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Abstract

We use dynamic programming to compute the domination num-
ber of the cartesian product of two directed paths, P and P, for
m < 25 and all n. This suggests that the domination number for
min(m,n) > 4 is |(m + 1)(n + 1)/3] — 1, which we then confirm
by showing that this is both an upper and a lower bound on the
domination number.
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1 Introduction

A vertex v dominates vertex w in a digraph G if (v,w) is an arc of G. A
dominating set S for a digraph G is a subset of the vertices of G with the
property that every vertex v is in S or is dominated by some vertex in S.
The domination number of G, v(G), is the minimum size of a dominating
set.

Let ?n denote the directed path on n vertices; the complete directed
grid graph G is the product P,, x P,. Fisher [3] used a dynamic
programming algorithm to compute ¥(G, ) for m < 21 and all n, where
Gm,n is the undirected grid graph. In particular, when 16 < m < 21, he

found that (m+2) 2)
. +
7(Gm,n) =MU = [ﬂ—T‘m—J — 4.

Chang (1] showed that «y is an upper bound for (G, ) when min(m, n) >
8, and conjectured that it gives ¥(Gm,) exactly when m and n are large
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enough. Fisher conjectured that in fact vy is the correct value for Y(Gm,»)
when min(m, n) > 16. Guichard [4) showed that I_L'"—“%MJ —9is a lower
bound for the domination number, and Gongalves et al. [2] have recently
confirmed the conjecture by improving the lower bound to [MMJ —4.
We use similar techniques to compute the domination numbers of 8,,. n for
small m and all n, and then to confirm that the domination number for
min(m,n) >41is {(m+1){(n+1)/3] — 1.

2 Exact values

Our approach is very similar to Fisher [3]. We picture 3m,n as consisting
of n columns of m vertices each, with all arcs directed down or to the right.
Given a subset S of the vertices, we code the state of a column as a vector
81, 82,- - .,5m, Where s; = 0 if the ith vertex (from the top) in the column
is in S; s; = 1 if the ith vertex is not in S but is dominated by an element
of S, and s; = 2 otherwise. If s and t are states, we say s > t if s; < ¢;
for all 4; a column in state s is “more dominated” than one in state t. An

s-domination of G, ,, is a set of vertices that dominates G, 5, and leaves
the last column in state s. An s-overdomination of 3,,, n is a set of vertices
that dominates -8,,," and leaves the last column in state u, u > s. Let

Yn(8) be the minimum size of an s-domination of Efm,,, and 75 (s) the
minimum size of an s-overdomination. Then v;(s) = miny,>,ya(u), and

y(_G*,,.,,.) = vn(1), where 1 is the state consisting of all ones.

We use Fisher’s algorithm, modified slightly for directed grid graphs.
For the current section, we need only consider state vectors consisting of
zeros and ones. Denote the number of zeros in state s by |s|, and define
P(s), the set of previous states of s, to be the possible states for column

n —1 in an s-domination of 8,,,,". It is easy to see that t € P(s) if and
only if

o 0 ifs;j=1and s;_; =1
"7 ]0or1 otherwise,

where, for convenience, we let up = 1 for all states u. Then ¥(s), the
minimum previous state of s, is

0 ifs;>0ands;_; >0
(o) = {1 otherwise.

That is, t € P(s) if and only if t > ¥(s). Let u > s if for some i, u; = 5; — 1
and u; = s; for j # 1.
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The algorithm is:
Initialization. Let v§(s) = 0 if s > 1, and ~§(s) = oo otherwise.

Iteration. Compute v;(s) = min(|s|+v;_, (¥(s)), nll)i_n () i=1,...,n.
8 8

Domination number. 7(6,-,,,,1) = y*(1).

The correctness of the algorithm depends on a theorem of Fisher, mod-
ified for the directed case, which we include for completeness. In fact, the
theorem is simpler for us, since we need consider only states consisting of

zeros and ones.

Theorem 1. 7;(s) = min(|s| + 7,1 (¥(s)), min ;(s'))-

Proof. We have first that
* < = i
T (8) < mm(s) = [s] + Sin, Y-1(t)

=|s i -
s+ min 71 (t)

= |s| + ya-1(#(s)).

Second, y;(s) < vx(s’) for all s’ > s, by definition of ¥*. Thus, v, <
min(|s| + v;_1(¥(s)), min 1 (s")).

For the reverse inequality, there are two cases. If v%(s) = v, (u) for some
u > s, then there is an s’ such that u > s’ > s, so Y(s') = Y= (u) = ¥4(s).
Otherwise, 7;(s) = Ya(s), and Yn(s) = |s| + v54_,(¥(s)). This completes
the proof. 0

With this algorithm, we can compute 7(3,,,,") for any m and n, pro-
vided with enough computational time. Suppose that for some values g,
p, and ng we find that v; (s) = g + vn,_,(s) for all s. Then ¥(Gm,n) =
g+ 7(8m,n_p) for n > ng, that is, we have found 7(8”.,7,) for a single m
and all n. Of course, if ng is very large, this will not help, but in practice
it appears that ng is small when m is small. (Conceivably, there is no such
ng for some values of m. In the undirected case, Fisher showed that such
an ng does always exist, and this is likely true here as well, but we don’t
need such a theorem.)

We implemented the algorithm in C, and on a modestly fast computer
found v(G m,n) for 1 £ m < 25 (memory is more limiting than speed). We
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found that

rn/2'l m:l,nZ].
n m=2,n22
7(8";,1!) = l‘sn/4‘| m=3,n>3

[m+1)(n+1)/3] -1 4<m<2B,n>m

Since Gm,n = Gn,m, these results are valid with m and n interchanged
as well. For m < 5, the domination numbers have been independently
discovered by Shaheen [5].

3 An upper bound

We label the vertices of 8,,1,,, with pairs of integers, assigning (r,¢) to the
point in row r and column ¢, with (1, 1) at the upper left corner. We present
dominating sets of size |(m + 1)(n + 1)/3] — 1 for Gmn. There are three
cases, depending on the residues of m and n modulo 3. We assume n > m;
since G n = Gn,m, the result applies without this restriction as well.

Figure 1: Dominating set when m =2 or n = 2.
Case 1. When m = 2 (mod 3) or n = 2 (mod 3), the set consists of:

1. Points (1,:) and (,1), where ¢ =0 (mod 3)
2. Points (1,4) and (%,1), where i =1 (mod 3).

3. Points on diagonals beginning at each of the points in (2), that is,
(1+7,i+5) and (i+4,1+7), wherei=1 (mod 3) and j =0,1,2,....
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See Figure 1 for a 14 x 18 example with a dominating set of size 94. Note
that the arrows on the arcs have been suppressed; all arcs are directed down
or to the right. In general, the size of this set is

3 3

L(m+(n—m) mod 3—-1)/3]

[T_J + [EJ +m (n—m— (n —m) mod 3 N 1) . l(m-Zl)/3J(m_3i)+

i=1

(m — 3i + (n — m) mod 3).

i=1

The third term counts the full diagonals; the fourth term counts the short
diagonals in the southwest; the last term counts the short diagonals in the
northeast; and the first two terms count the extra vertices in the first row
and column, that is, the points in item (1) above. Some rather tedious
algebraic manipulation (a computer algebra system is helpful) shows that
this expression is in fact equal to |(m + 1)(n +1)/3] — 1.

Figure 2: Dominating set when n =1 and m % 2.
Case 2. When n =1 (mod 3) and m # 2 (mod 3), the set consists of:

. Points (1,%) where i =2 (mod 3) and ¢ > 5.

. Points (1,%) where i =0 (mod 3).

Points on diagonals beginning at each of the points in (2).
Points (i,1) where i =1 (mod 3).

. Points (7,1) where ¢ =2 (mod 3).

. Points on diagonals beginning at each of the points in (5).

== N O YOO
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See Figure 2 for a 15 x 19 example with a dominating set of size 105. In
general, the size of this set is

Lm/3]

(2] - 1+ [5]+m (A0 S m - 1 -3 - 1)+
Lm/3) -
> @+33G-1).
i=1

The fourth term counts the full diagonals; the fifth term counts the short
diagonals in the southwest; the last term counts the short diagonals in the
northeast; and the first three terms count the extra vertices in the first row
and column. Again, some algebraic manipulation shows that this expression
is equal to |[(m + 1)(n+1)/3| — 1.

Figure 3: Dominating set when n =0 and m # 2.
Case 3. When n =0 (mod 3) and m £ 2 (mod 3), the set consists of:

Points (1,7) where i =1 (mod 3).

Points (1,7) where i =2 (mod 3).

Points on diagonals beginning at each of the points in (2).
. Points (4,1) where i =2 (mod 3) and i > 5.

. Points (4,1) where i =0 (mod 3).

. Points on diagonals beginning at each of the points in (5).

S s W
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See Figure 3 for a 15 x 18 example with a dominating set of size 100. In
general, the size of this set is

Lm/3)

13]-1+3] +m(n_m+3mm°d3)+ ; (m—2-3(i—1))+

Lm/3)
> (2+33E-1)).

i=1

The fourth term counts the full diagonals; the fifth term counts the short
diagonals in the southwest; the last term counts the short diagonals in the
northeast; and the first three terms count the extra vertices in the first row
and column. Again, some algebraic manipulation shows that this expression

is equal to [(m + 1)(n+1)/3] - 1.

4 The lower bound

A vertex in the graph E’,,,,,, dominates at most three vertices, including

itself, so certainly 7(8,,;',,) > nm/3. If we could keep the sets dominated by
individual vertices from overlapping, and use only vertices with outdegree
2, we could get a dominating set with nm/3 vertices, and indeed we can
arrange this for ‘most’ of the graph, as shown in the figures of the previous
section. At the edges we are forced to overlap some of the sets dominated
by individual vertices, and also to use some vertices with outdegree less
than 2.

Suppose S is a subset of the vertices of 3,“‘,.. Let N[S] be the set
of vertices v that are either in S or dominated by some w in S. Define
the wasted domination of S as w(S) = 3|S| — |[N[S]|, that is, the number
of vertices we could dominate with |S| vertices in the best case, less the
number actually dominated. When § is a dominating set, |N[S]| = mn,
and if w(S) > L then |S| > (L +mn)/3. Our goal is to find a lower bound
L for w(S) that leads to a lower bound on |S| equal to the upper bound.

Suppose 3,,,,,, is partitioned into five parts as shown in Figure 4, where
the widths of G, through G4 are the same, say i, and the lengths are m — 4
for G; and G4, and n — i for G; and G3. Let S be a dominating set for

mum, and let Sy = SN V(Gi). Then

5 4
w(S) > Y w(Sk) > Y w(Sk).
k=1 k=1
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Figure 4: Partitioned digraph 8,,,,".

Note that in computing w(Sk) we consider Si to be a subset of V(G), not
of V(Gi) (this affects the computation of N([Sk]). Since we expect that
w(Ss) = 0, we hope that we are not giving up anything in the second
inequality, but the first might well be strict, since the neighborhoods of two
of the S; may overlap.

Note that each Gy, itself is a directed grid graph. The sets Sy are not
necessarily dominating sets for the corresponding G, except when k = 1,
but they are in some sense “almost” dominating sets: they might not dom-
inate some vertices on the boundary of Gx. Using dynamic programming
algorithms we can compute min4, w(Ax), taking the minimum over sets Ay
that almost dominate Gy, in the appropriate way, and of course computing
w(A) in the context of the whole graph G, .. We can in fact do this for
fixed width i but arbitrary length using algorithms very similar to the one
in section 2; since 7 = 4 provides us with the bound we seek, we assume
from this point that the width of the Gy is 4.

The sets AP™ that realize the minimums ming, w(Ax) will not nec-
essarily have the form S N Gy for a dominating set S of Gy, n, but of
course w(Sk) > w(APM). Thus, Zz=1 APin will give us a lower bound
for 22=1 w(Sk), but not a best possible lower bound, and as noted above,
S4_; w(Sk) may be strictly less than w(S).

To improve the lower bound, we want to limit the sets Aj that we
consider, ignoring those that cannot arise from a dominating set S for the
entire graph, and also eliminate the underestimate induced by w(S) >
mel w(Sk), due to overlapping neighborhoods. Gongalves et al. [2] did
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this in the undirected case by paying careful attention to the boundaries
between the graphs G; through G4, and we do something similar here.
There are two issues at the boundary where G; meets G;, if we have in
hand two almost dominating sets A; and A;: some vertices which can only
be dominated by vertices in G; and G; may be left undominated, and the
neighborhoods of the two almost dominating sets may overlap, so that the
wasted domination is underestimated. Denote the union of G;, G2, Gs,

and G4 by Gpg, the boundary of 3,,,_,.. Then
w(S) > w(SNGpg) +w(S) > w(SNGp),
and our goal is to find a good lower bound for w(S N Gp).

Given a directed grid graph and a subset S of its vertices, we attach
a label to each vertex of the graph: O if the vertex is in S; 1 if it is not
in S but is dominated by an element of S, and 2 otherwise. Let us focus
our attention first on G;. As above, we picture G; = G4 ; as consisting
of 7 columns of 4 vertices each, with all arcs directed down or to the right.
Given a subset S of the vertices, we code the state of a column as a vector
(81,82, 83, 84), using the labels 0, 1, 2 as described.

Let » = (r1,72,73,74) be a state vector, and imagine that it describes
the status of the four vertices at the very left of row 5 in 8,,1,,,, immediately
below Gy, that is, the four vertices in the top row of G4. Let Ry be the
vertices labeled 0 by ». We interpret this state vector in isolation, so that the
vertices are labeled relative to the subset corresponding to the 0 elements
in r only.

An (7, s)-domination of 34,_,- is a set S of vertices that dominates 84,,-,
leaves the last column in state s, and is compatible with r; that is, the
elements of S together with the vertices labeled 0 by r dominate the first
four vertices of row 5. Specifically, any of these 4 vertices labeled 2 must
have a vertex of § immediately above in row 4. We want to compute
the minimum possible value of w(S) over (r, s)-dominations S, computing
w(S) in the context of Ry, namely, we set w(S) = 3|S| — |N,[S]|, where
N,[S] is N[S] — N[Ry}. Denote this minimum by w, ;(r,s). Note that this
calculation addresses both issues at the boundary between G, and Gy.

Denote the number of zeros in state s by |s|, and define P;(r,s), the
set of previous states of s, to be the possible states for column 7 — 1 in an

(r, s)-domination of G4 ;. The set P;(r,s) depends only on s, not on r or
J» when j > 5. In outline, an algorithm to compute w, ;(r, s) for any j is
this:

1. Initialization. Set w;(r,s) = 0 if s = 1 (the vector of all 1s), and
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oo otherwise.
2. Iteration. For k& > 0, for each s, compute wy x(r,s) = min )(3|s] -

tePj(r,s
nd(t, s} + wy k—1(r, t)).

In essence, to compute w; (7, s), we are forming dominating sets S,
by adding elements of column k to a dominating set S; of the first £ — 1
columns, computing w(S;), and minimizing over all ¢.

In the iteration step, the terms 3|s| — nd(t, s) represent the increment
to the wasted domination when new vertices in column k are added to S;,
namely those labeled 0 by s. The term 3|s| reflects the potential number
of new vertices that are dominated, and nd(t, s) is the number of vertices
that are newly dominated when a column with state s is appended. This is
of course computed in the context of r as explained above: “newly domi-
nated” means dominated by a vertex in column % labeled 0, but not already
dominated by a vertex of S; U Rg. The value of nd(t, s) depends on s and
t but not k once k > 5, that is, once the influence of + disappears.

With this algorithm we may compute w; j(r,s) for all r and s and any
j, given enough time. But suppose that for some values g, p, and jo > 5+p
we find that wy jo(r, 8) = g + w1, jo—p(r, 8) for all 7 and s. This allows us
to compute wy,;(r,s) for all 7, s, and j after a finite amount of time. Of
course, if jo is very large (or does not exist), this will not help, but in
practice it appears that jo is small when i is small, and in particular when
i = 4. When we run the algorithm, we find that wy 19(7, 8) = 24+wy,16(, 8),
which implies that wy ;(r,s) = 2 + wy,;_3(r, s) for j > 19, so the values of
w116, W1,17, Wy,18 Suffice to compute all wy 5, j > 19.

We can do the same thing for the other three graphs, G2, G3, G4. The
algorithm in each case is slightly different, though it has the same form. We
describe briefly the differences. Instead of working with G, as it appears,
with 4 columns, we work with its transpose G'%", so that it is very much
like G;. The input word r we now imagine to describe the four vertices
immediately above the beginning of the first row in G3, namely, the right-
most column of G;. We are now interested in sets Ap that almost dominate
GT: vertices in the first row are allowed to remain undominated, as they

can be dominated by vertices of G in the full graph ’c':’m,,,. The first four
vertices in the first row, however, must be dominated either by A; or by
the vertices in Ry, that is, Ao must be compatible with 7. As before, we
compute wy ;(r, s) by taking r into account. When we run this algorithm
we find that wa 11(r, 8) = 1 4 wo (7, 8) so that wg ;(r, 8) =1 4+ ws ;_3(r, s)
when j > 11.

152



For G3, the algorithm changes somewhat more; the input word is now
above the “wrong” end of the gx;iii, so we work essentially with the mirror
image of G3, which we denote G3. Since this means the horizontal arcs
are directed right-to-left, some adjustment is required to compute P; and
nd(¢,s), but both are straightforward. The vertices in the top row may
be undominated by A3, and also the last column, with state s, may have
undominated vertices, as they might be dominated by vertices of G4. As
before, we consider only those sets compatible with 7: the first four vertices
in the top row of G3 must be dominated either by A3 or by the vertices
described by . When we run this algorithm, we find that ws;3(r,s) =
1 + wg,10(r, ). Since G5 always has the same size as G, we will make use
of this fact starting at 19, that is, we note that ws ;(r, s) = 1 +ws ;j_3(r, s)
when j > 19.

Finally, for G4, we work with the mirror image of the transpose. Now
all vertices of G4 must be dominated by A4 except those in the last column,
as they may be dominated by vertices of G;. We find that wy,16(r,s) =
2 + wy,13(7, s) so that wy j(r,s) = 1 + wy j_3(r,s) when j > 16. Since G,
and G4 are the same size, we note that this applies to ws ; as well.

Once we discovered the point at which the periodicity of each w; ; be-
gins, we used slightly modified programs to save all values of wj 16, 1,17,
w1,18, W2,13, W2,14, W2,15, W3,16, W3,17, W3,18, W4,13, W4 14, a0d wy 15 to disk
files. Then we wrote an additional program to read all of these values in
and compute the nine values

Map = Min (wya(r,s) +w2,5(5,t) +waa(t,w) + wap(u,r))

for a =16,17,18 and b = 13,14,15. If S is a dominating set for 85.,.4‘0.,.4,
then w(S) > w(SNGpg) = mq s, so
mn + ma’b-l

’Y(ab+4,a+4) 2 l- 3
for a = 16,17,18 and b = 13,14, 15. When we do the computation, we find
that these lower bounds are [(m +1)(n+1)/3] — 1, for m = 17,18,19 and
n = 20,21, 22.
We know that wy o(7, 8) + w3,q(t, u) = 34w o—3(r, 5) + w3 q-3(t,u) and
wa b(7, 8) +wap(t, v) = 3+wop_3(r, s)+wap—3(t, u), so by a straightforward
induction we see that

'Y(am,n) > {mn+ Tr;,._4,m_4] _ l(m+ 1:)3(n + I)J 1

for all m > 17 and n > 20. This finishes the proof.
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