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Abstract

An oriented colouring of a directed graphs is a vertex colouring in
which no two adjacent vertices belong to the same colour class and
all of the arcs between any two colour classes have the same direc-
tion. Injective oriented colourings are oriented colourings that satisfy
the extra condition that no two in-neighbours of a vertex receive the
same colour. The oriented chromatic number of an unoriented graph
is the maximum oriented chromatic number over all possible orien-
tations. Similarly, the injective oriented chromatic number of an
unoriented graph is the maximum injective oriented chromatic num-
ber over all possible orientations. The main results obtained in this
paper are bounds on the injective oriented chromatic number of two

dimensional grid graphs.

1 Introduction

This paper discusses the oriented chromatic number and injective oriented
chromatic number of two dimensional grid graphs, denoted G(n,m). In [4]
Fertin, Raspaud and Roychowdhury discuss bounds on the oriented chro-
matic number of grid graphs with two vertices in each row, G(n, 2), three
vertices in each row, G(n, 3), and the general grid graph with n rows and
m columns, G(n, m). Szepietowski and Targan [14] use a computer to show
that every orientation of G(n,4) admits an oriented colouring with at most
seven colours. These works are extended here by considering bounds of
injective oriented chromatic numbers of grid graphs. We also obtain an
upper bound of the oriented chromatic number of G(n, 4) whose proof does
not rely on computers.
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The terminology and notation of Bondy and Murty [1] is followed unless
otherwise stated. The term graph here refers to a simple graph, meaning
a graph with no loops or multiple edges. An orientation of a graph or an
oriented graph, G, is obtained by assigning one of two possible directions
to each edge of a graph G. In particular, G consists of a set of vertices
V(G) = V(G), and a set of ordered pairs of vertices called arcs, A(G),
where T3 denotes an arc from z to y and zy € E(G). A directed path
on vertices vy,va,...,V,, Where n > 2, is an oriented path, v,va,...,vn
such that 7751 € A(G) for all 1 < i < n—1 or 7717, € A(G) for all
1<i<n-—1. A2— path is a path of length two, vivaus where v, is the
middle vertez. Let G(n,m) be a grid graph with n rows and m columns
and G(n, m) be an orientation of G(n,m). We define a vertex of G(n,m)
by its coordinates (s,t) where 1 < s <n and 1 <t < m; there is an edge
between (%, j) and (p,q) ifand only if [p—é|=1andg=jor|g—-j|=1
and p = 1.

Oriented colourings are a type of vertex colouring in which no two ad-
jacent vertices belong to the same colour class and all of the arcs between
any two colour classes have the same direction, i.e., for any oriented graph
G, if z,y,w, z are assigned colours ¢(z), (w),c(y) o(z), respectlvely such
that ¢(z) = c(w), c(y) = c(z) and 7 € A(G), then z@ ¢ A(G). Injective
oriented colourings are oriented colourings that satisfy the extra condition
that no two in-neighbours of a vertex receive the same colour.

Let G be a graph and G an orientation of G. The oriented chromatic
number of G, denoted x(G), is the smallest number of colours required for
an oriented colouring of G. The oriented chromatic number of G, denoted
x%(G), is the maximum oriented chromatic number over all possible orien-
tations of G. To determine upper bounds on ¥(G) it is enough to consider
%(G) for an arbitrary orientation G of G. Similarly, the injective oriented
chromatic number of G, denoted ¥;(G), is the smallest number of colours
required for an injective oriented colouring of G, and the injective oriented
chromatic number of G, denoted x;(G), is the maximum injective oriented
chromatic number over all possible orientations of G. To determine upper
bounds on x;(G) it is enough to consider %:(G) for an arbitrary orienta-
tion G of G. For convenience, an injective colouring refers to an injective
oriented colouring.

Raspaud and Sopena [12] prove that the oriented chromatic number of
any oriented planar graph is at most 80. Marshall 8] provides examples
of planar graphs whose oriented chromatic numbers are at least 17. There
is a large gap between these upper and lower bounds. Many authors have
considered special classes of planar graphs (9, 2, 4, 11]. It has been shown
that the oriented chromatic number of a planar graph with girth four is at
most 47 [3]. Finding good upper bounds for oriented chromatic numbers of
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special classes of planar graphs has proven to be challenging [10]. Recently,
there has been interest in injective oriented colourings [6, 7]. MacGillivray,
Raspaud and Swarts (7] give an upper bound (which it tight) for the injec-
tive oriented chromatic number of oriented trees, in terms of the maximum
in-degree of the vertices. They also describe graphs whose injective oriented
chromatic numbers are equal to the number of vertices of the graph. Here
we provide an upper bound, without the aid of a computer, for the oriented
chromatic number of grid graphs with n rows and 4 columns. We also give
upper bounds for the injective oriented chromatic numbers of grid graphs
with specific dimensions. In particular, this paper deals with bounds for
the injective oriented chromatic numbers of grid graphs with n rows and 2,
3, and m > 4 columns.

Our results are obtained by considering oriented and injective oriented
colourings in terms of homomorphisms of directed graphs, or digraphs. The
reader may wish to consult Graphs and Homomorphisms [5] for a great
reference_ on homomorphisms. A homomorphism from a digraph Gtoa
digraph H is a mapping from the vertex set of G to the vertex set of A that
preserves arcs. An injective homomorphism is a homomorphism where no
two in-neighbours of a vertex have the same image. An oriented colouring of
a digraph G can be thought of as 2 homomorphism from an oriented graph
G to an oriented graph H. Here the vertices of the target graph H (the
homomorphic image) are treated as colours, where we label the n vertices
of H with {0,1,2,3,...n — 1}. In particular, if a vertex of G is mapped
to vertex ¢ of the target graph it receives colour i. Saying that there exists
an H- colouring of a graph G means that there exists a homomorphism
from G to H. Similarly, an injective colouring of an oriented graph G
can be thought of as an injective homomorphism from an onented graph
G to an oriented graph H. We say there is an injective H- colouring of
an oriented graph G if there is an injective homomorphism from GtoH.
The oriented chromatic number of an oriented graph G is the minimum
number of vertices required for an oriented graph H so that there exists
a homomorphism from G to H. The injective oriented chromatic number
of an oriented graph G is the minimum number of vertices required for an
oriented graph H so that there exists an injective homomorphism from G
to H.

2 Preliminary Results

Oriented chromatic numbers of graphs have been extensively studied (see,
for example, [2, 11, 13]). The oriented chromatic number of grid graphs
has been considered in [4, 14]. Fertin, Raspaud and Roychowdhury prove
the following.
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Figure 1: T

e For any n > 4, ¥(G(n,2)) =6.
e For any n > 6, 6 < ¥(G(n,3)) < 7.
e For any n > 5and m > 4, 7 < ¥(G(n,m)) <11,

Fertin, Raspaud, and Roychowdhury [4] prove that X(G(n,3)) < 7 by
providing a homomorphism from @(n, 3) to T, the quadratic residue tour-
nament on seven vertices, i.e., V(IT7) = {i | 0 < i < 6} with d*(v) =
d=(v) = 3 for all v € V(T7) and i3 € A(T%) if and only if § —i(mod 7) €
{1,2,4} (see Figure 1). Szepietowski and Targan [14] provide an orientation
of G(7,3) whose oriented colouring requires seven colours, allowing one to
conclude that X(G(n,3)) = 7 for n > 7. Szepietowski and Targan [14] use a
computer search to prove that every orientation of G(n,4) can be mapped
to T7.

Here, we describe an alternate homomorphism to colour G(n, 3) with T,
even though the result is already established. It is included here because
it was the motivation behind the techniques that are used to obtain the
upper bounds for ¥(G(n,4)), Xi(G(n,2)) and Xi(G(n,3)). Describing this
alternative homomorphism provides insight into the colour method that is
used for the main results of this paper.

Proposition 1. Let u and v be distinct vertices of T7. Then for each
orientation of a 2-path, there exists at least one such 2-path between u and
v.

Proof. Since T is vertex transitive, it is enough to observe that there is an
entry in every row and column of Appendix A, Table 2. O
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Figure 2: Colouring G(n,3) with T

Lemma 2. Let H be a digraph such that d*(v) > 1 and d—(v) > 1 for any
v € V(H). Then there exists an H-colouring of any oriented path.

Proof. Let P = vjvg---vs be an oriented path. We proceed by describing
a homomorphism, ¢, from P to H. Let ¢(v;) = ¢ for any ¢ € V(H). If
7798 € A(P), then let c(vs) be any vertex in N*(c(v;)). This is always
possible since d*(c(v;)) > 1. Similarly, if 7357 € A(P) then let c(v;) be
any vertex in N~ (c(v1)). This is always possible since d~(¢(v2)) = 1. By
induction, the remaining vertices of P can be coloured with H. 0O

Lemma 3. Foralin > 1, ¥(G(n,3)) < 7.

Proof. We construct a homomorphism from é(n, 3) to Ty by proceeding
with induction on the number of rows of G(n,3). For convenience, let
z; = (i,1), i = (4,2), z; = (,3) be the vertices in row i of G(n,3), as
illustrated in Figure 2.

When n = 1, G(1,3) is an oriented path. By Lemma 2 there is a T7-
colouring of G(1,3) since d~(v) = d*(v) = 3 for all v € V(T%).

Assume that for some ¢ > 1 there exists a homomorphism, ¢, from
G(i,3) to Ty. We proceed by extending ¢ to a Ty-colouring of é(z +1,3).

First colour yi41. If 7t € A(G(+1, 3)), then colour y;4; arbitrarily
with one of the colours in N*(c(y;)) \{c(z:), c(2:)}. This is possible because
d*(c(y;)) = 3. We do not want to colour y;;; with ¢(z;) or ¢(z;) because
TiTit1Yi+1 OF ZiZiy1Yi+1 could be directed paths in
G(i +1,3). Similarly, if 7i717; € A(G(i + 1, 3)), then colour y;;; with one
of the colours in N~ (e(y:)) \ {c(z:i),e(2:)}. Next, by Proposition 1, there
exists a path ¢(z;) p e(yi+1) in T7 with the same orientation as z;zi+1¥i+1-
Similarly, there exists a path ¢(2;) g ¢(yi+1) in Ty with the same orientation
8s ziZi+1Yi+1. Set ¢(zi41) = g and ¢(zit1) = p.

Since a Ty-colouring of G(i,3) can be extended to a Ty-colouring of
é(z + 1, 3), it follows by induction that é(n, 3) can be coloured by T7 for
all n > 1. Therefore ¥(G(n,3)) < 7. O
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3 Properties of Tj

The results of this section are used to obtain upper bounds on x;(G(n,2))
and ¥(G(n,4)). Consider Ty, a vertex transitive tournament on nine ver-
tices_v)vith V(To) ={i|0<i<8},dH(v) =d (v) =4 for all v € V(Tp),
and ij € A(Ty) if and only if j —i(mod 9) € {1,2,3,5}. This graph will be
used as a target graph for Theorems 8 and 12. Appendix A, Tables 3 and
4, are supplied to aid the reader in verifying the following propositions.

Proposition 4. Let u and v be distinct vertices of Tg. Then for each
orientation of a 2-path, there exists at least one such 2-path between v and
v.

Proof. Since Ty is vertex transitive, it is enough to observe that there is an
entry in every row and column of Appendix A, Table 4. O

Proposition 5. For distinct u,v € V(Ty), IN"(u) NN~ (v)] £2 and
IN*(u)n Nt(v)| < 2.

Proof. Since Ty is vertex transitive, it suffices to consider the case © = 0.
From Appendix A, Table 4, Columns 1 and 3, we see that [N+ (0)NN*(v)| <
2 and [N~ (0) N N~ (v)| <2, for all v # 0 and the result follows. a

Proposition 6. Let t,u,v and w be distinct vertices in Ty. For each ori-
entation of a 2-path, there erists two such 2-paths between {t} and {u,v, w}
whose middle vertices are distinct. In particular,

INt (@) N (NT(w)UN*(u) U NT(w))| > 2,

IN=(t) N (N*+(v) UN*(u) UN*(w))] 2 2,

IN=(t) N (N~ (v) UN~(w) UN~(w))| 2 2,

IN*&)N(N~(v) UN~ () UN~(w))| > 2.

Proof. The property can be observed by noting that the union of any three
distinct rows in any column of Appendix A, Table 4 has at least two vertices.
O

Proposition 7. Let u,v and w be distinct vertices in Ty. Then there
erist two directed 2-paths from {u} to {v,w} whose middle vertices are
distinct, and two directed 2-paths from {v,w} to {u} whose middle vertices
are distinct. In particular,

INt(u) N (N~ (v) UN~(w))| = 2 aend [N~ (u) N (N (v) UNt(w))| > 2.

Proof. Since Ty is vertex transitive, it suffices to consider N*(u)N(N~(v)u
N~ (w)) for u = 0. If v or wis in {3,4,5,6,7,8}, then an inspection of
Appendix A, Table 4, Column 2 reveals that |[N*(0) N N=(v)] > 2 or
INt(0) N N~(w)| > 2. It follows that |[N*(0) N (N~ (v) U N~ (w))| > 2.
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Otherwise, {v,w} = {1,2} and [N*(0) " (N~ (1) U N—(2))| = |{1,5}] = 2.
The result follows.

Now consider N~ (u) N (N*(v) U N*(w)) for u = 0. If v or w is in
{1,2,3,4,5,6}, then an inspection of Appendix A, Table 4, Column 4 re-
veals that [N=(0) N N*(v)| > 2 or [N=(0) n Nt(w)| > 2. It follows
that [N~=(0) N (N+(v) U N*(w))| > 2. Otherwise, {v,w} = {7,8} and
IN*0)N(N~(7) U N—(8))| = |{4,8}| = 2. Again, the result follows.

a

4 Every orientation of G(n,4) can be mapped
to Tg

Fertin, Raspaud and Roychowdhury [4] provide an orientation of G(5, 4)
whose oriented chromatic number is seven. Szepietowski and Targan [14]
use a computer to show that every orientation of G(n,4) can be mapped
to T%. Here we show, without the aid of a computer, that every orientation
of G(n,4) can be mapped to Tp.

Theorem 8. For all n > 1, there exists a Ty-colouring of G(n, 4).

Proof. We proceed by induction on the number of rows of G(n,4). For
convenience, let w; = (4,1),z; = (4,2), ¥; = (1,3), z; = (i,4) refer to row i
of G(n,4) (see Figure 3).

In the case n = 1, notice that G(1, 4) is an oriented path. Since dt(u) =
d~(u) = 4 for all u € V(Tp), Lemma 2 ensures there is a Ty-colouring of
GQ,4).

Assume that for some i > 1 there exists a homomorphism, ¢, from
G(i,4) to Ty. We proceed by extending ¢ to a To-colouring of G(i + 1,4).
Step 1. Determine possible colours for y;4;.

If Girt € A(GG +1,4)), let S = N*(c(y:)) \ {e(z:),e(z:)} be the
set of possible colours for y;41. Similarly, if 77777, € A(G(n,4)), let S =
N=(e(y:)) \ {c(zi),c(zi)} be the set of possible colours for yi+1. Since
dt(v)y=d (v)=4foranyve Ty, |S|>2.

Step 2. Colour y;4 and z;4;.

If |S| > 2, Proposition 6 guarantees that there are paths c(z;) p1 a;
and c(z;) p2 a2 in Ty having the same orientation as z;T;1¥:4+1, Where
aj,az € S and p; # pz. At least one of p; and p; is not equal to c(w;).
Choose j € {1,2} so that p; # c(w;). Set ¢(z;41) = p; and e(yi+1) = a;.

If |S| = 2 and z;zi41Yi+1 is a directed path, then Proposition 7 guar-
antees that there are paths c¢(z;) p1 a1 and ¢(z;) p2 a2 in Ty having the
same orientation as z;Z;y+1¥i+1, such that a;,a; € S and p; # p2. Choose
J € {1,2} so that p; # c(w;). Set c(zit1) = p; and c(yit1) = a;.
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Figure 3: Colouring G(n,4) with Ty

Finally, if |S| = 2 and z;z:+1¥i41 is not a directed path, then c(z;) is
a possible colour for y;;; so set S := S U {c(z:)}. Now |S| > 2 and we
proceed as before.

Step 3. Colour w4, and z;41.

By Proposition 4, there exists a path c(yi+1) p ¢(2i) in Tg with the
same orientation as yiy1zi412i. Set ¢(zi+1) = p. Also, there exists a
path ¢(zi+1) ¢ c(w;) in Tg with the same orientation as z; w4 w;. Set
c(wi+1) = g

Since a Ty-colouring of G(i,4) can be extended to a Ty-colouring of
G(i+1,4), it follows by induction that there exists a Tg-colouring of é(n, 4)
foralln > 1. (]

5 General bounds on x;i(G(n,m))

We now direct our attention to injective oriented colourings of two dimen-
sional grid graphs. Since injective colourings are oriented colourings, similar
techniques are used for describing homomorphisms, and additional care is
taken to ensure that no two in-neighbours of a vertex have the same image.

We begin by considering the general case for n rows and m_columns,
X:(G(n, m)). Here we provide an injective homomorphism from G(n, m) to
a graph with 23 vertices. Fertin, Raspaud and Roychowdhury [4] provide
an orientation of G(5,4) whose oriented colouring requires seven colours,
while Szepietowski and Targan [14] provide an orientation of G(7,3) whose
oriented colouring requires seven colours. Hence 7 < x;(G(n,m)) forn > 5
and m > 4, or n > 7 and m > 3, since an injective colouring is an oriented
colouring. Combining the two results we conclude that 7 < x;(G(m,n)) <
23forn>5and m>4,orn>7and m 2> 3.

Our target graph for injective colouring of the general two dimensional
grid is Th3, a vertex transitive tournament on 23 vertices w1th V(Tas) =
{i]0 <i<22},d*(u) =d (u) =11 for all u € V(I33), and 7 € A(Ty) if
and only if j — i (mod 23) € {1,2,3,4,6,8,9,12,13,16,18}. Note that T3
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is a quadratic residue tournament.

Lemma 9. Let H be a digraph such that d* (v) 22 and d=(v) > 2 for any
v € V(H). Then there exists an injective H- colouring of any oriented path.

Proof. Let P = vyvy-- - v, be an oriented path. We proceed by describing
a hornomorphlsm, ¢, from P to H. Begin by setting ¢(v;) = i for any
i € V(H). If 5705 € A(P) then let c(v;) be any colour in N*+(c(v1));
otherwise let c(v2) be any colour in N~(e(v1)). This is always possible since
d*(c(v1)) > 2 and d~(c(v1)) = 2. If 7303 € A then let ¢(v3) be any colour
in N*(c(vz)); otherwise let ¢(v3) be any colour in N~ (c(v2))\ {c(v1)}. This
is always possible because d*(c(v2)) > 2 and d~(¢(vz)) > 2. By induction
we can colour the remaining vertices of P.

O

Proposition 10. Let u and v be distinct vertices of Toz. Then for each
orientation of a 2-path, there exist at least five such 2-paths between u and
v whose middle vertices are distinct.

Proof. Since Tp3 is vertex transitive, it is enough to consider u = 0 and
observe that there are at least five entries in every row and column of
Appendix A, Table 8. (]

For Tyg, a vertex transitive tournament on 19 vertices with V(Tyg) =
{i]0<i<18}, d*(u) =d-(v) = 9 for all u € V(T), and 7] € A(T}o)
if and only if j — i(mod 19) € {1,4,5,6,9,11,16,17}, we have |[N*(0) N
N*(1)| = 4. Therefore, Ty3 is the smallest quadratic residue tournament
that exhibits the property in Proposition 10.

Theorem 11. For all n,m > 1, x:(G(n,m)) < 23.

Proof. We proceed by induction on the number of rows, n of C_;"(n,m) for
any given number of columns, m. For convenience, let z; ; = (%, j) refer to
the vertex in row ¢ and column j.

In the case n = 1, G(1,m) is an oriented path. Lemma 9 ensures that
there is an injective Ths-colouring of G(1, m), since d*(v) =d~(v) =11 for
all v € V(Ty3).

For n = 2 (see Figure 4), assume that the first row of G(2,m) has been
coloured with Tb3, i.e., there is a homomorphism, ¢, from é(l, m) to Ta3.
Step 1. Colour za,,. If Z3:Z11 € A(G(2,m)), then colour z;; with any
colour in N~ (¢(x1,1)) \ {c(21,2)}. Similarly, if z77751 € A(G(2, m)), colour
Z2,1 with any colour in N*(e(z1,1)) \ {¢(z1,2)}. Note that there are ten or
more colour choices for x5, since d*(u) = d~(u) = 11 for all u € V(T53).
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Figure 4: Injective To3 colouring of G"(2, m).
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o L

Ti-1,1 Ti-1,2 Ti-1,5 Ti-1,m

Figure 5: Injective T3 colouring of G(1 + 1,m).

Step 2. Colour z32. Proposition 10 guarantees that there is a path
c(z2,1) p ¢(z1,2) in Toz with the same orientation as x5 Z22 z)2 so that
p & {c(z1,3),c(z1,1)}. Set c(z2,2) =p.
Step 3. Colour z3; for 2 < j < m — 1. Proposition 10 guarantees that
there is a path c(z2;-1) p ¢(z1,;) in To3 with the same orientation as
Z3,j-1 T2, T1,j such that p ¢ {c(a:l,j_l),c(xl,j.;.l),c(:r:g'j_g)}. Set c(:cz,j) =
.
Step 4. Finish by colouring z3 ;. Proposition 10 guarantees that there is a
path ¢(z2,m-1) p ¢(Z1,m) in T2z with the same orientation as 2 m—1 Z2,m T1,m
0 that p ¢ {c(@1,m—1), ((T2,m-2)}. Set c(&2,m) = p.

Hence we have an injective Ths-colouring of G(2, m) and we conclude
that x;(G(2,m)) < 23.

Suppose i > 2 and there exists an injective Tys-colouring of G(i, m), i.e.,
there exists a homomorphism, ¢, from G(i, m) to Tas. To colour G(i+1, m),
proceed as follows (see Figure 5).

Stepl. Colour ziy1,1. If Tiypa7it € A(G(i + 1,m)), then colour z;i1,
with any colour in N~ (c(z:,1))\{c(z:,2), c(xi-1,1)}. Similarly, if 77 1Zi71.1 €
A(G(i + 1,m)), colour z;41,; with any colour in N+ (¢(zi1) \ {c(x:,2))}

Step 2. Colour z;41,2. Proposition 10 guarantees that there is a path
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c(Zit1,1) p c(ziz2) in Tp3 with the same orientation as z;y1,1 Tit1,2 Ti2
such that p & {c(z:,1), c(zi3), ¢(zi-1,2)}. Set c(ziy1,2) = p.
Step 3. Colour zi41; for 2 < j < m — 1. Proposition 10 guarantees that
there is a path ¢(zi41,j-1) P ¢(zi,;) in To3 with the same orientation as
Tit1,j-1 Ti+1,j Ti,j Such that p & {e(zit1,5-2), c(Ti,5-1), e(Zi-1,5), e(2i,541) }-
Set c(Zit1,5) =P
Step 4. Finish by colouring z;11,m. Proposition 10 guarantees there is a
path ¢(zi41,m—1) P ¢(zim) in To3 with the same orientation as
Tit1,m—1 Ti+1,m Ti,m such that p & {c(Tiy1m—2), &(Tim—1), c(Tim1,m)}. Set
c(Tiy1,m) =P

We have extended an injective Ta3-colouring of G(s, m) to an injective
Tas-colouring of G(i + 1,m). Therefore by induction, there exists an in-
jective Toz-colouring of G(n,m) for all n > 1, m > 1. We conclude that

xi(G(n,m)) < 23. ]

6 Bounds on x;(G(n,2))

We now restrict the size of G(n, m) to m = 2 to improve the upper bound
on xi(G(n,2)). Here we provide an injective To-colouring of G(n,2) so
that xi(G(n,2)) < 9 for n > 1. An orientation of G(2,4) provided by
Fertin, Raspaud and Roychowdhury [4] shows that ¥(G(4,2)) = 6. Since
an injective colouring is an oriented colouring, x:(G(n,2)) > 6 for all n > 4.
Combining the two results we have 6 < xi(G(n,2)) < 9 for n > 4.

Theorem 12. For alln > 1, xi(G(n,2)) <9.

Proof. We construct an injective To-colouring of G(n, 2) by proceeding with
induction on the number of rows of G(n, 2). For convenience, let z; = (,1),
i = (i,2), refer to row i of G(n, 2).

In the case n = 1, G(1,2) has just one edge. Choose any edge in Ty and
colour the vertices of G(1,2) accordingly.

For n =2, @(2, 2) forms an oriented 4-cycle, C = stuvs. To prove that
there is an injective Ty-colouring of C, we consider three cases: C is oriented
so there are two vertices with indegree two, one vertex with indegree two,
or no vertices with indegree two.

If C is oriented so that there are two vertices with indegree two, then
these vertices are not adjacent, and so without loss of generality assume
d~(v) = d~(t) = 2 (see Figure 6). Then ¢(s) =0, c(t) =1, c(u) = 5 and
¢(v) = 1 is an injective Tg-colouring of C. If C has one vertex with indegree
two, then without loss of generality, assume that v is the vertex of indegree
two, as depicted in Figure 7. There are two non-isomorphic orientations to
consider. For Figure 7(a), c(s) = 8, ¢(t) = 7, c(u) = 4, and c(v) =0 is an
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c(v)=1 c(u)=5

Figure 6: G(2,2) with two vertices of indegree two.

c(v)=0 c(u) =4 c(v)=0 c(u) =4

c(s)=8 c(t) =17 c(s) =7 c(t) =2
(a) (b)

Figure 7: G(2,2) with one vertex of indegree two.

injective Ty-colouring of C. In Figure 7(b), ¢(s) = 7, ¢(t) = 2, c(u) = 4,
and ¢(v) = 0 is an injective To-colouring of C. Finally, if C has no vertices
of indegree two, then G(2,2) is a directed cycle, as illustrated in Figure 8,
and c(s) = 4, ¢(t) = 2, ¢(u) = 1 and ¢(v) = 0 is an injective Ty-colouring
of C. In all three cases there is an injective To-colouring of C, and hence
there is an injective To-colouring of G(2, 2).

Suppose i > 2 and that there exists an injective homomorphism, c,

from @(i, 2) to Ty. Assume that z;, z;—1, y; and y;—1 have been injectively
coloured with Tg. We now proceed by induction on the number of rows and
extend c to an injective Ty-colouring of G(i + 1,2). We consider two cases
based on the orientations of z;z;4+1 and y;yi+1.
Case 1: Suppose that at least one of F;Zif] or Tidial is in A(G(i +1,2)).
Without loss of generality assume that 77zt € A(G(i+1,2)). Notice that
injective colouring properties are not violated if ;) and y;_; receive the
same colour. This is an important insight when colouring ;..

Consider the orientation of z;x;41-
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c(v)=0 c(u)=1

c(s) =4 c(t) =2

Figure 8: @(2, 2) with no vertices of indegree two

Case 1(a): If 77t € A(G(i +1,2)) then § = N*(c(z:)) \ {c(w:)} is the
set of possible colours for ;4. Since |S| > 3, Proposition 6 guarantees that
there are paths ¢(y;) p1 a1 and ¢(y:) p2 a2 in Ty with the same orientation
8S Y;¥i+1Ti+1, such that a;,a; € S and p; # p,. Choose j € {1,2} so that
p; # c(z;) (notice that y;;; may be coloured with c(y;—1) as mentioned
previously). Set ¢(yi41) = p; and e(ziy1) = a;.
Case 1(b): If 7777 € A(G(6 + 1,2)) then S = N—(z;) \ {c(zi_1), c(v:)}
is the set of possible colours for z;4;. Since Z7 1z}, Tigirt € A(G(i +1, 2)),
¥i+1 may be assigned ¢(x;) in an injective colouring of é(i + 1,2). Recall
that y;;1 may also be assigned c¢(y;—;1). Colour z;,, with any colour in
S. By Proposition 4, there is a path ¢(z;4+1) p ¢(y;) in To with the same
orientation as z;41¥i+1Yi. Set c(yi+1) = p.
Case 2: We may now assume that 7i71%, Tz, € A(G(i+1,2)). Without
loss of generality, assume that &7 € A(G( + 1, 2)). When extending the
colouring c to x;,1, we are guaranteed to have ¢(z;+1) # c(y:) since z; 412y
is a directed path from z;;; to y;.
Step 1. Determine T, the set of possible colours for y;,;.

Let T = N=(c(y:)) \ {e(z:),c(yi—1)} be the set of possible colours for
Yit1. Since d™(c(y:)) =4, |T| 2 2.
Step 2. Colour z;41 and yiy1.

Consider the orientation of T;4+1¥i41.
Case 2(a): If fiziZizt € A(G(i + 1,2)), as depicted in Figure 9(a), then
TiTiy1Yi+1 i a directed path from y;41 to z;. Proposition 7 guarantees
there are two paths, ¢(z;) p1 b1 and c(z;) ps bs, in Ty, with the same
orientation as x;T;+1¥i+1 such that b;,b2 € T and p; # p2. Choose j €
{1,2} so that p; # c(z;—1). Set ¢(Zit+1) = p;j and c(yi+1) = b;.
Case 2(b): Assume that Z;377i+1 € A(G(i + 1,2)), as illustrated in Fig-
ure 9(b). If |T| > 3, then Proposition 6 guarantees there are two paths,
c(z:) pr by and c(x;) p2 by in Ty with the same orientation as z;Tiy1¥is1,
such that by, by € T and p; # p;. Choose j € {1,2} so that p; # c(zi—;).
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z; Yi T Yi

Ti-1 Yi-1 Ti-1 Yi—1

(a) (b)

Figure 9: Injective To-colouring of G(n,2).

Set c(x,'H) = p; and c(y,-+1) = b_,.

We may now assume that |T| = 2, and let T = {b;,b2}. By Proposi-
tion 4, there exist paths c¢(z;)p1b) and c(z;)pabs in Ty with the same ori-
entation as T;T;41Yi41. Lf possible, choose j € {1,2} so that p; # c(zi—1)
and set ¢(z:4+1) = pj, and ¢(yi+1) = b;. Otherwise, it must be the case that

= py = ¢(zi-1). Since Ty is vertex transitive, we may assume, without
loss of generality, that ¢(z;) = 0. By examination of Appendix A, Table
4, Column 3, we see that it must be the case that p; = p2 = ¢(zi—1) = 4
and {b;,b2} = {5,6}. Thus we must have {0,5,6} C N~ (c(v:)). A review
of Appendix A, Table 3 reveals that there is no such vertex in Ty, a con-
tradiction. Therefore, it is the case that there exists a j € {1,2} so that
pj # c(Ti-1).

Since an injective Ty-colouring of G(i,2) can be extended to an injective
To-colouring of G (¢ +1,2), it follows by induction that there is an injective

To-colouring of G(n, 2). Therefore, for all n > 1, Xi(G(n,2)) < 9.

7 Properties of 71,

The results of this section are used to prove an upper bound on x;(G(n, 3)).
Consider T1;, a vertex transmve tournament on eleven vertices w1th V({Tu) =
{i]0<i<10},d*(v) =d~(v) =5 forall v € V(T7;) and ares e A(Ty)
if and only if j — i(mod 11) € {1,3,4,5,9}. The graph T3, is a quadratic
residue tournament and will be used as a target graph in Theorem 18. Ap-
pendix A, Tables 5 and 6, are supplied to aid the reader in verifying the
following propositions.
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Proposition 13. Let u and v be distinct vertices of Ti;. Then for each
orientation of a 2-path there exist at least two such 2-paths between u to v
whose middle vertices are distinct.

Proof. Since Ty, is vertex transitive, it is enough to consider the case u = 0
and observe that there are at least two entries in every row and column of
Appendix A, Table 6. a

Since T, is vertex transitive, the proofs for the next two propositions
are immediately obvious by considering the case ¢t = 0 and observing the
entries in Appendix A, Table 6.

Proposition 14. For distinct t,u,v € V(T7;),
NY*@#)NN*t@u) # NY*@E)NN*(v)
N-(t)NnN~(u) # N (t)nN~(v)
Nt NN~ (u) # NY*@®)NN-(v)
N-@®)nN*@u) # N-(t)nN*(v)

Proposition 15. For distinct t,v € V(T11),

IN*(t)NNT(v)| =2,
IN~(@#) NN~ (v)] =2,
2<INF()NN~(v)| <33,
2<|IN“()NN*(v)| < 3.
Proposition 16. Lett,u,v be distinct vertices in Ty,. For each orientation
of a 2-path there are at least three such 2-paths from {t} to {u,v} whose
middle vertices are distinct. In particular,
INF(&) N (N*(v) UN*(u))| 2 3,
IN= () N (N*(v) UN*(w))| 2 3,
IN=(&) N (N~ (v) UN"(w))] = 3,
INTt)n (N~ (v) UN~(u))] > 3.

Proof. We consider the case when ¢ = 0 and only consider one of the in-
equalities since T}, is vertex transitive and the proofs of the other inequal-
ities are analogous. Note that

NTt)n(N*(w)UN*(u)) = (N*(t) N N+ (@) U (NF(t) N N¥(u)).

Proposition 15 lets us conclude that [N+ (t) " N*(v))| > 2 and |[N*(¢) N
N*(u))| > 2. Proposition 14 tells us that N* ()N N+(v) # Nt ()N N*(u)
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c(v)=3 clu)y=5

e(s)=0 ct)=9

Figure 10: Injective T};-colouring with two vertices of indegree two.

and thus there is at least one element in N*(t) N N*(u) that is not in
N+(t)n Nt (u). Combining the two facts gives

[((N*(#)n N (v)) U(NF(&) N N*(w))] > 3.

8 Bounds on x;(G(n,3))

By proceeding with induction on the number of rows of G(n, 3), an injective
T1-colouring is provided showing that xi;(G(n,3)) < 11 for all n > 1.
Combining these results with an orientation of G(7,3) found in [14] whose
oriented colouring requires seven colours, gives 7 < x;(G(n,3)) < 11 for
n > 7, since an injective colouring is an oriented colouring.

We first consider injective T1;-colourings of 4-cycles, as these colourings
will be used to colour G(2, 3).

Lemma 17. There exists an injective T1) — colouring of any oriented 4-
cycle.

Proof. There are three cases to consider for an injective T1;-colouring of an
oriented 4-cycle: a 4-cycle with two vertices of indegree two, one vertex of
indegree two, or no vertices of indegree two.

Let C = stuvs be a 4-cycle. If C is oriented so that there are two vertices
with indegree two, then these vertices are not adjacent, and so without loss
of generality assume d~(v) = d~(t) = 2, as illustrated in Figure 10. Then
c(s) =0, e(t) =9, ¢(v) = 5 and ¢(v) = 3 is an injective T1;-colouring of C.

If C is oriented so that there is one vertex with indegree two, then
without loss of generality assume that v is the vertex of indegree two. There
are two non-isomorphic orientations to consider as depicted in Figure 11.
For Figure 11(a), c(s) = 0, c(t) = 2, ¢(z) = 1, and c(v) = 4 is an injective
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c(v) =4 c(u)=1 e(v) =1 c(u) =3

!

c(s)=0 c(t) =2 e(s) =0 c(t)y =2
(a) (b)

Figure 11: Injective T3;-colouring with one vertex of indegree two.

c(v)=5 c(u)=3

c(s)=0 c(t)=6
Figure 12: Injective 17;-colouring with no vertices of indegree two.

T1y-colouring, while for Figure 11(b), ¢(s) = 0, ¢(t) = 2, c(u) = 3, and
¢(v) =1 is an injective T};-colouring of C.

Finally, if C is oriented so that there are no vertices of indegree two,
then C is a directed cycle as shown in Figure 12, and ¢(s) = 0, ¢(t) = 6,
¢(u) = 3 and ¢(v) = 5 is an injective T};-colouring of C.

O

Theorem 18. For alln > 1, x:(G(n,3)) < 11.

Proof. For convenience, let z; = (i,1), ¥; = (3,2), z; = (i, 3) refer to row i
of G(n, 3).

When n = 1, 2112 is an oriented path. Since d*(u) =d~(u) =5 for
all w € V(T11), by Lemma 9 there is an injective Ty1-colouring of G(1, 3).

For n = 2, begin with an injective T};-colouring of the 4-cycle y1y2222191.
Next, find the colour choices of z,. If 7273 € A(G(2,3)), let S = N*+(c(y2))\
{e(y1)} be the colour choices for z,. Similarly, if Zo73 € A(G(2,3)), let
S = N~ (c(y2)) \ {c(22),c(%1)}. Since d~(v) =d*(v) =5 for all v € V(T11),
|S| = 3. Next, we colour z; and z2. Proposition 16 guarantees that are
paths a3 p1 ¢(y1), a2 p2 ¢(y1) and a3 p3 ¢(y;) in T3 with the same orien-
tation as zox1y; such that a;,as,a3 € S and p;1, p2, p3 are distinct. Choose
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7 € {1,2,3} so that p; & {c(z1),c(y2)}. Setting c(z2) = a; and c(z,) = p;
results in an injective T7;-colouring of 5(2,3).

Assume for some ¢ > 2 that there exists an injective T};-colouring, ¢, of
G(i,3). We extend c to an injective T};-colouring of G(i + 1,3).

Step 1. Determine, S, the set of possible colours for y;4,.

If 7igist € A(G(i + 1,3)), let S = N*(c(y:)) \ {c(=z:),c(2:)}. Note
that |S| > 3, since d*(u) = 5 for all u € V(T11). Similarly, if 7i1 ¥ €
A(G(i+1,3)), let S = N~ (c(y:)) \ {c(z:), e(2i), e(yi-1)}. Note that |S| > 2,
since d~(u) =5 for all u € V(T11). Write S={a; | 1 < j < |S]|}.

Step 2. Restrict S so that x;4; can be coloured.

For an oriented colouring of row ¢ +1 to be injective, we must take care
when colouring z;4+1 for certain orientations. In particular, an oriented
colouring of G(i + 1,3) may have ¢(ziy1) = e(zi_1) when Zip1,zi_; €
N=(z;), or ¢(y;) = c(xis1) when 41, % € N™(yis1) OF Zig1, % € N™(23).
To ensure that the colouring is injective, let

( N*(e(z)) " N*t(a;)  if T, eriZiat € AG(i +1,3)),

(N*(e(z:)) N N=(a;)) if ZZerl, Toramiet € A(G(i + 1,3)),
\{e(y:)}

§ (N~ (c(z:)) "\N~(a;)) if ZiyiZ), Tt € A(G(i+1,3)),
\{e(y:), e(zi-1)}

(N=(c(z:)) N N*(a;)) if ZiiZ, GiviZint € A(G(i+1,3)),
\{c(yi), e(zi-1)}

v
[

\

for each j, 1 < j < |S|. Since the entries in each column of Table 6 are
pairwise distinct, there is at most one j for which P; = 0. If such a j exists,
then without loss of generality j = |S|, and set S, := §\ {a5}. If no such
j exists, then set S, := S.

Step 3. Restrict S, so that z;; can be coloured.

For an oriented colouring of row ¢ + 1 to be injective, we must take
care when colouring z;;) for certain orientations. In particular, an ori-
ented colouring of G(i + 1, 3) may have ¢(z;41) = ¢(2i—1) When 2,41, 2;,_; €
N~(z), or c(y;) = c(zi+1) when 21,9 € N7 (¥i41) OF 2i41,%i € N~ (2:).
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To ensure that the colouring is injective, let
[ N*(c(z)) N\ N*(a;)  if Zzend, Bovizant € A(G( +1,3)),

(N+§c{(z(z-)))r}w N-=(a3)) if 5Znt, Zvawint € A(G(i + 1,3)),

ClYi

Qi =19 (N~(c(z:))NN~(aj)) if 5512, Hvagert € A(G( +1,3)),
\e(ys), e(zi-1)}

(N=(c(z)) N N*(a;))  if Zi12, Trimnt € A(GG +1,3)),

{ \{e(wi), e(zi-1)}

for each for each 7, 1 < j < |Sz|. Since the entries in each column of
Table 6 are pairwise distinct, there is at most one j for which Q; = 9.
If such a j exists, then without loss of generality j = |S;|, and we set
Sz. := 8z \ {as,}. If no such j exists, then set S, := S;.

Claim 19. |S,,| > 1

Proof. Consider two cases depending on the orientation of yi¥i+1. If Zi%iz1 €
A(G(i + 1,3)) then |S| > 3 and the result is immediate because |Sz;| >
|S] — 2. Otherwise, 77517 € A(G(i + 1,3)). Again, if |S| > 3 the result is
immediate. Assume that S = {a1,a2}, which implies 777} € A(G(i +1,3)).
If P; # 0 for j = 1,2 then |S;;| > 2 — 1 and the result follows. Without
loss of generality, assume that P; = 0. Since P, = @, we have

N=(e{z:)) "N~ (@) if Zixi®, Tawint € A(G(i+1,3)),

N=(c(z:)) "\N*(a1) if HZi®, Girizigt € AG(i + 1,3)).

In either case, z;417;y; is a directed 2-path and

N=(c(z:))NN~(a1) if Zimi®, Topamiet € A(G(i + 1,3)),

N=(c(z:)) N N*(ay) if Tz, viiZaet € AGG +1,3)).

]I;'mj contradicts the assumption that P, = @), and thus we conclude thaEt]
zz| = 1.

Step 4. Colour row (i +1).

If GiriZint € A(G(i+1,3)) or Fizizirt € A(G(i+1,3)) then by setting
c(¥i41) = a1, assigning z;41 a colour from P} and z;;; a colour from @, we
obtain an injective colouring of @(i +1,3). This is possible since |Sz.| > 1.

Otherwise, Tix17ir1, Ziz1Vit1 € AG(i+1, 3). First suppose that |P;| >
2 or |Qj| = 2 for some j. Without loss of generality, assume that |P;| > 2
for some j. Set c(yi4+1) = aj, assign z;41 a colour from Q; and z;4+; a colour
from P; \ {¢(2i+1)}. The result is an injective colouring of G(i + 1, 3).

o(zi—1) € {

c(y:) ¢ {
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If |Pj| = |Q;] =1 for all , 1 < j <|Sz.| then, if possible, choose j so
that P; # Q;. Set c(yi+1) = aj, assign 2;41 the colour from Q; and z;4,
the colour from P;. This results in an injective T};-colouring.

The only thing left to consider is when |P;| = |Q;| =1 and P; = Q; =
{r;} for all §, 1 < j <|Szz|. Recall ZTrrimirt € A(G(i + 1,3),

(N*+(e(@)) N N-(a;) \{e(w)}  if izt € A(G(i +1,3)),

P i={ (N-(c{@:))nN-(a})) if 7o € A(GG +1,3)).
\e(wi), e(zi-1)}

Similarly, Zizizirt € A(GG +1,3) so

(N*(e(z)) NN~ (a;) \ {c(®:)}  if Zzml € A(G(i + 1,3)),

Qj =19 (N—(c(z:)) N N~(a;)) if 72 € A(G(i + 1,3)).
\{e(y:), e(zi-1)}

We look at two cases based on the orientation of y;y;+1.

Case 1: 7imi% € A(G( + 1,3)).
As Ti11Yi+1Y: is a directed 2-path from z;4; to y;, it is easy to observe that

() ¢ { N-=(c(z:)) N N~(a;) if Tz, € A(G(i +1,3)),
A N*(c(z:)) N N=(a;) if Zzit € AG( +1,3)),

for all j, 1 < j < |S|. Using the fact that |P;| = 1, we conclude that
T, T, € A(GG +1,3)). In addition, c(y;) ¢ N~(c(z:)) N N~ (a;)
for all j, 1 < j <|S|, implies that P; # 0 for all j < |S| and hence S; = S.
Similarly, as z;+1yi+1Y; is a directed 2-path from z;4, to y;, it is easy to
observe that

(o) ¢ { N=(c(z:)) N N=(a;) if Zigizs € A(G(E +1,3)),
vi N*(e(z)) " N-(a;) if zzert € AGG +1,3)),

for all j, 1 < j < |S|. Therefore, |Q;| = 1 implies that LiriZhZiciz €
A(G(i +1,3)). Note that c(y;) ¢ N~(c(2:)) N N~ (a;) implies that Q; # 0
for any j, 1 < j < |S;|. We conclude that S;, = §; = S and hence
|Szz| = 2.

Suppose that ¢(z;—1) # ¢(zi—1). Repeatedly using the fact that for all
distinct pairs {t,u} C V(T11), [N~ (t) " N~ (u)| = 2 (Proposition 15) we
have:
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N‘(al) = {c(:z:.--l),c(zi_l),rl,vl,vz}
N~ (a2) = {c(mi-1),¢(zi-1),72,v3,v4}
N7(c(z:)) = A{e(@i-1),71,72,75,v6}
N7 («(z:)) = {c(zi-1),m1,72,v7,v8}

Ifry, 72, v1,v2,vs3, v4, vs, V6, U7, Us, (Ti-1), ¢(2;—1) are distinct vertices of 71,
then |V(T1,)| = 12, clearly a contradiction.

Since all the pairs in Appendix A, Table 6, column 4 are distinct we
have that rq, 72, vy, v2, v3, v4, vs, s, v7, Us are distinct. Therefore we are left
with ¢(z;-1) = ¢(2i-1). Since {c(zi-1),m1,72} € N~ (c(z;)) N N~ (e(2;))
and [N~ (c(z:)) N N~™(c(z;))| = 2 we conclude that c(z;) = ¢(2;). The
only way for c(z;) = ¢(z) is to have 7@, 77z, € A(G(i + 1,3)), since
G(i,3) has been injectively coloured. Moreover, all edges are oriented in-
wards to z;, so z; is not an in-neighbour of any vertex. We recolour z;
respecting only the homomorphism, since this will necessarily produce an
injective colouring. By Proposition 13, there are paths ¢(zi—1) p1 c(y:)
and ¢(x;—1) p2 ¢(y;) in T1; having the same orientation as z;_;z;¥; such
that p; # p2. Recolour z; with p; or ps so that it is different from c(z;).
Returning to Step 1 and following the prescribed algorithm will success-
fully produce an injective colouring; if it did not, then the new colours
71,72, 1, V2, U3, V4, Us, Vg, U7, U8, ¢(Ti—1), ¢(2i—1) would all be distinct, which
contradicts the fact that |V(T7,)| = 11.
Case 2: 7imis1 € A(G(i +1,3)). Notice that y;4; is not an in-neighbour
of any vertex.
(a) First, consider the case when there is no directed 2-path between z; and
Yi+1 or between z; and y;+1. Without loss of generality, assume that there is
no directed 2-path between z; and y;11. Then Zimiz), Tiz; € A(G(i+1,3)),
as depicted in Figure 13.

Begin by colouring y;+1 with ¢(z;). Let

(N=(c(2:)) N N+(c(z)) \ {e(s)}  if Zzat € A(G G +1,3)),
Q=19 (N=(e(z:)) N N~ (c(2:))) if 772 € A(G(i+1,3)).
\{e(wi), e(2i-1)}

If Q # 0, then colour z;4; with any colour in Q and z;,; with any colour
in N=(c(z:)) \ {e(zi-1), c(y:), ¢(zi+1)}. This is an injective T1;-colouring of
G(i+1,3).

If @ = 0, then N~(c(zi)) N N~ (c(2:)) = {c(y:), c(zi~1)} which implies
that 1%, 7i2, 5iciz, € A(G(6 + 1,3)). Notice that there is no directed
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Z; Zi

Zi—) Yi-1 Zi—1
Figure 13: there is no directed 2-path between z; and y;4;.

2-path between y;,; and z;. Change the colour of y;+1 to ¢(z;) and let
P:= (N7(c(z:)) N N~ (c(2:))) \ {c(ws), e(mi-1)}-

We show that P # 0. Assume to the contrary that P = @ and Q =
@. Since Q = 0, N~ (c(z;)) N N~ (c(z)) = {c(vi),c(2zi-1)}. Similarly,
since P = @, N~(c(z:)) N N™(c(z:)) = {e(vs),c(xi-1)}. These imply
that {c(y:), e(zi-1)} = {c(¥i),c(zi-1)} and so c(zxi—1) = ¢(zi—1). Since
Py =Q1 = {r}, 11 € N7(c(z:)) N N7 (e(2:)) = {e(w:), c(zi-1)}. However,
by the definition of Pj, 7y & {c(y:), c(zi—1)}. We conclude that either P # 0
or @ # 0.

Colour z;+; with any colour in P and z;4, with any colour in N~ (¢(2:))\
{e(2i=1),¢(y:), c(zi+1)}. This is an injective T1;-colouring of G(i + 1, 3).

(b) Finally, assume that there is a directed 2-path between z; and y;4) and
a directed 2-path between z; and y;4+;. Since N*(yi4+1) = 0, such paths
go from z; to yi+; and from 2; to y;4+1. We claim that a directed 2-path
from z; and yi41 uses Z7, € A(G(3+1,3), and that a directed 2-path from
z; t0 Yiy1 USes 5y € A(C’(i +1,3). In addition, we show that |S;,| = 5
which leads us to conclude ¢(z;) = c(2;). This contradicts the induction
assumption that row 1 is injectively coloured.

If ZiZist € A(G(i+1, 3), then using the fact | P;| = 1, c(y;) € N*(c(z:))N
N-(a;) and so Z7g, € A(G(i +1,3)). It follows that Sy = S.

If zi:17, € A(G(i+1,3), then Z7; € A(G(3+1,3) because there has to
be a directed 2-path from z; to y;+1. This implies that c(y;) € N~ (c(z;)) N
N~ (a;) for all j, 1 < j < ||, since z;;17:y; is a directed path. Therefore,
S, =S.

An analogous argument shows that Zy; € A(G( +1,3) and S;, = S,.
We conclude that S,, = Sz = S and |S;z:| = 5.
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Since 77, &, € A(G(i + 1,3)), it follows that

P { (N*(e(z) N N=(e) \ {ew)}  if zzmrt € A(G(i +1,3)),
T (N (elw) NN (@) \{elwin)}  if T € A(GG+1,9)),

Q; == { (N*(e(z:)) "\ N~(a;)) \ {e(ws)}  if Zizaxd € A(G(i +1,3)),

! (N~ (c(2:)) NN~ (a;)) \ {e(2:-1)}  if Zigaz) € A(G(i + 1, 3)).
Recall that P; = Q; = {r;} for 1 < j < |Sz;| = 5. We will show
by contradiction that P; # @Q; for some 1 < j < |S;;| = 5. Assume to
the contrary that P; = Q; = {r;} for alll < j < |S;,| = 5 and begin by
showing that we cannot have all ;’s distinct. If they were all distinct then

_ [ Nt(c(z)) if Tzt € A(G(i+1,3)),
{r1,72,73,74,75} = { N-(c(z2)) ifﬁ%ﬁ € AG(i+1.3).

and

[ Nt(e(z)) if Zimst € A(G(+1,3)),
{ri,ra,7a,me, s} = { N=(c(z:)) ifz‘i.,_—;'{ € A(G(i +1,3)).

By observing Appendix A, Table 5 this can only occur if e(z;) = ¢(2).
This contradicts our assumption that row ¢ was injectively coloured. There-
fore, not all the r;’s are distinct and we may assume that 7, = 7, for some
1<s<t<5 If 5zt € AGG+1,3)), then N*(c(z:)) N N~ (a,) =
N*(e(zi)) N N~ (as) = {c(y:),7s}, & contradiction of Proposition 14. If
T € A(G(i +1,3)) then N—(c(z;)) NN~ (a,) = N=(c(z;)) "N~ (a;) =
{rs,c(zi-1)}, also a contradiction of Proposition 14. Therefore, it must be
the case that for some 7, 1 < j < S:., we don’t have P; = Q; = {r;} and
hence row i + 1 would have been injectively coloured.

Therefore, an injective T1; colouring of G(Z,3) can be extended to an
injective T1; colouring of C-;"(i + 1,3). We conclude that for all n > 1,

%:(G(n,3)) < 11.
|

9 Conclusion/Summary

We've shown that ¥;(G(n,m)) < 23, something that is not discussed in
any other literature, so that we can conclude that 7 < ¥;(G(n,m)) < 23
forn >5and m > 4, orn > 7 and m > 3. That bound is improved
by considering specific dimensions of grid graphs. In particular, we show
that 6 < Xi(G(n,2)) < 9for n > 4, and 7 < %;(G(n,3)) < 1l forn > 7.
Providing orientations of grid graphs to improve the lower bounds of the
injective oriented chromatic number of grid graphs remains open.
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A Neighbourhoods of 17, Ty, T1; and Ts;.

u| N¥(u) || N~ (u

0| {1,2,4} || {3,5,6}
11 {2,3,5} {0,4,6}
2 | {346} | {0,1,5}
3] {04,5,} | {1,2,6}
4 | {1,5,6} || {0,2,3}
5[ {0,2,6} || {1,3,4}
6 | {0,1,3} || {24,5}

Table 1: In-neighbours and out-neighbours in 77.

Since all the target graphs are vertex transitive, we consider only the
vertex 0 when verifying properties.

Column 1 Column 2 Column 3 Column 4

Vertex v | NT(O)NNT(v) | NFO)NN—(v) | N~(0)nN—(v) | N~ (0)nN¥(v)
1 2} (4} 6} (3,5}

2 4} {1} 5} {3.6}

3 4} {1,2} 6} {5}

4 1) {2} 3 {5,6}

5 2} {1,4} 3) (6}

6 { 1} {L2,4J’ +L5J 131

Table 2: Neighbourhood intersections with vertex 0 in T7.
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u| N*t@) | N-(u)
0 [ {1,2,35] | {4,67.8}
T [{2,3,46} || {0,5,7,8}
31 {3.4,5,7} || 10,1,6,3}
3 | {4,568} || {0,1,2,7}
4 [{0,56,7} [ {1,238}
5 ({1,678 [ {0,234}
6 [ {0,278} [ {1,345}
7 | {0,1,38} | {2,456}
8 [ {0,124} | {3,56,7}

Table 3: In-neighbours and out-neighbours in Tg.

Column 1 Column 2 Column 3 " Column 4
Vertex v | NF(O)NNT(w) | NY(0)NN~—(v) | N~ (0O)NnN~(v) | N~ (0)n N*{v)
1 1 2,3 } 51" 4718 } +L4y6 }
) (35 1} {6.8} 17
3 {5} 1,2} 7} {4,6,8}
1 5) 1237 {8Y 6.7}
5 {1 {23} {4} {6.7.8)
3 {2} 1135] {2 7.8
7 1,3} {2,5} 14,6} {8}
8 {1,2} {3,5} {6.7} 4}

Table 4: Neighbourhood intersections with vertex 0 in Ts.

U N+ (u) N~ (u
0 | {1,3.4,5.9) || {2,6,7,8,10}
T [ 124,5,6,10] | {0,3.7,8.9)
2 {0,3,5,6,7} | {1,4,8,9,10}
3 {1,4,6,7,8} | {0,2,5,9,10}
1 | {25,789} |[{0,1,3,6,10}
5 | {3.6,8,9,10] || {0,1,2,4,7}
6 |{04,7910} I {1,2,358}
7 1 {0,1,5,8,10} | 12,3,4,6,9}
8 | {012,690} || {3,4,5,7,10}
9 [ {1,2,3.7,00] | {0,4,568)
10| {02,348 | {156,709}

Table 5: In-neighbours and out-neighbours in T3;.
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Column 1 Column 2 Column 3 Column 4

Vertex v [ NT(O)NNT@) [ NT(0)NN-(w) [ N~(0)NnN*(v) [ N“(0)NN~(v)

1 {4,5} {3,9} {2,6,10} {78}

2 3,5} {1,4,9} {6,7} 8,10

3 (1,4} {5,9} {6,7,8} (2,10}

4 {5,9} 1,3} {2,7,8] {6,10]

5 {3,9} 1,4} {6,8,10} {2,7}

3 13,9) 11,35} (7,10} (2,8}

7 {1,5 {3,4,9} {8,10} {2,6}

8 (1,9 {3,4,5} {2,6) {7,10}

9 {1,3 {4,5} {2,7,10} {6,8}

10 {3,4} {1,5,9} {2,8} {6,7)

Table 6: Neighbourhood intersections with vertex 0 in Ti;.

u N*(u) N~ (u
0 {1,2,3,4,6,8,9,12,13,16,18} {5,7,10,11,14,15,17,19,20,21,22}
1 {2,3,4,5,7,9,10,13,14,17,19} {0,6,8,11,12,15,16,18,20,21,22}
2 {3,4,5,6,8,10,11,14,15,18,20} {0,1,7,9,12,13,16,17,19,21,22}
3 {4,5,6,7,9,11,12,15,16,19,21} {0,1,2,8,10,13,14,17,18,20,22]
4 {5,6,7,8,10,12,13,16,17,20,22} {0,1,2,3,9,11,14,15,18,19,21}
5 {0,6,7,8,9,11,13,14,17,18,21} {1,2,3,4,10,12,15,16,19,20,22,}
6 {1,7,8,9,10,12,14,15,18,19,22} {0,2,3,4,5,11,13,16,17,20,21}
7 {0,2,8,9,10,11,13,15,16,19,20} {1,3,4,5,6,12,14,17,18,21,22}
8 {1,3,9,10,11,12,14,16,17,20,21} {0,2,4,5,6,7,13,15,18,19,22}
9 {2,4,10,11,12,13,15,17,18,21,22} {0,1,3,5,6,7,8,14,16,19,20}
10 [ {0,3,5,11,12,13,14,16,18,19,22} {1,2,4,6,7,8,9,15,17,20,21}
11 {0,1,4,6,12,13,14,15,17,19,20} {2,3,5,7,8,9,10,16,18,21,22}
12 {1,2,5,7,13,14,15,16,18,20,21} {0,3,4,6,8,9,10,11,17,19,22}
13 {2,3,6,8,14,15,16,17,19,21,22} {0,1,4,5,7,9,10,11,12,18,20}
14 {0,3,4,7,9,15,16,17,18,20,22} {1,2,5,6,8,10,11,12,13,19,21}
15 {0,1,4,5,8,10,16,17,18,19,21} {2,3,6,7,9,11,12,13,14,20,22}
16 {1,2,5,6,9,11,17,18,19,20,22} {0,3,4,7,8,10,12,13,14,15,21}
17 {0,2,3,6,7,10,12,18,19,20,21} {1,4,5,8,9,11,13,14,15,16,22}
18 {1,3,4,7,8,11,13,19,20,21,22] {0,2,5,6,9,10,12,14,15,16,17}
19 {0,2,4,5,8,9,12,14,20,21,22} {1,3,6,7,10,11,13,15,16,17,18}
20 {0,1,3,5,6,9,10,13,15,21,22} {2,4,7,8,11,12,14,16,17,18,19}
21 {0,1,2,4,6,7,10,11,14,16,22} {3,5,8,9,12,13,15,17,18,19,20}
22 {0,1,2,3,5,7,8,11,12,15,17} {4,6,9,10,13,14,16,18,19,20,21}

Table 7: In-neighbours and out-neighbours in Th3.

195




Column 1 Column 2 Column 3 Column 4

Vertexv | NT(O)NNF(w) | NY(0)NN~(v) N=-(O)NN*(v) N=(0)NN—(v)
1 2,3,4,9,13 6,8,12,16,18 {5,7,10,14,17,19} {11,15,20,21,22}
2 (3.4,68,18) | {1,9,12,13,16} | {5,10,11,14,1520} | {7,17,19,21,22}
3 1469,12,16) | {1,2,8,13,18} 5,7,11,15,19,21 10,14,17,20,22
1 168,12,13,16) | {1,2,3,9,18) 5,7,10,17,20,22) | {11,14,15,19,21
5 (6,8,9,13,18 {1,2,3,4,12,16} {7,11,14,17,21} {10,15,19,20,22
6 {1,8,9,12,18 {2,3,4,13,16] {7,10,14,15,19,22} 5,11,17,20,21
7 2,8,9,13,16 {1,3,4,6,12,18} | {10,11,15,19,20} {5,14,17,21,22
8 130,12,16) | {24,6,13,18) | {10,11,14,17,021} | {5.7,15,19,22

9 {2,4,12,13,18} {1,3,6,8,16} {10,11,15,17,21,22 {5,7,14,19,20
10 13,12,13,16,18] | 11,2,4,6,3,0} [5.11,14,19.22) | {7.15,17,20,21}
11 114,6,12,13] | {2.3,89,16,18] | {14,15,17,19,20] | {5,7,10,21,27}
12 {1,2,13,16,18} {3,4,6,89} 5,7,14,15,20,21} | {10,11,17,19,22}
13 12.368.16) | {140,12,187 | {14,15,17,19,21,22} | {5,7,10,11,20}
14 13.4.0.16.18) | {1,2,6,8,12,13 17.15,17,20,22 (5,10,11,19,21
15 {1,4,8,16,18 {2,3,6,9,12,13} 5,10,17,19,21 {7,11,14,20,22
16 1,2,6,9,18} {3,4,8,12,13 {5,11,17,19,20,22} {7,10,14,15,21
17 12.3.6,12,18) | {14,8,9,13,16] | {7,10,19.20,21} | {5,11,14,15,22
18 1,3,4,8,13 {2.60,13,16) | {7.11,19,20,21,22] | {5,10,14,15,17
10 (2,439,12) | {1,3,6,13,16,18 5,14,20,21,22 7,10,11,15,17
20 1,3,6,9,13 {2,4,8,12,16,18 {5,10,15,21,22 {7,11,14,17,19
21 1,2,4,6,16 {3,8,9,12,13,18 { 7,10,11,14,22] {5,15,17,19,20
p7) 12338,12) | {4,69,13,16,18 (57.11,1517) | {10,14,19,20,21

Table 8: Neighbourhood intersections with vertex 0 in T3.
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