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Abstract
Let a set [n] = {1,2,...,n} be given. Finding a subset S of 2!
with minimum cardinality such that, for any two distinct elements
z,y € [n], there exists disjoint subsets Az, 4, € S such that z € A.,
y € Ay is called the eztremal set problem. In this paper, we define
the Extremal Set Decision(ESD) Problem and study its complexity.

Keywords: Extremal set, hash function, complexity

1 Introduction

The combinatorial problem ertremal set is defined in [1]. We first review
the definition of the extremal set problem: Let [n] = {1,2,...,n} be agiven
set. Find the minimum cardinality of a collection S of subsets of [n] such
that, for any two distinct elements z,y € [n] there exists A;, A, € S such
that

l.z€Aandyc A,
2. A;NAy = ¢

Such a set S is called a separating set of the given set [n).
The following theorem [1] gives a lower bound on the minimum cardi-

nality of separating set S C 2",

Theorem 1 Let f(n) denote the minimum cardinality of a separating set
S c2i?l. Then
3m if2x3™l<ng3m
fln)=¢3m+1 3™ <n<4x3m-?
3Im+2 ifdax3™l<cn<2x3™,
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Separating sets have application to geodetics in graph theory and perfect
hash families in data retrieval. Let G be a simple and unweighted graph.
The distance between two vertices %,v in G is the minimum number of
edges in a path joining the vertex u and the vertex v. Such a shortest
path, denoted by u — v, is called a geodesic. Set H(u,v) is defined to be
the set of all edges lying on some u — v geodesic of G. Let S be a subset
of vertex set V(G). A subset H(S) of edge set E(G) is defined to be
H(S) = U, ves H(x,v). A set S C V(G) is called an edge geodetic set if
H(S) = E(G). Edge geodetic number g.(G) of a given graph G is

9¢(G) = mingcv(c){|S| : S is an edge geodetic set of G}.

For a given simple graph G, obvious lower and upper bounds of the edge
geodetic number g.(G) are 2 and |V (G)|, respectively. The following theo-
rem (1] gives a lower bound of the edge geodetic number of a given graph
G. This lower bound is driven from the separating set of [w(G)], where
w(G) is the clique number of the graph G. For more on the edge geodetic
number, we refer the reader to [3].

Theorem 2 Ifw(G) is the clique number and g.(G) the edge geodetic num-
ber of G, then

9e(G) > [3logz w(G)].
Moreover, for any n there exists a graph G with w(G) = n that contains a
geodetic set with [3logs n] + € vertices, where ¢ is 0 or 1.

The second application is to construct perfect hash families [2]. A hash
function is a function h : {1,2,---,n} = {1,2,--- ,w}, where n > w. A
hash function A is said to be perfect on a subset X of {1,2,---,n} if h is
injective on X, i.e., if h|x is one-to-one. Perfect hash functions are useful
for the compact storage and fast retrieval of frequently used data, such as
reserved words in programming languages, command names in interactive
systems, etc. For more information about perfect hash functions readers
can consult the recent survey paper [5].

Let F = {h|h: {1,2,..,n} = {1,2,...,w}} be a set of hash functions.
F is called (n,w, k)- perfect hash family if there exists at least one h € F
such that h|x is one-to-one for any X C {1,2,..,n} with |X| = k. The
notation PHF(N; n,w, k) is used to denote an (n, w, k)-perfect hash family
with |F| = N.

Let S be a separating set of given set [n] with minimum cardinality f(n).
The following theorem [2] shows the existence of a perfect hash family 7
with certain values of w and k.

Theorem 3 Let n > 0 be given integer. Then there exist PHF(ﬂgll; n,3,2)
if2x 3™ 1 < n < 3™ or PHF([£);n,3,2) if 3™ <n <2x 3™
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2 Special Separating Sets

In this section, we study separating set S which has restrictions on its
elements. That is, the separating set S contains subsets of [n] with certain
-cardinalities. The following is an obvious observation.

Lemma 4 Let [n] = {1,2,3,...,n} be a given set and let S = {A C [n] :
|A] = 1} be a separating set of [n]. Then |S| = n.

Next, assume n = k X m, where 2 < k < m. We are interested in the
minimum cardinality of a separating set S of [n] = [k x m] with the following
property: S contains a specific partition of set [n] i.e. S contains B;’s such
that |B;| = m for all ¢, B; N B; = ¢ for any i # j, and Uf=1 B; =[n]. A
general description of such a separating set S can be given as

S={X,B;:|X|21,|Bi|=m, BiNB; = ¢ for any i # j, and
Uiy Bi = [n]}.

The following theorem gives the cardinality of such a separating set S C
2l

Theorem 5 Letn = k x m, where 2 < k < m and let S = {X,B; :
|X| 2 1,|Bi| =m, B; N\ B; = ¢ for any i # j, and Uf=1 B; = [n]}. Then
[S]=m+k.

Proof: First we construct a separating set S with cardinality at most m+k.
In order to construct such a separating set S; we construct a 0 — 1 matrix
D of size (m + k) x n, that is, D is (m+ k) x n matrix with 0 and 1 entries.
We convert the matrix D into the separating set S. Let I; be a m x m
identity(or permutation) matrix, ONE = [1,1,...,1] be 1 x m all 1’s matrix,
and ZERO = [0,0, ...,0] be 1 x m all 0’s matrix. Then we construct matrix
D of size (m + k) x n as follows:

I I Iy,
ONE | ZERO | ... | ZERO
D=|ZERO | ONE | ... | ZERO
ZERO | ZERO | ... | ONE

Example Let n =12 = 3 x 4. Then
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m columns, which contains sub matrix I;, of the matrix D is called block i.
So the above matrix D consists of k blocks. The set S is constructed from
the matrix D = (d; ;), where i = 1,2,...,m+k and j = 1,2, ...,n as follows:

S={A;:i=1,2,..,m+k}, where A; = {j : d;,; =1}.
Such a set S has m elements of size k and k elements of size m. That is

Ai={1,m+1,.,(k-1)m+1}
Ay ={2,m+2,(k—1)m+2}

Ap = {m,2m, ..., km}
Am+1 = {1,2, 3, ,m}
Amiz={m+1,m+2,..,2m}

Ampr = {(k—1)m +1,(k - 1)m +2,...,km}.

We show the construction of the set S by using the above example. 4, =
{1,5,9},42 = {2,6,10}, A3 = {3,7,11}, Aq = {4,8,12} As = {1,2,3,4},
Ag = {5,6,7,8}, and A7 = {9,10,11,12}. Hence S = {A1, Az, A3, A4, 45,
As, A7}

We now show that the set S, which is constructed from the matrix D,
is a separating set for [n] = [k x m]: Let z,y be two distinct elements of
[n). Then z,y correspond column indexes of the matrix D:

(i) If z,y are in same block, say they are in block i: Since J; is a per-
mutation matrix there are two rows, say r, s such that d,, = 1 and
dsy = 1in I;. Hence z € A, and y € 4, and obviously from the
construction A;’s, we have A, N A, = ¢.

(ii) If z,y are in two different blocks, that is, z in block i and y is in block
4: In this case, row z; of the i—th block and row y; of the j—th, where
z; # y; and m < z;,y; < m + k, contain sub matrix ONE. Hence
T € Ag,, y € Ay, and Az, N Ay, = ¢. Therefore & is a separating set

with cardinality m + k.
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We need to show that any separating set S with the given property must
have at least k + m elements in it. Let S be a such separating set. That
is, S contains partition Aj, Az, ..., Ak of [n] = [k x m], where |4;| = m for
i=12,..,k AiNA; = ¢ for any i # j, and U, A; = [n]. Without loss
of generality we can assume that A; = {z,%s,...,Z,}. Hence there must
be at least m elements, say B;’s, in S such that z; € B; and z; € B; for
J=2,3,..,msuch that ByNB; = ¢ for j = 2,3,...,m. Hence |S| > m+k.
O

3 Complexity of an Extremal Set Decision
Problem

In this section we first define the EXTREMAL SET DECISION PROBLEM and

study its complexity.

EXTREMAL SET DEcCIsiIoN PROBLEM (ESD):

INSTANCE : Set [n] = {1,2,...,n}, &' C 2["], and integer k.

QUESTION : Is there a § C 8’ with |S| = k such that, for any two distinct
elements z,y € [n], there exists disjoint subsets Az, Ay, € S such that
TE A, yE AN

Theorem 6 If S’ = 2" in EsD, then ESD has a polynomial solution.

Proof: Let [n] = {1,2,...,n} be a given set. Using Theorem 1 determine
the value of integer m. Then set N to be 3™ or 4 x 3™ ! or 2 x 3™, that
is, N =q1 X g2 X ... X g, where ¢; is 2 or 3 for i = 1,2,...,k. Then here is
the algorithm to construct a separating set S for [n].

ESD([N],01, 42, -+ k)

1. Construct N x k matrix M = (m;,_) as follows:
j=1
while(j < N)
for(iy =1 to q1)
for(iz = 1 to g2)
for(ix =1 to gx)
mi1 =1

mj2 = iz
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-----

2. Define A;j ={r:m,;=51<i<k1<j<¢,1<r<N}
3. Define S(N) = {A;;:i=1,2,..,kand 1 < j < ¢;}
4. Define S = {B|B=A— {z:n+1 <z < N}, where A € 5(N)}

5. If |S| = k return "YES”
Else return "NO”

We need to prove that the set S constructed by the above algorithm is a
separating set for [n]. It has been proven in (1] that S(N) is a separating
set of [N]. Suppose z # y € [n] = {1,2,..,} C {1,2,..,N}. So there
exist Az, Ay € S(N) such that z € A;, y € Ay and A, N A, = ¢. By
the definition of Sinline 4, z € B = A —{w :n+1 < w £ N},
yeBy=A,—{w:n+1<w< N}, and B,NB, = ¢ Hence S is
an separating set of [r]. Run time of the above algorithm is O(Nlog(N )),
where N = |[N]].

Example: Let n = 7. Then 7 < 32 som = 2 and N = 32 = 9. Hence
N = q; x g3 = 3 x 3. Therefore matrix M is:

1

(-]

M = (ms,i)ox2 =

CO GO W NN N = =
QO DD = OB = 0O N

Hence S(9) = {Aj{1 <i<k,1<j <g;},where the 4;;’s are:
Ap={r:m,;=11<r< 9} {1,2,3}
A12={r:m,.'1=215r<9} {456}
Aiz={r:my,1=3,1<r<9}={7,89}
A21={r:mr,2—115r$9} {147}
Ap={r:m2=21<r<9}= {2,5,8}

A23 = {1’ tMyp2 = 3,1 <r< 9} = {3,6,9}

Therefore
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Bi=An—-{z:8<z<9}=1{1,2,3}
Bz=A12—{:L‘:8$£C59}={4,5,6}
By=Ap—{z:8<2x<9}={7}
B4=A21—{$:8S$59}={1,4,7}
Bs=A22—{$:8S$59}={2,5}
BG=A23—{:L':SSZ_<_9}={3,6}

and § = {B,, By, B3, By, Bs, Bg} is a separating set of (7] = {1,2,3,4,5,6, 7}.

If a separating set S is constructed from a strict subset of 2[*!, then the
problem becomes very difficult to solve.

Theorem 7 If S’ ¢ 2" in ESD, then ESD is an NP-Complete problem.

Proof: First we need to show that ESD is in the NP class. A nondeterministic
polynomial algorithm can be given as follows:

1. Pick a random subset S of size k from S’

2. Check whether S is a separating set or not for [n)

Line 1 can be done in k steps. For given set [n], there are (3) tuples
(z,y) € [n]x[n], where z # y. So Line 2 can be checked in O(k?n2) = O(n?)
steps. Therefore the above algorithm is polynomial in terms of |[n]| = n.

Next we give a deterministic and polynomial transformation from 3-
DIMENSIONAL MATCHING(3DM) to ESD. Let us first review the definition
of 3DM decision problem.

3-DIMENSIONAL MATCHING(3DM):

INSTANCE : A set M C U = {uj,u3, ..., um} X V = {v1,03, ..., U} x W =
{wy,wa,...,wn}, where U, V, and W are mutually disjoint sets.

QUESTION : Does M contain a matching, that is, a subset £ C M such
that |E| = m and no two elements of E agree in any coordinate?

We define deterministic and polynomial algorithm f : 3DM — ESD as fol-
lows: Let M C U x V x W, that is, M = {m; = (u;,,vj;, Wk, ), m2 =
(Wigs Vigs Wiy )y M3 = (Uigy Vjg, Wky ), -, Me = (Ui, , vj,, Wk, )} be an instance
of 3DM. Then f(M), which is an instance of ESD, is defined as follows:
1. f(M) = (m,-j)(t+3)x3m is 0 — 1 matrix
2. The r-th row of f(M) are all 0 except the entries corresponding the
columns u;_, vj,, wy,, where m, = (u;,,vj,,wk,.) € Mforr=1,2,..,t

3. The last 3 rows; row ¢ + 1, row ¢t + 2, and row ¢ + 3 are ONE ZERO
ZERO, ZERO ONE ZERO, and ZERO ZERO ONE, respectively.
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Here ONE is 1 x m matrix of all 1’s and ZERO is 1 x m matrix of all 0’s.
Hence for any given instance of M, f(M) is 0—1 matrix of size (t+3) x 3m.

UYL oo Um | V1 oo Uy | W1 oo Wiy
1 711 T12 713
2 721 T22 723
M - .

(M) t 71 T2 T¢3
t+1 ONE ZERO ZERO
t+2 ZERO ONE ZERO
t+3 ZERO ZERO ONE

Example Let U = {u,u2,u3}, V = {v1,v2,v3}, and W = {w;, wz, w3} be
three mutually disjoint sets and M = {m; = (u1,v1,w1), m2 = (uz, v3, wa),
ma = (ua,va,ws), mg = (u1,v3, w2), ms = (uz,v1,w1)} be a subset of U x
V x W. Then f(M) is:

Uy Up U3 | Uy VU3 | W) W2 W3
1ff1 00}100 100
21 010001 010
3l oo0o1{010| 001
F(M)=|4 100(001 010
50 0101|100 100
6/l 111000 000
71 000]111 000
8l 0o o0j0O0O0O| 111

Now let M be a YES instance of a 3DM problem. There exists E C M
with [E| = m such that E = {e; = (ui;,vs;,wy;) : J = 1,2,..,m} is a
matching. We construct f(M) as described above. Using construction given
in Theorem 5, the set S = {4, : i = 1,2,...,t,t+1,£+2,t4 3} is constructed
from f(M). We need to show that S is a separating set of UUV UW. Let
z,y be two distinct elements of the set U UV UW. If z,y € U(or in
V or in W), then there exist e;,e; € E such that e; = (z,v,,w;,) and
ej = (y,vi,,w;, ), where v;, # v;,,w; # wi,. Therefore there exist two
disjoint sets A;, A; in S such that z € A;,y € A;. fz €U and y € V(or
W). Then z € A¢y1,y € Aey2. By the construction, sets Ayyy and Agyo
are disjoint subsets of S.

Conversely, let S be a separating set of U UV UW such that S contains
partition Aj, Az, A3, where |A;| = m for i = 1,2,3. Without loss of gener-
ality we can assume that A; = U, Ay =V, and A3 = W. By Theorem 5 we
know that |S| = m + 3. Hence S must have m elements beside A4;, A2, As.
Assume that these are By, Bs,...,Bm. Since |A;] = m for i = 1,2,3 and
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S is a separating set, then each B; must contain exactly one element from
each U,V,W. That is nothing but a matching with m elements.

The above argument shows that M is YES instance of 30M & f(M)
is YES instance of ESD. The algorithm f is deterministic and polynomial
which takes O(¢m) times, where ¢ = [M|,m = |U| = |V| = [W|. We have
showed that

1. ESD is in NP-class

2. f:3DM — ESD is deterministic and polynomial

This concludes that EsD is NP-complete since 3DM is NP-complete [4]. O
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