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We consider finite simple graphs that can be represented by vertical visibil-
ities between disjoint horizontal line segments in the plane. More precisely,
a graph is a bar-visibility graph, or BVG for short, if each of its vertices can
be assigned to a distinct horizontal line segment in the plane — disjoint
from other such line segments — so that adjacent vertices of the graph
correspond to pairs of line segments with a non-degenerate, vertical rectan-
gle of visibility unobstructed by line segments representing other vertices.
Bar-visibility graphs were independently characterized by Wismath [16] and
Tommassia and Tollis [11] as those graphs that have a planar embedding
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Abstract

Bar visibility graphs (BVG) are graphs whose vertices can be as-
signed disjoint horizontal line segments in the plane so that adjacent
vertices correspond to pairs of bars that are visible to each other
via an unobstructed, vertical band of visibility. A k-stack layout of
a graph is a linear vertex ordering and a k-edge coloring such that
each color class avoids crossing edges with respect to the linear order.
BVG’s and stack layouts were introduced separately in the 1970’s
and have many applications including testing circuit boards, VLSI
design, and graph drawing. Motivated by applications to carousel
navigation design, we introduce a hybrid class of graphs called unit
stack visibility graphs and give a combinatorial characterization of
these graphs. We leave open the problem of determining whether
a polynomial-time algorithm exists to recognize unit stack visibility
graphs.

Introduction

in which all cut vertices lie on the same face.
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Figure 1: A typical carousel navigation layout.

Visibility representations of graphs have been extensively studied be-
cause of their many applications to testing circuit boards, VLSI design,
hidden-surface elimination problems, data layout diagrams, customer visi-
bilities/store layout, and graph drawing. Ian Stewart’s article [10] gives an
easy and well-motivated application inspired by Garey, Johnson, and So’s
paper [6]. An application to floor plans, for example, can be found in the
article by Wimer, Koren, and Cederbaum [14].

We are motivated by applications to carousel navigation design. Cur-
rently popular touch-screen devices ask users to navigate through a list of
selections and present this list using a carousel navigation layout (see Fig-
ure 1 for a typical carousel layout). These layouts can be modeled using bar
visibility representations of unit stack visibility graphs that we introduce in
this paper. A fundamental problem in this area is to determine which bi-
nary relations between navigation choices can be effectively presented using
this type of layout; that is, which graphs are unit stack visibility graphs.
More generally, the efficient design of human-friendly database navigation
tools poses a rich and challenging area that will remain a core issue in the
production of popular electronic devices. An important role in develop-
ing this area will be played by visibility representations, specifically bar
representations of graphs.

Bar representations of graphs have been generalized in many directions
including higher dimensions [2], other surfaces [12], other types of visibili-
ties [3, 5], vertices represented by objects other than bars [7], and restricted
bar lengths or fixed endpoints [2]. As an example of restricted bar lengths
consider the following family of graphs introduced by Dean and Veytsel [4].
A unit bar visibility graph is a BVG in which all bars have unit length.
Dean and Veytsel argue that this is a more realistic model than general bar
visibility graphs because unrestricted bar representations may use bars of
arbitrary, and thus impractical, size. Applications often require a represen-
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tation using bars of similar size (e.g. circuit board and carousel navigation
design). Unit bar visibility graphs have since been studied well, but a
polynomial-time recognition algorithm for them remains elusive (see [13]
for more references). In Section 4 we adopt a unit-bar model as part of the
hybrid class of graphs we call ‘unit stack visibility graphs’ that also blend
ideas that arise from stacks.

A k-stack layout of a graph is a linear vertex ordering and a k-edge
coloring such that each color class avoids crossing edges with respect to the
linear order. Graphs with a k-stack layout are called k-stack graphs. These
graphs were introduced by Ollman [9] and have been studied extensively
because of their many applications to sorting permutations, VLSI design,
compact routing tables and graph drawing. Analogues to queues and arches
have also been introduced and studied. Bernhart and Kainen [1] proved
that the 1-stack graphs are precisely the outerplanar graphs, which can be
recognized in polynomial-time via Mitchell’s algorithm [8]. Bernhart and
Kainen [1] also characterized the 2-stack graphs as the subgraphs of planar
Hamiltonian graphs, which, by a result of Wigderson [15], are NP-complete
to recognize.

In Section 3 we introduce and characterize ‘one-stack visibility’ graphs.
These graphs have been studied before, but their analysis here is included
to emphasize the connection between bar representations and stacks. We
quickly consider the next logical generalization, the ‘stack visibility graphs’,
but prove that they are essentially the 2-stack graphs, which we noted above
are NP-complete to recognize. In an attempt to mitigate this computational
complexity, Section 4 introduces ‘unit stack visibility’ graphs, a hybrid
family of unit bar visibility and stack graphs. We prove a combinatorial
characterization of these graphs that reveals the intertwined pair of stacks
at their core. However, the characterization leaves open the problem of
determining whether a polynomial-time algorithm exists to recognize unit
stack visibility graphs.

2 Preliminaries

This section summarizes common definitions for the reader’s reference. The
neighborhood of a vertex v in the graph G is the set of neighbors v; it is
denoted Ng(v) = {u € V(G) : wv € E(G)}. The closed neighborhood of v
is Ng[v] = Ng(v) U {v}. If P is a linear ordering of the vertices of G, then
u <p v signifies that vertex u precedes v in P; as usual, v <p v is short for
u <p v or 4 = v. The open interval between vertices u and v is defined as
P(u,v) = {w € V(G) : u <p w <p v}; P(u,u) is the empty set. The half-



open intervals P(u,v)], Plu,v) and the closed interval Pfu,v] are defined in
a like manner. It is convenient to define P*(v) = {w € V(G) : v <p w}.
Similarly define P~ (v), P*[v], P~ [v]. The set of forward neighbors of v is
defined as N (v) = Ng(v) N P*(v). The set of backwards neighbors of v is
Np (v) = Neg(v) N P~(v) with appropriate modifications of these for their
closed counterparts. Set Ef(v) = {e € E(G)\ E(P): e =vu and v <p u}.
Similarly define E5(v). Observe that E}(v) does not contain edges of P.
Subscripts on all of these notations may be omitted if context alleviates
any ambiguity.

Given a linear ordering P of V(G) and an edge e, let £(e) and r(e)
denote, respectively, the left and right vertices of e; so £(e) <p r(e). Two
edges e, f € E(G) cross (with respect to P) if £(e) <p £(f) <p r(e) <p
7(f). Two edges that do not cross are non-crossing edges. A stack is
a subset of pairwise non-crossing edges. If r(e) <p £(f), then we write
e <p f. Two edges e and f are comparable if e <p f or f <pe.

A(n) (outer)plane graph is a graph together with a(n) (outer)planar
embedding. A Hamiltonian path in a graph is a path spanning all vertices.
An ezternal Hamiltonian path of a plane graph is a Hamiltonian path in
which consecutive vertices of the path determine an edge on the external
face of the given planar embedding.

3 One-stack visibility graphs

In this section we introduce and characterize a family of graphs called
one-stack visibility graphs. These graphs have been characterized before
under other names, for example “representation index 1 + -;-”-graphs {2]
and “semi-bar” graphs [5). Here we reprove a familiar characterization
of these graphs in a style that foreshadows the characterization of unit
stack visibility graphs in the next section. Because these graphs exhibit
the fundamentally planar- and stack-like properties important in the study
of unit stack visibility graphs, these graphs make a natural and important
place to begin our study.

A graph is a one-stack visibility graph if it is a BVG with a bar visibility
representation in which the z-axis projections of all of the bars share a com-
mon right-hand endpoint. Figure 2 depicts a bar visibility representation
and the corresponding one-stack visibility graph. '

An outerplanar graph is externally traceable if it admits an outerplanar
embedding with an external Hamiltonian path. Note that even though an
externally traceable graph is necessarily outerplanar, not all outerplanar
graphs are externally traceable. Indeed not all traceable outerplanar graphs
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Figure 2: Three representations of the same one-stack visibility graph.

are externally traceable (see Figure 4 for an example).

Theorem 1 A graph is a one-stack visibility graph if and only if it is an
externally traceable outerplanar graph.

Proof. Suppose that G is a one-stack visibility graph and consider a one-
stack visibility representation of G in which all bars share a common right-
hand endpoint. Bars of consecutive height are mutually visible and cor-
respond to a Hamiltonian path in G. Now connect each pair of vertically
visible bars by an edge within the corresponding visibility rectangle. All
of these edges are disjoint and remain internally disjoint after contracting
each bar to its right-hand endpoint. Thus these bar contractions produce
externally traceable outerplanar embedding of G.

Conversely, suppose that G is a graph with an externally traceable out-
erplanar embedding. Let P = v1v;...v, be an external Hamiltonian path
of such an embedding. Because P traces the external face of the planar
embedding, edges of G do not cross; that is, the edges of G form a stack
with respect to the linear ordering of V(G) determined by P.

We seek to create a one-stack visibility representation of G in which each
vertex v; € P is assigned a horizontal bar whose vertical coordinate is i and
whose projection onto the z-axis is a subinterval of the unit interval [0, 1]
with right-hand endpoint 1. It suffices then to define, for each vertex v, the
left-hand endpoint, A(v), of the corresponding bar b,. First define, for each
vertex v # vy, the first neighbor f(v) of v along P; that is, f(v) € N~ (v)
with the property that f(v) <p w, for all w € N(v). Second define a rank
function for the vertices in the forward neighborhood of a vertex u this.
way: for v € N*(u), the rank of v is rank,(v) = [N+(u) n P+[v]|. So, for
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Figure 3: Assignment of bar lengths to N*(u).

example, rank,(v) = 1 if and only if v is the last neighbor of u along P.
Also rank, (v) = |N* ()| if and only if v is the successor of z on P. We can
now recursively define function A which determines the left-hand endpoints
of the bars. Set A(v;) =0. If i > 0, set u = f(v;) and define

Aws) = Aw) + (?Tv%%) (ranka (vs) — 1) . )

Figure 3 illustrates the assignment of bar lengths to N*(u) using the
definition of A. Observe that, except in the case when ¢ = 1, the value
of A(v;) is determined by the rank of v; in the forward neighborhood of
u = f(v); in particular, A(v;) = A(u). Moreover, A(v;) < 1, for all i =
1,...,n, because rank,(v;) < |[N*(u)], for all v; € N*(u). Also observe
that A(v;) = M(u) if v = f(v;) and v; is the last neighbor of u along P.
Now assign each bar b, the left-hand endpoint A(v). We must now show
that two vertices are adjacent if and only if their corresponding bars have
an unobstructed, non-degenerate, vertical band of visibility between them.

Suppose that uv is an edge of G. We may assume that u <p v and they
are not consecutive on P. We now argue by contradiction that the bars
associated with u and v have an unobstructed, non-degenerate, vertical
band of visibility between them. Suppose there is a vertex w such that
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Figure 4: A traceable outerplanar graph that is not a 1-stack visibility
graph.

u <p w <p v and A(w) < max{A(u),A(v)}; we may assume that w is
chosen to be closest to u with this property. Now A(w) is determined
by the rank of w in the forward neighborhood of some vertex z = f(w).
Observe that = € Pfu, w) since edges uv and wz do not cross with respect
to the stack ordering determined by P. Now (1) implies A(z) < A(w),
in particular A(z) < max{A(u), A\(v)}. By the choice of w, it follows that
z = u. Therefore w,v € N*(u) and rank,(v) < rank,(w). So A(w) <
max{A(u), A(v)} contradicts the definition of A(w) via (1).

Finally we must prove that if two bars are mutually visible via an un-
obstructed, non-degenerate, vertical band of visibility between them, then
their corresponding vertices are adjacent in G. Suppose that b, and by form
a pair of mutually visible bars. We may assume that z <p y and y is not
the successor of z along P because such vertices are obviously adjacent in
G. Let z = f(y). If z <p z <p y, then A(z) < A(y) would imply bar b,
blocks mutual visibility between b, and b,; so we may assume that z <p z.
If z <p z, then a maximum neighbor of z would have to occur before y
along P (because its edge to = could not cross edge zy) and its bar would
block visibility between the bars b, and b,. Thus z = z and zy € E(G), as
desired. 0

As noted by Cobos et al. [2], Mitchell’s [8] polynomial-time algorithm to
recognize outerplanar graphs can be modified to recognize 1-stack visibility
graphs in polynomial time.

A natural generalization of one-stack visibility graphs to consider is the
family of graphs with a bar visibility representation in which the r-axis
projection of all bars share a common point. Let us call such a represen-
tation a stack visibility representation and the corresponding graph a stack
visibility graph. It is easy to see that a stack visibility representation can
be partitioned into two one-stack visibility representations (see Figure 5).
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Figure 5: A natural partition into two one-stack visibility representations.

It follows that a graph is a stack visibility graph if and only if it is a 2-stack
graph, the latter which have been characterized by Bernart and Kainen [1]
as the subgraphs of a planar Hamiltonian graphs. By a result of Wigder-
son [15], stack visibility graphs are thus NP-complete to recognize. We are
thus lead into the next section which introduces an intermediate family of
graphs in the hopes of mitigating this computational complexity.

4 Unit stack visibility graphs

In this section we consider a class of graphs inspired by carousel navigation
design. Other line-of-sight designs (for example, the old-fashioned linear
tabbed Rolodex) may also be modeled by these graphs. The class is a
hybrid of stack graphs and unit-bar visibility graphs.

A unit stack visibility graph is a unit-bar visibility graph in which all
bars have a left-hand z-coordinate in the open interval (0,1). In particular,
this means that 1 is an element of the z-axis projection of each bar, so
one may view the bars as forming a single stack of unit-length bars pierced
by the vertical line = = 1. We shall say a bar is exposed upward on the
left (resp. right) if the next higher bar in the stack has a greater (resp.
smaller) left-hand coordinate; this is to suggest that this bar’s visibilities
to higher placed bars must occur to the left (resp. right) of z =1. A similar
definition applies to exposure downward.

If P = vyv,...v, is a linear ordering of the vertices of G, then v; <p v;
signifies that vertex v; precedes v; along P; thatis, i < 7. Asusual, v; <p v;
means i < j. For each vertex v; # vy, the vertex f(j) (resp. F'(j)) denotes
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the first (resp. final) neighbor of v; along P. So f(j) = i and F(j) = k
means that v;, vk € N(v;) and ¢ < r <k, for all v, € N(v;). The definitions
of P*(v), P*[v], NE(v), E{(v), and their “—” counterparts, are as given in
earlier sections. Recall that for v € N*(u), the rank of v (with respect to
u) is rank, (v) = [N*(u) n P"‘[v]|. If P =vv2...vy, is a linear ordering of
the vertices of G, then we shall also use the notation rank;(j) to represent
rank,, (v;).

We will consider partitions of edges of a graph into three sets, one of
which is the set of edges of the Hamiltonian path corresponding to the linear
order P. For convenience, the other two sets will be referred to as Er and
ERg, left and right, respectively. This is also to suggest the relationship
between the edges and the corresponding bar visibilities; so, bar visibilities
to the left (resp. right) of z = 1 correspond to edges of Ey (resp. Eg). A
set of edges is monochromatic with respect to this partition if it is a subset
of one of these sets; that is, S C E(G) \ E(P) is monochromatic if S C Ey,

or S C Ep.
In addition define, for any vertex v, the set of edges that cross v on the
left (resp. right), as
crossp(v) ={zy € Er: 2 <pv <py}
crossp(v) = {zy € Er:z <pv <p y}.

The next theorem gives a combinatorial characterization of unit stack
graphs. After the theorem we prove that this combinatorial characteriza-
tion is “sharp” in the sense that the conditions in this characterization are
independent of one another.

Theorem 2 A graph G(V,E) is a unit stack visibility graph if and only
if G has a Hamiltonian path P = vyva...v, together with a partition of
E\ E(P) into two color classes, E;, and Eg, satisfying

(i) EL and Ep are stacks with respect to P, and
(ii) Ef(v) and Ep(v) are monochromatic, for allv € V, and

(i) for all v; € V, if i = f(i + 1) then Ef(v;) = 0 or crossp(vi) = 0 or
crossp(v;) = 0, and

(iv) if viv; <p v, are comparable edges of one stack, then F(j —1) > j
or f(r+1)<r. .

Proof. “=" Consider a unit stack visibility representation of a unit stack
visibility graph G(V, E). Linearly order all vertices according to increasing
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Figure 6: Property (iv): comparable edges in one stack induce a ‘crossing
edge’ in the other.

height of their corresponding bars. Because bars of consecutive height have
an unobstructed, non-degenerate, vertical band of visibility between them
near z-coordinate 1, this linear ordering produces a Hamiltonian path P =
V1Vs ..., of G. Now partition the edges of E'\ E(P) into two sets E and
ERr, placing an edge into E, (resp. ERg) if the visibility rectangle between
the corresponding bars occurs to left (resp. right) of the z-coordinate 1.
Bach of these color classes forms a stack with respect to P since each of
them separately with P determines an outerplanar subgraph of G after
contracting bars (as in the proof of Theorem 1). To prove property (ii)
holds, consider a vertex v; and its successor v;y; on P. Because all bars
have unit length and their z-axis projections must contain the element 1,
the bar b;; blocks all visibility to the bar b; from above either from the left
or right (possibly both), depending upon whether b;11 appears to the left
or right (or directly above) the bar b;. If b;;; blocks all visibility to the bar
b; from above on the right, then all other neighbors of v; above v;; must
also produce edges in Er. Thus E}(v;) C Ey in this case. Symmetrically,
E}.’(U,-) C ERr, if biy1 blocks all visibility to the bar b; from above on the
left. A similar argument applies to Ep (v;), so property (ii) is satisfied.

To establish property (iii), consider a vertex v; whose successor, vi41,
has v; as its first neighbor; that is, f(i+1) = ¢. Now the bar b;; is the next
bar above the bar b; in the unit stack visibility representation of G. It must
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appear to the left, right, or directly above. If b;;, appears directly above
b;, then b;’s visibility is blocked above so E;’,'(v,-) = (. On the other hand,
if biy1 appears to the left of b;, then b;4; is exposed downward on the left.
However since f(i + 1) = ¢, no bars below b; can be exposed upward as far
as by, so crossy,(v;) = 0. A symmetric argument show that crossp(v;) = 0
if b;y1 appears to the right of b;.

Finally we must establish property (iv) (see Figure 6 for one possible
configuration). Consider two comparable edges e, f of one stack. Without
loss of generality, e,f € E;, e = viv;, f = vyv,, withi < j < 7 < 8.
Because e, f € Ey, the right-side of bar b;_; is exposed upward while the
right-side b,11 is exposed downward. Either these bars are visible to each
other on the right (as shown in Figure 6), or at least one of them is visible
to another bar that lies between them. In either case an edge of G in Eg
is produced; the edge implies F(j —1) > j or f(r + 1) < r, as desired.

“«<" Suppose that G has a Hamiltonian path P = v,v3...v, that to-
gether with a 2-coloring, E; and Eg, of E \ E(P), satisfies conditions
(i)-(iv). We must prove that G has a unit stack visibility representa-
tion. To this end, assign vertex v; € P a unit-length horizontal bar, b;,
whose y-coordinate is . Because the bars all have unit length, to complete
the representation it suffices to define the left-hand z-coordinate of each
bar. Let A; be the left-hand z-coordinate of bar b;. Using the ordering of
P = v1v,...v,, we now recursively define function A that determines the
left-hand endpomts of the bars associated with these vertices. Set A(1) =
If > 1 and i = f(j), define

)\(z) if INt(w)|=1,j=i+ l,E;(v,-) =0
A IN*(u)] > 1,5 =i + 1, crossy (v;) = 0
AG) =4 & if [N*(v)] > 1,5 =i +1,crossp(v;) = 0 @)
if IN*(v;)] >1and j > i+ 1 then

M) + (WD) (ranki(5) - 1)

Figure 7 illustrates the resulting unit stack visibility representation of a
5-wheel after applying this recursive assignment to the given Hamiltonian
path and edge-partition.

Notice that under assignment (2), the value of A(5) is determined by i =
f(5), rank;(5) and possibly A(i+ 1), the latter of which may be determined
by an earlier value of A (namely the value at f(i + 1)). In particular,
if Ef(v;) C EL (resp. Eg), then A(i + 1) — A(i) > 0 (resp. < 0) so
the unit-length bars associated with the forward neighbors of v; beyond

v;+1 move right (resp. left) a distance of ( 2 i+1v:)‘_"1 ) as their rank in

~
L P
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Figure 7: A unit-bar stack representation of a 5-wheel.

N*(v;) increases. Consequently, the bars in the forward neighborhood
of v; have z-coordinates between A(i) and A(i + 1). To summarize: if
i = f(j) and E}(v;) C EL (resp. ER), then A(i) < A(j) < A(i + 1) (resp.
At +1) < A7) < A5)).

First we prove that the algorithm halts only after assigning a A-value
to every vertex of G. This is done by induction on j; that is, we prove that
A(j) is well-defined after A(1),...,A(j — 1) have been defined. The basis of
the induction, j = 1 is clear. Assume j > 1 and i = f(j). If [N*(v;)| =1
or ((N*(v;)] > 1) and j # @ + 1), then the value of A(j) is well-defined
by (2). So we may assume that j =i+ 1 and |[N*(v;)| > 1; in particular
E*(v;) # 0. In this case, property (iii) guarantees that crossz(v;) = 0 or
crossg(v;) = 0. Because |[N*(v;)| > 1, it is not possible that both these
occur, so exactly one occurs. Without loss of generality, crossp(v;) = @ so
(2) assigns A(j) = %@

Because A(1) = 1 and rank;(v;) < |N*(v)|, for all v; € N*(v), a
straight forward induction (which we omit) proves that 0 < A; < 1, for all
j=1,...,n. Assign each bar b; the left-hand endpoint A(j). We must now
show that two vertices are adjacent if and only if their corresponding bars
have an unobstructed, non-degenerate, vertical band of visibility between
them.

First we prove that if two bars are mutually visible via an unobstructed,
non-degenerate, vertical band of visibility between them, then their corre-
sponding vertices are adjacent in G. We proceed by induction on j, proving
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at stage j of the induction that bars by, ..., b; satisfy the claim. The basis,
J =1, is vacuously true. Considering now the inductive step at stage j,
suppose that b; and b; form a pair of mutually visible bars, i < 7, and the
claim is true for all lexicographically smaller pairs; that is, all pairs b, b,
with 1 < 7 < s < j in which either » < i or s < j. By assignment, the
height of b; is greater than the height of b;. If j = i+1, then v;v;4; € E(P);
so assume j > i + 1. Because of symmetry it suffices to consider the case
in which A(¢)} < A(é + 1); that is, the visibility between b; and b; occurs to
the left of the vertical line at 1. Let k = f(5). If k£ = i then v;v; € E(G),
as desired. So, two cases remain to be considered: k < i and i < k < j.

If k < i, then because A(f) < A(¢ + 1) and the visibility between b; and
b; occurs to the left of the vertical line at 1, the visibility between by and
b; also occurs to the left of the vertical line at 1; therefore vev; € Er. Now
consider v,, the final neighbor of v; along P. Both v;v, and vxv; are in
EL so can not cross since Ey, is a stack. Therefore r < j. If r = 7, then
viv; € E(G), as desired. If r < j, then consider f(r). Now v, € E|
so vg(ryvr € Er since property (ii) guarantees E~(v,) is monochromatic.
Because r < j and vy, vr € EL, it follows that A(r) < A(4) since otherwise
b; blocks the visibility between by(,) and b,. However this implies i = f(r)
and, by assignment (2), A(Z) = A(r), so b, blocks the visibility between b;
and b;, a contradiction.

If i < k < j then, since b; and b; are mutually visible, A(i) < A(i + 1)
implies A(j) < A(k). This forces E*+(vx) C ER, since vy is exposed upward
beyond v, on the right and v; can not be the final neighbor of v since
assignment (2) would give the final neighbor of v; a A-value that blocks
visibility of the bar bi. So the forward neighbors of v; have A-values between
A(k +1) and A(k). In particular, j = k+ 1, otherwise bx..; would block the
visibility between v; and v;. Also A(¢) < A(k) because by does not block
the visibility between b; and b;. Now consider v,, the final neighbor of v;
along P. It follows from the assignment (2) that A(7) = A(i) or f(r) < i.

Assume, for the moment, that A(r) = A(3). If r = j, then viv; € E(G),
as desired. If r < j, then b, blocks the visibility between b; and b;. Hence we
may assume that r > j; that is, crossy (vk) # 0. So (2) implies that A(j) >
A(k) since k = j — 1 = f(7); in particular, A(v;) > A(vi) contradicting the
visibility between b; and b; occurs to the left of the vertical line at 1.

So we may assume that A(r) # A(i) and f(r) < i. Because b, does not
block the visibility between v; and vj, it follows that A(r) > A(i). Now
f(r) < i means that § # E~(v,) C Eg. It follows that A(r — 1) < A(r),
since b, must be exposed downward. However, b,_; can not block visibility
between b; and b, which is a visibility corresponding to an edge in Ef.
Consequently, r — 1 = 4. Consider § # E~(v,) C Eg, § # E*(vw) C Ep,
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j = k+1and r = i+1. This means that there are two non-crossing edges in
Eg that end in v, and v, respectively. Applying property (iv), it follows
that F(i) > r or f(j) < k, each of which lead to a contradiction to the
definition of either r or k.

Finally we must argue that if two vertices are adjacent then the cor-
responding bars have an unobstructed, non-degenerate, vertical band of
visibility between them. Assume to the contrary that there are vertices, v;
and v; with i < j, violating this statement. Choose such a pair that mini-
mizes ¢ and then minimizes j. Clearly v;v; € E(P) since bars of consecutive
height are mutually visible. Symmetry permits us to assume vv; € Er.
Choose k minimum such that i < k < 7 and b, blocks the visibility between
b; and b; on the left. We may assume that bar b; and by are mutually visi-
ble since otherwise a smaller value of k could be chosen, contradicting the
choice of k. This means that v;ux € E(G) since we earlier proved that mu-
tually visible bars correspond to edges of G. Now E*(v;) is monochromatic
by property (ii), so v;v; € Er implies v;ux € Ep or v;vi € Er.

CasE 1: v;u, € Ep

If A(k) < A(3), then f(k) = i, since otherwise the edge v;v; and vy(x)yvk
are crossing edges in the stack E. However according to the assignment
given by (2), assigning A(k) < A(¢) when f(k) = i can only occur when
v;vx € ER, a contradiction. Therefore, we may assume A(k) > A(7).

It follows that A(j) > A(k), otherwise b would not block the visibility
between b; and b;. The choice of i and j guarantees then that f(j) = i since
otherwise an earlier bar, by(;) would be adjacent to j but not visible to b; on
the left. The comments following the assignment (2) show that, if i = f(j),
j#1i+1, and Ef(v;) C E (resp. Eg), then A(3) < A(j) < A(i + 1),
contradicting A(5) = A(k).

CASE 2: v;u, € Ep:

Note that f(k) = i since f(k) < ¢ would imply crossing edges v;v; and
vpkyVk in Ep. Now the v; and vy are both neighbors of v;, f(k) = i and
j > i so the assignment (2) ensures that A(k) > A(i) whereas A(j) < A(k).
This contradicts that b blocks the visibility of v; and v;. 0

Clearly any unit stack visibility graph is necessarily a unit bar visibility
graph. On the other hand, any non-traceable unit bar visibility graph, for
example the claw K 3, is not a stack visibility graph. So the set of stack
visibility graphs is a proper subset of the set of unit bar visibility graphs.

We now provide several examples to establish that the conditions in
Theorem 2 are independent of one another. Any partition of the edges of
K, into a Hamiltonian path and two sets Er and Eg satisfying condition
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Figure 8: A graph that is not a unit stack visibility graph only because of
condition (iv).

(ii) must necessarily violate condition (i) only. Therefore condition (i) is
independent of the other conditions. Any partition of the edges of K, into
a Hamiltonian path and two stacks will result in a violation of condition
(ii) only. Therefore condition (ii) is independent of the other conditions.
Indeed, it is well known that K, is not even a unit bar visibility graph.
Similarly, any partition of the edges of K2 3 into a Hamiltonian path and two
stacks will result in a violation of condition (iii) only. Therefore condition
(iii) is independent of the other conditions and Ks 3 is not a unit stack
visibility graph. Indeed, it also is well known that K> 3 is not a unit bar
visibility graph. The graph shown in Figure 8 has a unique Hamiltonian
path because of the vertices of degree two. Any partition of the remaining
three edges into two stacks necessarily produces two comparable edges in
one stack without a ‘crossing edge’ in the other stack, a violation only of
condition (iv). Thus, this graph is not a unit stack visibility graph and
condition (iv) is independent of the other conditions.

Open Problem: Is there a polynomial-time algorithm to recognize unit
stack visibility graphs?
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