = n, then k = m — 1 and | = m. For example, when m =
n= 3, 0= (albl,azbz,aobo,albg,agbo,aobl,albo,agbl,aobz), as shown in
Figure 1(a).

(b) If m and n are coprime, i.e., ged(m,n) = 1, then k = 0 and | = mn.
Then @ = (e;)P" such that e; = a,b. As shown in Figure 1(b), when

m=4and n=3,
O = (a1b1, azbs, asbo, agby, a1bz, azbg, asbi, aobz, a1bo, a2y, asbz, aobo).
We will prove that O is a cyclic base ordering of G.

Theorem 3.1. Every complete bipartite graph has a cyclic base ordering.
Furthermore, © is a cyclic base ordering of G.

Proof: Let S be the set of any cyclically consecutive m + n — 1 elements
of @. We need to show that G[S] is a spanning tree of G. Since G[S] is a
spanning subgraph with m + n — 1 edges and m + n vertices, it suffices to
show that G[S] is connected.

We assume that S = {e;,€i+1, ") €m+n+i-2} (mod mn) for some .
We use (mod mn) for a set to mean that the subscript of each element in
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Figure 2: Any cyclically consecutive m + n — 1 elements in @

the set is modulo mn. By the definition of O, we suppose that
S = {asbt, @s41be41, +, Gopm-1bt4m=-1,8ebe11, ", Gopr2biin_1}.

Without loss of generality, we may assume that m > n. If m = n, then
G[S] is a path biasbe1Gs41 - - @spm—1bt4m—1 as shown in Figure 2(a}), and
thus is a spanning tree in G.

If m is a multiple of n, i.e., m = pn. Let S’ be the subset consist
of the first m elements of S. Then G[S’] has n components and each
component is a star centered at b; for i =t,t+1,---,t+n -1 (mod n),
as shown in Figure 2(b). Let G;, Giy1, - -, Ge4n—1 denote the components.
The edge a,bi41 is between G; and Giy1, Gy41biq2 is between Gpyy and
Gi+2. In general, a,4ibiy14: € S\S' is between Giy; and G4 for i =
0,1,---,n—2. Thus G[S] is connected, whence is a spanning tree in G.

The last case is m = pn + ¢ where 1 < ¢ < m. Let S’ be the subset
containing the first m elements of S. Then G[S’] has n components and
each component is a star centered at b; fori =¢,t+1,.--,t+n—1 (mod n),
which is similar to the case of m = pn. Let G;,G¢y1,- - ,Gt+n—1 denote
the components. The edge a,b;.4 is between G, and Giig) Qst1bryqer is
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between Gt1 and Giyq41. In general, a,qibiqqsi € S\S' is between Geys
and Gyqgqi for i = 0,1,--+,n — 2. Thus G[S] is connected, whence it is a

spanning tree in G. (]

4 Cyclic base orderings in k-maximal graphs

Throughout this section, a graph G always means a multigraph and k
denotes a positive integer. Theorem 4.3 is the main result in this section.

Let G be connected and x(G) = max{«'(H) : H is a subgraph of G}.
Mader in [10] first introduced k-maximal graphs. A graph G is k-maximal
if ¥'(G) < k but for any edge e € E(G), /(G +€) > k + 1. We shall point
out that there is a big difference between k-maximal simple graphs and
k-maximal multigraphs. What we talk about here are k-maximal multi-
graphs, and Lemma 4.2 gives a structural characterization of a k-maximal
multigraph. For the structure of a k-maximal simple graph, please refer to
Mader [10] and Lai [9].

Let G; and G be connected graphs such that V(G1)NV(G2) = 0. Let
K be a set of k edges each of which has one vertex in V(G1) and the other
vertex in V(G2). The K-edge-join Gy *x G is defined to be the graph
with vertex set V(G;)UV (G2) and edge set E(G1)UE(Gz)UK. When the
set K is not emphasized, we use G *; G2 for Gy *k Ga, and refer G) * G,
as a k-edge-join.

Let Gx be a family of graphs such that for any G1,Ga € GrU{K1},G1*x
G2 € Gk.
Lemma 4.1. (Gu et al. [6]) Let G be a k-mazimal graph with |[V(G)| = n.
Then |E(G)| = k(n — 1).
Lemma 4.2. (Gu et al. [6]) A connected graph G is k-mazimal if and only
ifG € Gk.

Theorem 4.3. Any k-mazimal graph G has a cyclic base ordering.

Proof: We will show it by induction on n = |V(G)|. By Lemma 4.1,
|E(G)| = k(n — 1). When n =2, by Lemma 4.2, G = kK3, the graph with
2 vertices and k multiple edges. Then any ordering of edges is a cyclic base



ordering. Now assume that the theorem holds for smaller values of n > 2.
By Lemma 4.2, G has an edge cut of size k denoted by K = {fi, f2,-- -, Ix}
and G = Gy *k G2. Then G; = Kj or G; € Gy for i = 1,2. Since n > 2,
at least one of G; and G is not K;. Without loss of generality, we may

assume that G; # K.
(i) G2 = Ki. By inductive hypothesis, G; has a cyclic base ordering,

denoted by
O = (e1,€2," ", €k(n-2))-

We construct an ordering of E(G) from @ by inserting f; between €i(n—2)
and €;(,_g)41 fori=1,2,--- k, and get

o= (elie2) oy eneg, flen-1, 1€2(n=2)» f2’e2(n—2)+ly *tt s Ch(n=2)y fk)'

Then O is a cyclic base ordering of G.

(ii) G2 # K1. Suppose that [V(G,)| = n; and |V(G;)| = ny. Fori = 1,2,
since 7(G;) = k, we have |E(G;)| = k(ni — 1). By inductive hypothesis, G;
has a cyclic base ordering denoted by

O1 = (e1,€2," "+, €k(ny-1))
and G3 has a cyclic base ordering denoted by
Oz = (1,3, 1 €k(ny-1))-
We will construct an ordering of |E(G)| from O; and @,. Let
Si = ((i-1)(n1~1)+1,"**» €i(ny =1)s fis efe—1)(n,-1)+1: Ty e;(n,—n)
fori=1,2,.--,k. And let
0 =(5,8,,Sk)
Then O’ is a cyclic base ordering of G. This completes the proof. DO

By Theorem 1.1 and Theorem 2.1, we have the following corollary.

Corollary 4.4. Every k-mazimal graph is o disjoint union of k edge-
disjoint spanning trees.
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5 Cyclic base orderings in 3-trees

Theorem 5.2 is the main result in this section. Let k be a positive integer.
A graph G is a k-tree if G = K4, or G has a vertex v such that G — v
is a k-tree and such that v is adjacent to all vertices in a clique of order k.
The clique is called an adjacent clique of v. By definition, every k-tree
can be constructed by starting with a complete graph Ki.1 and repeated
adding vertices in such a way that each added vertex has exactly k adjacent
vertices that form a clique. For example, 1-trees are trees. A k-tree is a
simple graph. k-trees are intrinsically related to treewidth, which is an
important parameter in the Robertson/Seymour theory of graph minors
and in algorithmic complexity, see [1,13].

Theorem 1.2 shows that any 2-tree has a cyclic base ordering. In this
section, we will construct a cyclic base ordering inductively in a 3-tree.

Let O be a cyclic base ordering of a 3-tree G with n vertices. Then there
are 3n — 6 elements in @. We divide these 3n — 6 elements into 3 ordered
groups. The first n—2 elements form group 1, the last n— 2 elements form
group 3 and all the other n — 2 elements form group 2. The three groups
are denoted by Sy, S, and S3, and O can be denoted as (S1, Sz, 53). Each
group can be regarded as a sub-ordering of O. Sometimes we also regard a
group as a set, which can be easily seen from the context.

Lemma 5.1. Let G be a 3-tree and C be a cycle in G. Suppose that
e € E(C). Then C — e contains two edges which are in a K.

Proof: We show it by induction on | = |E(C)|. If { = 3, then C = Kj,
done. Suppose that the statement holds for smaller value of { > 3. By
definition, a 3-tree can be constructed inductively by adding a new vertex
and three incident edges to a K3 from another K3. Thus there exists a
vertex © € V(C) such that the adjacent vertices u,uz of v in C must
be adjacent in G. Let edge ey = uu;, ea = uup and eg = ujus. Then
C'=C —e; — ex + e is a cycle in G with |V(C’)| < ! and e, e3,€p form
another cycle C” = K. By inductive hypothesis, for any e € E(C), C —e
contains two edges which are in a Kj. O



(a) 3-tree with n =4 (b) Induction for 3-tree

Figure 3: Cyclic base orderings in 3-trees

Theorem 5.2. Any 3-tree has a cyclic base ordering.

Proof: We will prove a stronger statement by induction on n = [V(G)|.
A stronger statement: any 3-tree G has a cyclic base ordering © such
that edges in each K3 of G are in 3 different groups of O.

When n = 4, as shown in Figure 3(a), O = (e, ez,€3,€4,€5,€6) is a
cyclic base ordering in G such that edges of each K3 are in 3 different
groups. Now suppose that the statement holds for smaller value of n > 4.
Let v be a vertex in G and z;, z2, z3 are edges of the adjacent clique. The
incident edges of v in G are denoted by f1, f2 and f3 as shown in Figure 3(b).
The edges f1 and x; are called opposite edges. Similarly, fo and z3, f3
and z3 are two pairs of opposite edges. Let O,_; = (S}, S2,53) be a cyclic
base ordering of G — v by inductive hypothesis. By inductive hypothesis,
T1, T2 and z3 are in different groups. Without loss of generality, we may
assume that z; € §; for i = 1,2,3. Let O, = (Sy, f1, 52, f2, 53, f3). Then
S; = (S;, fi) is the group  of Oy, for i = 1,2,3, and edges in each K3 of G
are in 3 different groups O,,.

In order to show that O, is a cyclic base ordering of G, without loss of
generality, it suffices to show that edges in (f1, S3, f2) forms no cycles in G.
We argue it by contradiction and suppose that some edges form a cycle C.
By inductive hypothesis, C contains f; and fo. Then C = f; — fo+z3 is a
cycle in G —v. Since G — v is a 3-tree, by Lemma 5.1, there exist two edges
in C - f1 = fa € S3 which are in a K3. Then by inductive hypothesis, these
two edges are in different groups in O,, contrary to the fact that they are
in Sy, completing the proof. O
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Corollary 5.8. Every 3-tree is uniformly dense.

6 Closing remark

The original version of Conjecture 1.1 was for matroids. We will introduce
the matroid version in this section. Matroids are considered to be finite
and loopless, and undefined terms can be found in Oxley [12].

Let M be a matroid with rank funcion r and ground set E(M). For
any X C E(M) with 7(X) > 0, the density of X is defined by

_ Xl
dy(X) = "X

When the matroid M is understood from the context, we often omit

the subscript M. We also use d(M) for d(E(M)). Follow the terminology

in [5], the fractional arboricity (M) is defined as
(M) = max{d(X) : 7(X) > 0}.

As in [5], a matroid M satisfying d(M) = 7(M) is called uniformly
dense.

A cyclic base ordering of a matroid M is a cyclic ordering of E(M)
such that every (M) cyclically consecutive elements form a base of M.

Kajitani et al. [8] posed the following cyclic base ordering conjecture.

Conjecture 6.1. (Kajitani et al. [8]) A loopless matroid M has a cyclic
base ordering if and only if M is uniformly dense. :

Actually, they proved the necessity of the conjecture.

Theorem 6.1. (Kajitani et al. [8]) For a loopless matroid M, if M has a
cyclic base ordering, then M is uniformly dense.

Heuvel and Thomassé proved a special case when |E(M)| and r(M) are
relatively prime.
Theorem 6.2. (Heuvel and Thomassé [7]) Let M be a loopless matroid
with |[E(M)| and 7(M) are coprime. Then M has a cyclic base ordering if
and only if M is uniformly dense.



A matroid is sparse paving if each nonspanning circuit is a hyper-
plane. Recently, Bonin showed that Conjecture 6.1 holds for sparse paving
matroids, stated as a theorem below.

Theorem 6.3. (Bonin [3]) Conjecture 6.1 holds for sparse paving matroids.

We shall point out that Conjecture 6.1 is still open, and even the special
case for graphs, i.e., Conjecture 1.1, remains unsolved.
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