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Abstract: In this paper, we constructed two multireceiver authentication
codes from singular symplectic geometry over finite fields. Under the as-
sumption that the probability distribution on the source states and sender’s
key space is uniform, the parameters and success probabilities of different
types of deceptions are also computed .
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§1.Introduction

The construction of authentication codes is an important topic in cryp-
tography , and multireceiver authentication codes(MRA-codes) are intro-
duced by Desmedt, Frankel, and Yung [1] as an extension of Simmons
model of unconditionally secure authentication[2], they also gave two con-
structions for MRA-codes: one based on polynomials and the other based
on finite geometries. R.Safavi-Naini and H.Wang(3] generated the formal
definition of multireceiver authentication codes. In the MRA-model, a
sender wants to authenticate a message for a group of receivers such that
each receiver can verify authenticity of the received message. There are
three phases in an MRA-model[3]:

1.Key distribution.The KDC(key distribution center) privately trans-
mits the key information to the sender and each receiver (the sender can

also be the KDC).
2.Broadcast. For a source state, the sender generates the authenticated

message using his/her key and broadcasts the authenticated message.
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3. Verification. Each user can verify the authenticity of the broadcast
message.

Denote by X; x - - - x X5 the direct product of sets X, -+, X3 and by p;
projection mapping of X; X --- x Xz on X;. That is,p; : X3 x -+ x Xo —=X;
defined by pi(z1,22,...,2,)=z; Let g1 : X1 — Y] and g2 : Xo — Y2 be
two mappings, we denote the direct product of g; and g2 by g; x g2 where
g1 X920 X1 x X3 = Y1 x Yz is defined by (g1 x g2)(z1, z2) = (9(z1), 9(z2)).
The identity mapping on a set X is demoted by 1x.

Let C = (S,M,E, f) and C; = (Si, M;, Ej, fi),i=1,2,-- - n be authen-
tication codes. We call (C;C},Cy,--+,Cy) a multireceiver authentication
code (MRA-codes)if there exit two mappings 7 : E — Ey x .-+ x E, and
w: M — My x- - x M, such that for any (s,e) € SxE andany1<i < n,
the following identity holds

pi(mf(s.e)) = fil(1s x piT)(s,€))-

Let 7; = p;7 and w; = p;m. Then we have for each(s,e) € Sx E
m:f(s,e) = fi(ls X 7:)(s, €).

We adopt Kerckhoff’s principle that everything in the system except
the actual keys of the sender and receivers is public. This includes the
probability distribution of the source states and the sender’s keys.

Attackers could be outsiders who do not have access to any key informa-
tion, or insiders who have some key information. We only need to consider
the latter group as it is at least as powerful as the former. We consider the
systems that protect against the coalition of groups of up to a maximum
size of receivers, and we study impersonation and substitution attacks.

Assume there are n receivers Ry, -+, R,. Let L ={i;--- 4} C {1,...n},
Ep = Eg, ,x---x Ep, and Ry = {R;,--- R }. We consider the attack
from Ry on a receiver R; , where i g L.

Impersonation attack:Ry, ,after receiving their secret keys, send a mes-
sage m to R;. Ry is successful if m is accepted by R; as authentic. We
denote by Pi[i, L] the success probability of Ry in performing an imper-
sonation attack on R; This can be expressed as

Pili, L) = max max P(m is accepted by R;le;) wherei ¢ L,ep € E,
eL€EE, meM
Substitution attack:Ry after observing a message m that is transmitted
by the sender, replace m with another message m’. Ryis successful if m' is
accepted by R; as authentic. We denote by Ps|i, L] the success probability
of Ry, in performing a substitution attack on R;. We have
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Pgli, L] = max max max P(R; accepts m’'|m,e;), wherei & L
S[, ] eLEEL mEM miEmeM ( P l ) L)1 ¢
There are some constructions of multireceiver authentication codes are

given in[3-7], and it is well known that authentication codes which are con-
structed by the geometry of classical groups over finite fields are easy to
compute,see e.g.[8],[9],(10]. In this paper we construct two new multire-
ceiver codes from singular symplectic geometry over finite fields, and the
security analysis are also given.

§2.Preliminaries

Singular symplectic geometry over finite fields is introduced in {11]. Let
n = 2v + | and define the 2v + ! x 2v + [ alternate matrix

0 I
Ki=| -I® 0
o

The set of all (2v + ) x (2v + I) nonsingular matrices T over F, satisfying
TK,T = K, forms a group , called the singular symplectic group of 2v + 1
over the finite field I, , denoted by Spz,4,,(Fg). There is an action of

Spav+1,u(Fg) on IF(?"'H) defined as follows:
F‘(J2v+l) x Sp2u+l,u(]Fq) N ]F‘(I2u+l)

((xl"'7xll"'7$2u+l)aT) Land (xl""zv"'7x2v+l)T

Then the vector space F,(,z""'l) together with the above action of the group

SPyy11., (Fg) is called the 2v + I-dimensional singular symplectic space over
e

Let e;(1 < 7 € 2v + 1) be the row vector in ]F‘(,z"“) whose i-th coordinate is

1 and all other coordinates are 0. Denote by E the I-dimensional subspace

of IF,(,2"+I) generated by ez, 41, €2,42, " '+, €2041. An m-dimensional subspace

P of Ing"H) is called a subspace of type(m, s, k) if

(i)PK, P! is cogredient to M(m,s) ,and
(i)dim(P( E) = k, where

0 I®
M(m,s)=| -I® 0
oglm-s)

Let v,u two non-zero vectors in IF.(,z"H), they are said to be orthogo-

nal(with respect to Kj) if uKjvt = 0, we say that u is orthogonal to v.
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Furthermore, for any subspace P we denote by P+ the following set :

Pt = {u e F*uKpt =0, for all v € P}

More properties of singular symplectic geometry over finite fields can
be found in [11].

§3.Construction
Construction 1

Let Fy be a finite field with ¢ elements and »;(1 < i < 2v) be the

row vector in IF.(IZ"“). Assume that 2 < 2n < 1 < k <l U =
{v1,V2 -+, VUn,€2,41), 2and U is a fixed subspace of type (n +1,0,1). The
set of source states S ={s | s is a subspace of type (2n + k,0,k) and
U C S ¢ Ut}; The set of transmitter’s encoding rules Er ={er is a sub-
space of type (2n + 1,n,1) and U C e,}; The set of ith receiver’s decoding
rules Ep, = {er, is a subspace of type (n + 2,1, 1)which is orthogonal to
(V1,* " Vim1,Vig1," +,Vn) and U C eg,} ; The set of message M ={m|m is
a subspace of type (3n + k,n,k),and U C m }.

1.Key distribution.The KDC randomly chooses a subspace er € Er,
then privately sends er to the sender T. And the KDC randomly chooses
a ep, € Eg, and eg, € E7, then privately sends eg, to the ith receiver,
where 1 <7< n.

2. Broadcast.For a source state s € S,the sender calculates m = s + er
and broadcast m.

3. Verification.Since the receiver R; holds the decoding rule eg,, R; ac-
cepts m as authentic if ep, € m. R; can get s from s =mU<L.

We assume that the encoding rules of the transmitter and the receiver
are chosen according to an uniform probability distribution. From the
transitivity properties of singular symplectic group we can assume that

U= I™ 0 0 0 0 0
“\L 0o 00010

n v-nn v-nlli-1

Im 0 0 0 0

vi_| © I»-m 0 0 0
- 0 0 0 I¥»™ o

0 o o0 o I®

n v—n n v—n !
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Lemma 1 The above construction of authentication codes is reasonable,

that is
(1)s+er=me M, for all s€ S and er € Er,
(2)for any m € M, s = m(U* is an uniquely source state contained

in m and there is e € ET, such that m = 3 + ep.

Proof: (1)For s € S, er € Er , from the definition of s and er, we can

assume that

_ U n+1 _ U n+1
S_(Q) ntk-1 andeT_(R) n

then 00 0

T
(5)s(2)-(55
000
and

T 0 I™ o
(2)s(5) (7 ¢
0 0 O
obviously, for any ¢ € Q and g # 0, we have q ¢ ep,therefore -
0o o I

U U /AN
0 0
m=s+er=| Q |,and Q |K| Q | -1™ o« o0
R R R 0 0 0

so m is a subspace of type(3n + k,n,k) , and U C m.

oo OO

(2)For any m € M , m is a subspace of type (3n + k, n, k) ,so there is a

U U\T 0 IM™o\ n
subspace V' C m, satisfying (V) K, ( V) =|-I" 0 0] n Wecan
0 00/

U U v\” 0 I™Mo\ =
assumethatm = | V | satisfying [ V | K[V ]| =[~-I™ 0 0] =
P P P 0 0 0/ n+k

denote s = ( g ) , then s is a subspace of type(2n + k,0,k), and U C
ScUt soseS. Foranyve Vandv#0,wehavev ¢s,s0s =mUL,
then er = ( ‘(i ) is an encoding rule and m = s + eg.

If there is another source state s’ contained in m, from the definition of

s, we know s’ C m( UL = s, and dim (s’) =dim (s), so s’ = s,ie., s is the
uniquely source state contained in m.
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Lemma 2 The number of the source states is |S| = ¢"!"® N(n,v —
R)N(k —1,1— 1).

Proof: From the definition of s, s is a subspace of type (2n + k, 0, k)
and U ¢ S € U1, so s has the form as follows

™ o0 000 0 0 n
5 0 X, 000 0 X n
- 0 0 001 O 0 1
0 0 000 I ¢ k-1
n v—n nv-nl k-1 -k

whereX; is v — n dimensional vector subspaces in }F,(,") and X, arbitrarily.
Therefore the number of the source states is |S| = ¢"‘"* N(n,v —n)N(k -
1,1-1).

Lemma 3 The number of encoding rules of transmitter is |Er| =
N'(n+1,0,1;2n+1,n,1;2v).

Proof:We can compute the number of encoding rules of transmitter by
Theorem 3.29[11], |Er| = N'(n +1,0,1;2n 4+ 1,n,1;2v).

Lemma 4 The number of the decoding rules of ith receiver is |Eg,| =
q2u—2n+l—1_

Proof: From the definition of Ep,, it has the form as follows

I o 0 0 0 0 O n
Ep, = 0 W Y. Y:s 0Y, ¥ |1
0 0 0 0 1 0 O 1

n v-n n v-n 1 k-1 I-k

where Y has the form(0,0---,,4i,0:--0),z,4+i # 0 and Y1,Y3,Y,,Ys ar-
bitrarily. So the number of the decoding rules of ith receiver is|Eg,| =
q2u-2n+l—1.

Lemma 5(1)The number of encoding rules er contained in m is
qn(n-i-k-l).
(2)The number of the messages is
|M| = q"“‘z"'”“)N(n, v—n)N(k—1,l-1)N'(n+1,0,1;2n+1,n,1;20).

Proof: m is a subspace of type(3n + k,n,k), and U C m, so we can
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assume m has the form as the follows

Im™ o0 0 0 000 O0 O n
0 0 0I™M o000 o0 O n
m= 0o I™ o0 0 000 0 O n
0 0O 0 0 0 01 0 0 1
0 0 0 0 00 0 I®D 0/ k2
n n v-2n n nv-2n1 k-1 -k
I 0 0 0 000 0 O
ifep Cm,then er = 0 Y9 0™ 000 Y, 0 n
( 0 00 0 001 0 0) 1
n n v-2n n nv-2nl k-1 -k
where Y}, Y> arbitrarily, then the number of encoding rules er contained in

mis qn(n+k—l)'

(2)Since a message contains only one source state and the number of
transmitter’s encoding rules contained in a message has been computed,we
can compute |M| by |M| = |S||Er|/g™"**~1), then the number of the
messages is [M| = g"(!~2k-"+DN(n, v —n)N(k—1,l-1)N'(n+1,0,1;2n +
1,n,1;2v).

Theorem 1 In the above construction of multireceiver authentication
codes, the parameters are computed as follows
|S| = ¢*-®IN(n,v —n)N(k - 1,1 - 1),
|M| = gn(=2k=n+DN(n, vy —n)N(k—1,l-1)N'(n+1,0,1;2n+1,n,1; 2v),
|Er|=N'(n+1,0,1;2n + 1,n,1;2v),
|ER,~| = q2u—2n+l—1_

Assume there are n receivers Ry, - - ,Rn Let L ={i;---ip¢} C {1,...n},
Ry ={Ri, - Ry} and E; = Ep, x -+ x ER‘ We consider the attack
from Ry on a receiver R; ,where i ¢ L. WlthOllt loss of generality, we
can assume that Ry = {Ry,---,Ry},EL = {Ep, x -+ x Eg,}, where
1<l <n-1. Now we give the security analysis about the above con-
struction.

Lemma 6 For any R, = {R), -, Ry} € Er, the number of er con-
taining ez is q(zu—2n+z-1)(n-z’)_
Proof: From the definition of eg,, we can assume that
I 0 0 0 0 0 0 0\ .
o I 0 0 0 0 0 O !

€L = . ’
0 0 2, IV 0 Z, 0 Z, t
0 0 0 0 0 0 1 0 1
n—ll l' v-n l' n—l' v-nl [-1
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if ef, C er, then

=0 o 0 o0 0 0 0
o I o o 0 00

er=| o o0 2z IV 0 2 0 Z |

0 i o0 Iy, o

0 0o 0 0 0 o0 1

1

n=t’ ! v—n ! n-l' wv-n

where Y}, Y5, Y3 arbitrarily, so the number of er containing ey, is
q(2u—2n+l—l)(n—l')'

Lemma 7 For any m € M and ez,er, C m , where i & L.

(1)the number of er contained in m and containing ey, is
q(n+k-1)(n-z').

)

(2)the number of er contained in m and containing e, ep; is
q(n+k—1)((n-t’—1)_

Proof:(1)If e, C m(m has the same form as Lemma 5), then we can
assume that

v 0 00 0 00 00 0 O\ ¢
ee=| 0 1™ 00 0 00 0000 n-t'
0 0 2, 0 I 00 00 2 0 ¢
0 0 0 0 0 00 01 0 O 1

! n-l! n wv-2n I n-l'm v=2n1 k-li—k

if e;, C er C m,then

Y 0 00 0 0 0 0000\
0 I~ 0 0 0 0 0 00 0 0| nu
er=] 0 0 2 0IO 0 0 002Zo0]| ",
o 0 20 o0 I»Ho 002z50]|™"
0 0 00 0 0 0 0100/ !

! nl' nuv-2n !l n=l' n v=2n1 k-1Ii-k

therefore the number of er contained in m and containing ey, is
q(n+k-1)((n—l’)_

(2)Similarly, we can prove that the number of er contained in m and
containing ez, e, is g tk-D((n—t 1),

Lemma 8 Assume that m; and my are two distinct messages which
commonly contain a transmitter’s encoding rule er .s; and s; contained

204



in m; and my are two source states,respectively,then for any ez,er, C
m; N 'mg,the number of er contained in m; N m, and containing ey, eg, is
gl =Dki=n=1) where k; = dim(s, N s3).

Proof: From the definition of source states, it is easy to know that
n+1<k; <2n+k— 1. Now we assume that

I 0 0 0 000 O n
0 0 0 I™ 000 O n
m; = 0 A1 0 0 0 00 0 n
0 0 0 0 001 O 1
0 0 0 0 00 0 A/ #-1
n n v-2nn nv-2n1l1 [-1
I o0 0 0 000 O n
0 0 0I™ 000 O n
mg = 0 Bl 0 0 0 0 0 0 n
0 0O 0 0 001 O 1
0 0 0 0 00 0 B/ k1
n v=2nn nv-2n1 (-1
then
I 0 0 0 000 O© n
0 0 0 I™ o000 0 n
mlﬂm2= 0 Cl 0 0 0 00 O n
0 0 0 0 001 O 1
0 0 0 000 C/ k1
n n v-2nn nv-2n1l I-1

since my [\mg = s1() s2 + er, then dim(m; m3) = k; +n. And

(0 CL 00000 0
d""(o 0 O(Joooc;'2)="‘1"""1

for any er,er, C my(\mz , where ¢ & L.

990 0 0 0 0000 0 0\ /

| O 1= g o 0 0000 0 0 |nt
0 0 X3 0IY 0000 X, 0 !
0 0 00 0 0001 0 0 !
{ n-1 n v-2n ! n-{ nv-2n1 k-1 I—-k
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and

Ih“%9 0 00 0000000 O0) ¢
en=| 0 I 00 000000 0 0fnF
¥ 0 0 Y% 0 0100007VY 0] !
0 0 00 0000010 0/ 1!
v n—t’ n v=2ni-1 i n—inv—2n1 k-1I-k
if ez, er, C er C my(\m2, then
(IU') 0 000 0 0 0 00000Y) ,
0 I"-1) g 0 0 0 0 0 0000 O] nt
0 0 X019 o0 0 0 000X0]| ¢
er=| o o0 2zro o0 IG-'-Do o o0o002z30|""
0 0 Y00 0 1 0 0o00Y,0] '
0 0 200 0 0I™900020]| ""
\ 0 0 00 0 0 0 0 00100
l’ ’

n—1 nv—2nl i—ll—l 1 n—-i nv-2n1k-1I1-k

so the number of er contained in m; N my and containing ey, ep, is
q(n—l'—l)(ln-n—l)‘

Theorem 2 In the above construction of multireceiver authentication
codes, the largest probabilities of success for Impersonation attack and
Substitution attack from Ry on a receiver R; are

1 . 1
2(v—n)+i—-14(n—1' —1)(2v—3n+l-k)’ Ps [" L] - q

Pifi, L) = - g

Proof: Impersonation attack: after receiving their secret keys,R;, send a
message m to R;. Ry is successful if m is accepted by R; as authentic:

Pyli, L} = max max P(m is accepted by R;|ler) wherei ¢ L
eL€EL, meM
Er|erCm,and erDer,er;}

_ {eT€
T el men { {er€BrlerCer}

(ntk=1)(n=t' =1

q3v=2n+l-1)(n=0")
1
- q2(v—n)+l-l+(n—l’ —1)(2v—3n+l~k)

Substitution attack: after observing a message m that is transmitted
by the sender, replace m with another message m’.R is successful if m’ is

accepted by R; as authentic:
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Psli,L] = max max r;éla.x P(R; accepts m'|m,e) where i € L

etEEL mEM m'#meM
— {er€Er|erCm,m’ and erDes,er;}
- eineag‘(;, gleaj(d m:l;l,ﬁ)éM {er€ETr|eLCer and erCm}
’
(kj=n-1)(n—l =1)
— - .
max L—-—;——q(n_, T wheren+1<k; <2n+k-1
(n+k=2)(n—t'—1)
glrtk=—1)(n=1)
— 1
- an—l’+k—z

Construction 2

Let F, be a finite field with ¢ elements and v;(1 < i < 2v) be the
row vector in lFS,zV”). Assume that 2 < r < s,7r+s < y,1 < k <l
U= (v,v2:+,vp,e241), and U is a fixed subspace of type (r +1,0,1).
The set of source states S ={s | s is a subspace of type (r + 2s + %, 3, k)
and U C S C U+t}; The set of transmitter’s encoding rules Eyr ={er
is a r-dimensional subspace in ng"“) and U + er is a subspace of type
(2r + 1,7,1)}; The set of ith receiver’s decoding rules Eg, = {eg, is 1-
dimensional subspace IF,(,Z"H), and U +ep, is a subspace of type (r+2,1,1)
which is orthogonal to (vi,:-:vi-1,%41,---,vr)} ; The set of message
M ={m|m is a subspace of type (2(r + s) + k,r + s,k), and U C m,
mU* is a subspace of type(r + 2s + k, s,k) }.

1.Key distribution.The KDC randomly chooses a subspace er € Er, and
privately sends er to the sender 7. Then the KDC randomly chooses a
er; € Ep, and er, € Er, then privately sends eg, to the ith receiver,

wherel <i<n.
2. Broadcast.For a source state s € S,the sender calculates m = s + e and

broadcasts m.
3. Verification.Since the receiver R; holds the decoding rule eg,,R; accepts

m as authentic if ep, € m. R; can get s from s = m(U*L.

We assume that the encoding rules of the transmitter and the receiver
are chosen according to an uniform probability distribution. From the
transitivity properties of singular symplectic group we can assume that

U= I 00000
"\ 0 00010

r ver r v—rl l-1
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Im 0 0 0 0

UL 0 I»m o0 o0 0
- 0 0 o0 I¥7 o
0 0o o o IO

n v—r r v—r l

Lemma 9 The above construction of authentication codes is reason-
able, that is

()s+er=me M, forall s€ Sander € Er

(2)for any m € M, s = m(U? is uniquely source state contained in m
and there is er € Er, such that m = s+ ep.

The proof of the lemma is straightforward, so the proof is omitted.

Lemma 10 The number of encoding rules e contained in m is g"("+2s+k),
Proof: If m is a message, then m is a subspace of type (2(r +s)+k,7+
s,k), and U C m, we can assume that

I o0 o0 0o 0 0 o0 o0 O r
0 I o 0 0 0 o0 o0 0 s
= 0 0 0 0 I® 0 0 0 0O s
- 0 0 O 0 0 0 1 0 O 1
0 0 O 0 0 0 0 I*D o [ k-1
0 0 o0 I o0 0 0 0 O r

r 8 v—r—g r 8 v=r—s 1 k=1 I-k

if ep C m, then

er=(Q Q 0 IT Q 0 Q4 Qs 0)r

r s v—r—8 T s v—r—-s 1 k-1 I-k

where Q,Q2,Q3,Q4, Qs arbitrarily, so the number of encoding rules er
contained in m is g"{r+2s+k),

Theorem 3 In the above construction of multireceiver authentication
codes, the parameters are computed as follows
|S| = g?U—FIN(k — 1,1 — 1)N(2s, 5;2(v — 1))
| ETI = q(2u—r+l)r
|ER.~| - q2u—r+l
|M| = qr(2u—2r—2s+l—k)q2s(l—k)N(k - 1’1 _ 1)N(2s,s; 2(1/ _ ,’.))
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Proof: (1) For any s € S, s has the form as follows

I 0 0o 0 0 o 0 r
s 0 R1 0 Rz 0 0 R3 23
- 0 0 0 0 1 0 0 1
0 0 0 0 0 k1 ¢ k—1
r v—r r v-r 1 k-1 -k

where (RyR;) is a subspace of type(2s, s) in F&*'~™) Ry arbitrarily, so
IS| = g*(-RIN(k - 1,1 — 1)N(2s,s;2(v —1)).

(2) Since er is a r-dimensional subspace in IF((,2"+’) and U +er is a
subspace of type (2r +1,7,1), so we can assume that

er=(Q Q I” Q5 Qi)

v—r r v—r l

where Q1,Q2,Q3, Q4 arbitrarily, so |[Ep| = g2/—r+r
(3) From the definition of eg,,

er,=(Q1 Q@ 01 0 Q3 Q4)1

v—r i-11 n—-i py-r |

where Qy, Q2, Q3, Q4 arbitrarily, so |eg,| = g2~ "+
(4) Since a message contains only one source state and the number of

transmitter’s encoding rules contained in a message has been computed, we
can compute [M| by |M| = |S||Er|/q""+2+8), s0 | M| = gr@v—2r=2eH=h)
g?*=FIN(k — 1,1 — 1)N(2s,5;2(v — 1)).

Lemma 11 For any Ry = {R;,--,Ry} € EL, the number of er
containing ey, is g2~ =) where I’ < r.

Proof: From the definition of eg,, we can assume that

ee=(X X IV 0 X3 X, )¢

r v—r { r—l| v—r 1
where X3, X5, X3, X4 arbitrarily, if ef C er, then
oo [ X1 X ' 0 X3 X\ (
Vi Yo 0 IV V3 Y, )

r v—r 1 r—{ v—r

’

so the number of er containing ey, is g{2¥="+D(r=1),

209



Lemma 12 For any m € M and e;,egr, C m,, where ¢ € L.

(1)the number of er contained in m and containing ey, is
q(r+2s+k)((r-z’);

(2)the number of er contained in m and containing ey, eg, is
q(r+2s+k)((r—l'—l)'

Proof: (1) If e;, C m(m has the same form as Lemma 10), then we can
assume that

a=(vi %% 0 IO 0 Y, 0 ¥ Y o0)!

i r—l s v—r—s l =i s v—r—s 1 k-11-k

where Y1,Y5,Y3,Y,,Ys,Ys arbitrarily, if ez C er C m then

(i ¥s 0 IO 0 Y, 0 Y5 Y 0)

T Zv 2y 23 0 0 I-D 2y 0 Zs Zg 0 r=!
[ =t s v—r—38 ! rt 8 v-r—s 1 k-1 l-k

where 71, 22, Z3, Z4, Z5, Zg arbitrarily, so the number of er contained in

m and containing ey, is g(r+2s+k)(r=1),
(2) Similarly,we can prove that the number of ez contained in m and

containing ey, ep, is g(rt2s+R(r=i -1),

Lemma 13 Assume that m; and my are two distinct messages which
commonly contain a transmitter’s encoding rule ey .s; and s; contained
in my and my are two source states, respectively, then for any er,er, C
my N'mz, the number of er contained in m; N'm2 and containing er, eg,

(i ¢ L)is qtr=" ~D(k1=r=25-1) where k; = dim(s N sp).

Proof: From the definition of source states, it is easy to know that
r+1<k; <r+2s+k—1. we choose m;, my as follows

( I 0 0o 0 0 0\ -

0 A, 0 0 0 O s

e — 0 0 0 A, 0 O s
1= 0 0 0 0 1 0 1
0 0 0 0 0 Az | %1

\ 0 0 I™ o0 0 O r
(1D 0 0 0 0 0\ -

0 B, 0 0 0 O s

0 0 0 B, 0 0 s

™=1 9 0 0 0 1 0 1
0 0 0 0 0 B3 k-1

\ o o0 I® o0 0 0/ .
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and m; [\mg = s1()s2 + er, dim(m, [\ my) = k; + 7, so

I 0 0 0 0 0 r
0 ¢ 0 0 0 O s
| o 0o o0 ¢ 0 o s
mAme=| o o 0o 0 1 0 1
0 0 0 0 0 Cs k-1
0 0 I™ o0 o0 0 r
T v—r T v—r 1 I-1
0C, 0 0 O
anddim { 0 0 0 C, 0 = k) —r — 1. Similar to lemma 8 we
0 0 0 0 C;
can derive the number of er contained in m; N'mo and containing ez, eg,
is q(r—l’—l)(kl—r—l).

Theorem 4 In the construction 2 of multireceiver authentication codes,
the largest probabilities of success for Impersonation attack and Substitu-
tion attack from Ry on a receiver R; are

1 , 1
2=yl (r=1'=1)(2v—=2r—2s+I—k) +Ps [z, L] - q('r—l'—l)(r+2)+r+2a+k

Pyfi, L) =
q

Proof: Impersonation attack: after receiving their secret keys,Ry, send
a message m to R;.Ry is successful if m is accepted by R; as authentic:

Pr[i,L} = max max P(m is accepted by R;|e;) where i & L
eL€EEL meM

{eT € ET|eT C m,and er D eL,eR..}}

e, €EEL meM {eT € ETleL C eT}

= max max{
glr+2e4k) (r~ -1

= g@r=r D=1

_ 1

- q2v—rHH(r=t'=1)(2v=2r—2s+l-k)

Substitution attack: after observing a message m that is transmitted
by the sender ,replace m with another message m’.Ry, is successful if m’ is
accepted by R; as authentic:

L= ' , .
Psli, L) e?eag;, 'rnneaicl m,r;?’iaéM P(R; accepts m'|m,e.) where i ¢ L
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{er € Erler C m,m’ and ep O eL,eR_.}}

i Ly S { {eT € ETleL Cerander C 'rn}

eL€EEL meM m'#£EmeM

(ky=r=1)(r=t'=1)

=max®t——————— wherer+1<k <r+2s+k-—1.

glr=1)(r+3a+k)

q(2s+k—2)(r—l’—1)
= g1 (r+2s+k)

1
T grU D) tr2etk
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