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Spectral graph theory has produced several results in relation to graph col-
oring. Let Amax and Apin denote the maximal and minimal eigenvalues,
respectively, of the adjacency matrix of G. In 1967, Wilf [15] showed that
x(G’) < 1+ Amax, and in 1969, Hoffman showed x(G) > 1—
man’s theorem was improved by Lovész in 1979 with his work on Shannon
capacity by considering any (even negative) weighted adjacency matrix of
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Hoffman proved that for a sunple graph G, the chromatic num-
ber x(G) obeys x(G) > 1 — —1- where A; and A, are the maximal
and minimal eigenvalues of the adJa.oency matrix of G respectively.
Lovész later showed that x(G) > 1— Y.J: for any (perhaps negatively)
weighted adjacency matrix.

In this paper, we give a probabilistic proof of Lovész’s theorem,
then extend the technique to derive generalizations of Hoffman’s the-
orem when allowed a certain proportion of edge-conflicts. Using this
result, we show that if a 3-uniform hypergraph is 2-colorable, then
d< ——,\mi.. where d is the average degree and Amin is the minimal
elgenvalue of the underlying graph. We generalize this further for
k-uniform hypergraphs, for the cases k = 4 and 5, by considering
several variants of the underlying graph.
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For k > 2, the decision problem determining whether or not a graph
can be colored with k-colors is NP-hard [1, 14] whereas eigenvalues can
be computed accurately in polynomical time. Hence, the results mentioned
above give a simple and easily computable approximation to graph coloring.
In the case of hypergraphs, for any k > 2, the problem of determining if
a hypergraph is k-colorable is NP-hard [10]. As a result, we aim to adapt
these results on graphs to hypergraphs.

There are many different notions of eigenvalues for hypergraphs. These
notions generally have one of two approaches. The first is to consider some
higher-dimensional analog of a matrix. Friedman and Wignerson used a
trilinear form to define the spectral gap of a 3-uniform hypergraph [5], and
later, Cooper and Dutle extend this concept to hypermatrices using hy-
perdeterminants [4]. The other approach is to dissect the hypergraph into
several matrices, and consider these matrices jointly. Chung used this ap-
proach by considering the homology and cohomology chains of hypergraphs
[2). Later, Rodriguez [13] followed by Lu and Peng (8] considered different
walks on the hypergraph with varying degrees of tightness.

The only known result connecting hypergraph coloring to spectra is
given by Cooper and Dutle using hypermatrices and hyperdeterminants
where they prove an analog of Wilf’s theorem for hypergraphs: x(H) <
Amax + 1 (see [4]). In this paper, we provide necessary spectral conditions
for 2-coloring a hypergraph using the second approach to hypergraph spec-
tra as described above. Specifically, our main strategy will be to consider
several different graphs based upon the original hypergraph. A more de-
tailed description is given in the next section. Then, we consider these
different graphs and their spectra, jointly, in order to recover information
regarding the hypergraph.

This paper is organized as follows: In section 2, we give definitions
and preliminaries. In section 3 we state our main results. We prove our
results in two sections. In section 4, we prove results for graphs, including a
probabilistic proof of the Hoffman-Lovédsz theorem mentioned above, and in
section 5, we adapt these results to various aspects of hypergraphs. Finally,
in section 6, we give examples of applications of these results.

2 Preliminaries

A graph G = (V, E) is a set of vertices, V, and edges, E, such that every
e € E is an unordered pair of vertices. If {u,v} € E, we say that two

74



vertices u,v are adjacent. In this paper, we consider undirected graphs
which allow for multiple edges between two vertices; however, we do not
consider graphs with loops (i.e. self-adjoint edges). We define the degree,
d,, of a vertex u, to be the number of edges containing u where any repeated
edge is counted with multiplicity. We let d denote the average degree of G.
A graph is d-regular if d,, = d for all vertices u.

A hypergraph, H = (V,E) is a set of vertices, V, and hyperedges, E,
such that every e € E is a subset of vertices. As with graphs, the degree of a
vertex u, denoted d,, is the number of hyperedges containing u, considering
multiplicity, and the average degree will be denoted d. We call a hypergraph
r-uniform if for every edge e € E, |E| = 7.

We consider traditional vertex coloring of a graph G. A proper k-
coloring of a graph is a function g: V' — {1,2,...k} such that g(v) # g(v')
whenever {v,v'} € E. If such a function exists for a particular integer k, we
say the graph is k-colorable. For a graph G, the chromatic number, x(G),
is defined to be the least k such that G is k-colorable. In this paper, we
will consider the case when a coloring is improper where g(v) = g(v') even
when {v,v'} € E; in which case we call the edge {v,v'} monochromatic.

In addition, we consider the weak-coloring of a hypergraph. A (weak)
coloring of a hypergraph is a function 2: V — {1,2,...k} such that for
every edge e € E(H), the function & is not constant on e. As with graphs,
the chromatic number of a hypergraph, x(H), is defined to be the least &
such that H is k-colorable.

A hypergraph, H has an underlying graph denoted G(H) which has
the same vertex set as H, and e is an edge of G(H) if e C f for some
f € E(H). For our purposes, we allow for each edge in G(H) to occur
once for each hyperedge containing e. For example, G(K3), the underlying
graph of the complete 3-uniform hypergraph on 4 vertices, is the complete
graph on 3 vertices with each edge occurring twice. More generally, the
s-set graph of a hypergraph H, denoted G*)(H) has the vertex set (¥),
the set of subsets of V' with size s, where {{a;,...,a5},{b1...b5}} is an
edge of G®)(H) if and only if {a1,...,as} and {b;...b,} are disjoint, and
{a1,...,as} U {by... b} C f for some f € E(H).

For a graph G and hypergraph H, we are concerned with relating x(G)
and x(H) with the spectrum of the adjacency matrix (or, as described in
the case of H, several different adjacency matrices). For a graph G, the
adjacency matriz, A, is the [V(G)| x |V(G)| matrix where the entry A,; is
the number of edges between i and j. A weighted adjacency matrix of a
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graph, denoted by W, is a matrix that satisfies W;; = 0 whenever {i,j} ¢
E(G). For our purposes, we allow for the possibility of negative weights. We
denote the largest and smallest eigenvalues of a (real symmmetric) matrix
M, respectively as Amax(M) and Amin(M). In the context of hypergraphs,
we will let Apin denote the minimum eigenvalue of the underlying graph
as described above, and we will let /\,(;i)n denote the minimum eigenvalue of
the adjacency matrix for the s-subset graph.

Some of our proofs are probabilistic in nature. The key fact we use is
that if a real-valued random variable X obeys m < X < M almost surely
for some constants m, M, then m < E[X] < M where E[X] denotes the
expectation of X. In particular, we combine matrix theory and probability
in our application of the Courant-Fischer Theorem [9] in the following way:

If x € C" is a non-zero random vector, and A is a real-symmetric n x n
H
matrix, then Amin < H’ig‘%l < Amax-

3 Main results

We prove the following theorems.

Using a probabilistic proof, we will prove Lovasz’s theorem:

Theorem 1. (Hoffman-Lovdsz 1979) [11] For any weighted adjacency ma-
triz (even with negative weights), W, of a graph G

Amax(W)
X(G) z1- )\min(W)

Specifically,

0 2 (1 52G7)

where the mazimum is taken over all weighted adjacency matrices of G

Notice that this is one side of the “sandwich theorem” in [11] with regard
to the Lovasz Theta Function.

We then adapt the method to prove an analogous result if we allow a
certain proportion of monochromatic edges:
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Lemma 1. Let G be a graph (perhaps with multiedges) with average degree
d. For 0 < p < 1, if the vertices of G can be (improperly) colored with
k-colors such that number monochromatic edges is at most p|E|, then,

1 — Amin (A _ . _ '
—A,,'..:,‘_A or more simply, p> d+ k’\mm(:k): Amin (A)

p

k>

Where Amin(A) is the smallest eigenvalue of the adjacency matriz of G.

We remark that the first inequality above, while more complex, ex-
plicitly describes the role of p in the result. In particular, if G is regular,
Hoffman’s theorem results with p = 0. Further, if p = 1, then the inequality
allows for the graph to be colored with 1 color.

Finally, we apply the previous lemma to produce several results for
hypergraphs.

Theorem 2. Let H be a 2-colorable 3-uniform hypergraph with average
degree d. Then,

- 3
d <- §'Amin

Theorem 3. Let H be a 2-colorable {-uniform hypergraph on n vertices
with average degree d. Then,

min

Theorem 4. Let H be a 2-colorable 5-uniform hypergraph on n vertices
with average degree d. Then,

- 5 5(n—1
d< —Ef\min ( )'\g,)n

4 Proofs of Theorem 1 and Lemma 1

We begin with a proof of Lovész’s Theorem in order to demonstrate our
technique. We remark that a derandomized variant of this proof can be
found in [12]. However, we build upon this randomized proof later.
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Proof of Theorem 1. For any simple graph G, let W denote any weighted
adjacency matrix for G. Suppose G is k-colorable. We will denote the
maximum and minimum eigenvalues of W as Apax and Apin respectively.
Let z denote a real unit eigenvector corresponding to Apax. Welet g: V —
{1,2,...,k} be a k-coloring and p: {1,2,...,k} = C be a function assigning
each number 0, ..., k—1 a unique k-th root of unity. If p is chosen randomly
and uniformly from all permutations, we may let x denote a random vector
indexed by the colors of the vertices G defined by x; = z; - (p o g)(j). For

any x we have:
xHWx

Amin < = xHWx
min —= xHx

So we have,
Amin < lE[xHWx]

=E| Y Wu(®X +%x)
{u,v}eE
By linearity of expectation, we get
= Z W,E [Yu_xv + -x_ux'u]
{u,v}€E

where the sum is over all unordered pairs of vertices that form an edge.
Thus, we have,

= Y WuwE[(2uz.)((po 9)(w)(po9)) + (p 0 9)(v){p 0 9)(w)]
{u,w}€E
Since v is deterministic,

= > (2z;Wu)E[(po9)(w)(po9)(v) +(po g)(v)(po g)(w))
{u,v}eE
Observe that for any coloring, g, any permutation of the colors is also a col-
oring. Hence, the random quantity ((pog)(u)(2 0 9)(2)+(pog)(v)(p © 9)(w))
has an equal probability for taking on each of the oslsible values . Hence,
E[((p 0 g){u)(p 0 9)(v) + (po 9)(v)(po g)(u) = 23,2, exp(2mij/k) = .
Hence, for the last sum above we get:

= _—k 3 Z 2242, Wyy = E———l- Z Ze WouuZy +Zp WyyZy
{u,v}€E {u,v}€E
-1

k-1

2HWz = -I;—?T)smax



Altogether we have: )

Amin < m)‘max
And solving for k we get:
1- )"“f”‘ <k
min
Choosing k = x(G) proves the theorem. O

Many of the previous proofs and the Hoffman-Lovdsz theorems use
discrete methods such as matrix partitioning and covers [7] whereas the
proof above is analytic which allows for much easier generalizations such as

Lemma 1.

Proof of Lemma 1. By hypothesis, suppose there is an improper k-coloring,
g: G — {1,2,...,k} with at most p|E| monochromatic edges. As in the
previous proof, let p: {1,2,...,k} = C be a function mapping each number
1,...,k to a unique k-th root of unity. We vary p randomly where the
function p is chosen uniformly from all possible permutations. Let x denote
a random vector determined by the colors of the vertices of G defined by
x; = (pog)(F)- Let n denote the number of vertices of G. For any x we
have:

xHAx  xHAx

xHx n

)‘min(G) S
So we have,
Pmin < E[xMAx]

= E Aqu[i:xv + x_vxu]
{u,v}eF

where the sum goes over all unordered pairs of vertices.

The monochromatic edges contribute 1 to the sum whereas the other
edges contribute on average k;—-ll' Since the proportion of edges which are
monochromatic is at most p,

k-1
> Efox+%x]< ) 2=
{u,v}eF {u,v}€E

Hence,
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n)‘min < Z 2Auvp:: - 1 Z 2Auv

{u,v}€E {u v}eE

Since ) (uv}€E 2A., = nd, we have:

d(pk — 1)
Amm S _k--i—_

Solving for k (keeping in mind that Amin is negative) yields the result. O

5 Proofs of the remaining results

Proof of Theorem 2. Suppose H is a 2-colorable 3-uniform hypergraph with
average degree d. If we consider a specific 2-coloring of H, observe that for
every edge in H, there must be 2 vertices of one color and 1 vertex of the
other. Hence, the underlying graph of H can be 2-colored if we allow 1/3
of the edges to be monochromatic. By applying lemma. 1, to the underlying
graph which has average degree 2d:

1 — 2mpn
22 A
1/3 — 2l

Solving for d yields the result. ]

Proof of Theorem 3. Suppose H is a 2-colorable 4-uniform hypergraph on
n vertices. Let g : V(H) — {0, 1} denote a specific 2-coloring of H. Observe
that for every edge in H, there are two cases: 2 vertices of each color; or
3 vertices of one color and 1 of the other. Let p denote the proportion of
edges with 3 of one color and 1 of the other. Hence, the underlying graph
of H can be 2-colored using g if we allow 1/3 4+ p/6 of the edges to be
monochromatic.
1- 3d

2>
~1/3+p/6 - 2pp
This reduces top < 1 + élyn

Next, we consider the 2-subset graph of H, G‘®(H). Note that the av-
erage degree of G (H) is 2%, Let h: G®@(H) — {0,1} be an (improper)
2-coloring of G (H) as follows If {a,b} € V(G®(H)), let h({a,b}) =0
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if g(a) = g(b), and let h({a,b}) = 1 otherwise. For this 2-coloring, the
proportion of monochromatic edges is 1 — p. Hence by applying lemma 1,

1— (=122
2> 24d )
= =)&)
1-p- L 2124
This reduces to @
1 _ ('n' — 12’\min
2 6d -
Altogether, we have:
(n - 12)\(2) Amln

1_ min< <
) 6d~Psl+—3

Eliminating the intermediary p, and solving for d yields the result. O

Proof of Theorem 4. The proof follows with exact the same method as the
proof for Theorem 3. Let p be the number of hyperedges with 3 of one
color and 2 of another. Then, the underlying graph can be 2-colored with
3/5—p/5 of the edges as monochromatic, and the 2-subset graph can be 2-
colored with at most 1/5+2p/5 monochromatic edges. The average degree
of the underlying graph is 4d, and the average degree of the 2-subset graph
is 20d/(n — 1). The remainder follows just as the previous proof and is
omitted. a

6 Examples

The main goal of this section is to show that Theorems 2 and 3 are appli-
cable. Specifically, we show there exists graphs which Theorems 2 and 3
indicate are not 2-colorable.

First, Theorem 2 is tight. The complete 3-uniform hypergraph on 4
vertices, K3 has average degree 3, and the underlying graph is the complete
on 4 vertices where edge edge has weight 2, 50 Amin = —2. $Ain = d.
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To show Theorem 2 is applicable, consider the complete 3-uniform graph
on 5 vertices K3. For K3, the average degree d = 6. Also, the corresponding
underlying graph is the complete graph where each edge has weight 3, so
Amin = —3. Hence, $Amin < d, and so theorem 2 indicates that K32 is not

2-colorable.

We now show Theorem 3 is applicable. Let K be the complete 4-
uniform graph on n vertices. Clearly, K} is not 2-colorable for n > 7. Note
that the average degree of K2 is ©(n3). Observe that the underlying graph
of K4 is the complete graph on n vertices where each edge is duplicated
("5?) times. Hence, Amin = —6(n?). Likewise, observe that the 2-subset
graph of H is a strongly regular graph on (3) vertices where each vertex
has degree (";%). Also two disjoint (and hence, adjacent) vertices have

("7%) common neighbors and non-adjacent vertices have (";°) common

neighbors. Hence, using the formula for strongly-regular graphs (6], )\S:i)n =

6 — 2n = —6(n). If H, were 2-colorable for large 7, then by Theorem 3,
d = 6(n3) < ©(n?) which poses a contradiction. Therefore, Theorem 3
successfully excludes K graphs from being 2-colorable for large enough n.

For a less trivial example, consider H = (V, E) a 4-uniform hypergraph
on 18 vertices with where V = {1,...18}, and E = {{a,b,c,d} C V :
a+b+c+d#0 mod 3}. A simple calculation in MATLAB shows that

)\f:i)n ~ —39.4609 and A\, = —85.0346. Hence if H is 2-colorable, Theorem

3 requires d = 138 < —2\p, — ¥2?) ~ 393.681. Therefore, H is not
2-colorable.

7 Conclusions and Remarks

In this paper, we have established a connection between hypergraph color-
ing and spectra using the powerful technique of generating several graphs
from one hypergraph and considering them jointly.

We remark that the technique used in Theorems 2, 3 and 4 can be
used to derive a necessarily spectral condition for non-uniform hypergraphs
such that |e] < 5 for any e € E. The condition varies depending upon
proportions of the size of the hyperedges.

There are several avenues for future work. The first would would to
explore g-colorings for ¢ > 2, and another is to consider r-uniform graphs
for » > 5. However, these cases present additional challenges. First, the
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technique in Theorem 2 yields less and less information as g or r gets large.
In fact, on its own, the technique yields a vacuous condition for ¢ > 4 or
r > 5. Second, for ¢ > 3 or r > 6, there are more than two possibilities for
the color combinations of on the hyperedges. Hence, in order to follow the
technique in Theorems 3 and 4, one must balance several proportions. For
example, for the case ¢ = 2 and r = 6, one must consider the proportion
of hyperedges with 1 vertex of one color and 5 of the other, 2 vertices of
one color and 4 of the other, and 3 and 3. Lastly, the techniques in this
paper may lend itself well toward a spectral approximation algorithm for
2-coloring 4- or 5-uniform hypergraphs.

The author would like to thank Fan Chung, Jacob Hughes, Sebastian
Cioabs, and the referee for their comments on this paper. The author
would also like to thank the organizers of the 25th Cumberland Conference
for the opportunity to present and publish this work.
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