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Abstract

Let G be a graph, and k a positive integer. A graph G is frac-
tional independent-set-deletable k-factor-critical (in short, fractional
ID-k-factor-critical) if G — I has a fractional k-factor for every in-
dependent set I of G. In this paper, it is proved that if x(G) >
max{'-‘i*-,‘,%ﬂ, L"’L’:“;I)ﬂﬁl }, then G is fractional ID-k-factor-critical.
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1 Introduction

In this paper we consider only finite undirected graphs which have neither
multiple edges nor loops. Let G be a graph. We denote by V(G) and E(G)
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its vertex set and edge set, respectively. For a vertex v € V(G), let Ng(v)
be the set of vertices adjacent to v in G and dg(v) = |[Ng(v)| be the degree
of v in G. We write Ng[v] for Ng(v) U {v}. For S C V(G), we use G[5] to
denote the subgraph of G induced by S, and G- S = G[V(G)\ S]. Let S
and T be disjoint subsets of V(G). We denote by e¢(S,T) the number of
edges joining S and T, and set dg_s(T) = ) crdo—s(z). We use o(G)
and k(G) to denote the independence number and the connectivity of G,
respectively.

Let k > 1 be an integer. A spanning subgraph F of G such that dp(z) =
k for each z € V(G) is called a k-factor of G. If k = 1, then we say that a
1-factor is a perfect matching. A graph G is factor-critical 1] if G — v has
a perfect matching for every v € V(G). In [2], the concept of the factor-
critical graph was generalized to the ID-factor-critical graph. A graph G
is independent-set-deletable factor-critical (shortly, ID-factor-critical) if for
every independent set I of G which has the same parity with |V(G)|,G-T
has a perfect matching. Apparently, every ID-factor-critical graph with odd
vertices is factor-critical.

Let h : E(G) = [0,1] be a function. If ) _,_h(e) = k holds for each
z € V(G), then we call G[F}] a fractional k-factor of G with indicator
function h where F,, = {e € E(G) : h(e) > 0}. A fractional 1-factor is also
called a fractional perfect matching. A graph G is fractional independent-
set-deletable k-factor-critical (in short, fractional ID-k-factor-critical) [3] if
G — I has a fractional k-factor for every independent set I of G. If k =1,
then a fractional ID-k-factor-critical graph is called a fractional ID-factor-
critical graph.

Many authors have investigated graph factors [4-9]. Chang, Liu and
Zhu [3] showed a minimum degree condition for a graph to be fraction-
al ID-k-factor-critical. Zhou, Xu and Sun [10] obtained an independence
number and minimum degree condition for graphs to be fractional ID-
k-factor-critical graphs. The following results on fractional ID-k-factor-
critical graphs are known.

Theorem 1 (Chang, Liu and Zhu [3)). Let k be a positive integer and G
be a graph of order n with n > 6k — 8. If §(G) > -25"-, then G is fractional
ID-k-factor-critical.

Theorem 2 (Zhou, Xu and Sun [10]). Let G be a graph, and let k be an
integer with k > 1. If

4k(6(G) —k+1)
k2+6k+1
then G is fractional ID-k-factor-critical.

o(G) <

216



In this paper, we proceed to study fractional ID-k-factor-critical graphs,
and use independence number a(G) and connectivity x(G) to obtain a new
sufficient condition for a graph to be fractional ID-k-factor-critical. The

main result is the following theorem.

Theorem 3 Let G be a graph, and let k be a positive integer. If

k* +6k+1 (k®+6k+ l)a(G)}
2 ' 4k ’
then G is fractional ID-k-factor-critical.

k(G) > max{

Unfortunately, the authors do not know whether the independence num-
ber and connectivity condition in Theorem 3 is best possible or not. Thus,
we pose the following conjecture.

Conjecture 1 Let G be a graph, and let k be a positive integer. If

2 2
#(G) > max(® +gk+ 1 (k +6k4;cr 1)a(C)

then G is fractional ID-k-factor-critical.

-1

If G is a complete graph, then G is fractional ID-factor-critical. If G
is a non-complete graph, then a(G) > 2. Combining these with k = 1 in
Theorem 3, we obtain the following corollary.

Corollary 1 Let G be a graph. If
x(G) 2 2a(G),

then G is fractional ID-factor-critical.

2 Proof of Theorem 3

Liu and Zhang [11] showed a necessary and sufficient condition for a graph
to have a fractional k-factor, which is very useful in the proof of Theorem

3.

Lemma 2.1 (Liuv and Zhang [11])). Let G be a graph. Then G has a
Jractional k-factor if and only if for every subset S of V(G),

0G(S,T) = k|S| + dg-s(T) — k|T| =2 0,
where T = {z:2 € V(G)\ S,dg_s(z) < k}.
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Proof of Theorem 3. Let I be an independent set of G and H = G—-1.
In order to prove Theorem 3, we need only to prove that H has a fractional
k-factor. By contradiction, we suppose that H has no fractional k-factor.
Then from Lemma 2.1, there exists some subset S C V(H) such that

0u(S,T) =k|S|+dy—s(T) — k|T| < -1, (1)

where T = {z: z € V(H)\ S,dy_s(z) < k}. Obviously, T # 0 by (1).

Now we take xy € T such that z; is the vertex with the least degree in
H(T]. Let Ny = Ng[z;)NT and Ty =T. For i > 2, if T — U, ¢;; N; # 0,
let T; = T — Ujg;<i Nj- Then take z; € T; such that z; is the vertex
with the least degree in H[T;], and N; = Ny[z;](\T:. We continue these
procedures until we reach the situation in which T; = @ for some i, say for
i =7+ 1. Then from the above definition we know that {z;,z2,---,z,.} is
an independent set of H. Since T # @, we have r > 1.

Let |Ni| = n;. From the definition of NV;, we can obtain the following
properties ((2) and (3) are trivial; (4) follows because our choice of z;
implies that all vertices in N; have degree at least n; — 1 in T3).

a(H[T)) 2, (2)
1<igr )
> (D dn(@) 2 Y (nf—n). 4
1<i<r z€N; 1<igr

Let U = V(H) — (SUT) and k(H — S) =t. We now prove the following
claims.

Claim 1. &(G) > ZE=UEk+3) 4 o ().

Proof. If a(G) > 2k, then by the assumption of Theorem 3 we have

2 2
K(G) > max{k +gk + 1, (k +6k4-,|c- l)a(G)}
(k2 + 6k +1)a(G) _ (k% + 2k + 1)a(G) N
= 4k B 4k

k2 + 2k +1 (2k - 1)(2k + 3)
2 T Oz

o(G)

+ o(G).

If a(G) < 2k, then by the assumption of Theorem 3 we obtain

k% +6k+1 (k%+6k+ l)a(G)}
2 ’ 4k

K(G) > max{
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k2+6k+1 K +2k+1.

> = ———— +2%
k2 -
+§k+ L, o s @ 1i£2k+3) +o(G)

This completes the proof of Claim 1.

Claim 2.
Y du-s(@) 2 Y (nf-ni)
zeT 1<i<r

Proof. On the left-hand side of (4), an edge joining a vertex = in N;
and a vertex y in V; (i < j) is counted only once, that is to say, it is counted
in the term dr,(z) but not in the term dr,(y). From this observation, we
have

Z dy_s(z) > Z (n? —n)) + Z ey (Ni, N;) +eu(T,U).  (5)

zeT 1<i<r 1<i<j<r
Since k(H — S) = t, we obtain

en(No, |J Nj) + en(N:,U) > t (6)
it

for each V; (1 < ¢ < r). (We do not get (6) in the case where r = 1
and U = §. But in that case, we have éy(S,T) = k|S| + dy—_s(T) —
k|T| = k|S| + n? — n; — kn; < —1 by our choice of z;, which implies that
[V(H)| = |S]+n; < n2,+n1+kn;—1 +ny — =i+ (2k+1ny—1 < (2k—1)(2k+3)
Note that H = G — I and |I] < &(G). Then using Claim 1 we obta.m
VG| = [V(H)| + 1] < @U@ 4 o(@) < k(G) < |V(G), which is
a contradiction.) Summing up these inequalities for all i (1 < i < r), we
have

> (en(N:, [ Ny) +ea(No,U) =2 > en(Ni,N;) +en(T,U) 2 rt.

1<igr i 1<i<i<r
(M

From (7), we obtain

Y en(NuNy) +en(T,U) 2 7. (8)

1<i<ji<r

Using (5) and (8), we get

> du_s(x) > ) (n?-ny) +—.

z€T 1<i<r
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This completes the proof of Claim 2.
According to (1), (3) and Claim 2, we have

0 > -1 ZJH(S,T)=k|S|+dH s(T) — k|T|
> KIS|+ ) (n?—ny) +——k Z ni

1<i<r 1<i<r
= HS|+ > (- (k+Dn)+3
1<ir
that is,
0> kiS|+ 3 (n2 = (k+1)ma) + %t )

1<igr

Let f(n;) = n? —(k+1)n, By differentiation we know that the minimum
2
value of f(n;) is — (k“) , that is, n? — (k + 1)n; > — Sk—";l)—. Combining
this with (9), we have

k+1 k+12%r rt
0>kS|— > ( 4) ™ kS| - (—4—)+3. (10)
1<ir

Note that H = G — I. By (2) we obtain
o(G) 2 a(H) 2 o(H([T)) 2 7. (11)
Obviously, the following inequalities hold.
k(G) < I|+6(G=I) = |I|+&(H) < {I|+|S|+£(H-S) = |I|+|S|+t. (12)

From (10) and |S| > 0, we obtain

k 2 ¢
G4

) 3 <0. (13)

In view of (10)-(13), || £ a(G) and the assumption of Theorem 3, we
have

(k +1)%r + rt

0 > k|S|- ) 5
2
> kw(@) -i-1- EE 06)+ £ a(0)
> k(k(G) — a(G) —t) — F J; D )+ % - (C)
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4kk(G) (k412 4kk(G)
KO - mrare1 )" T4 Waehsl
+£_ 4kk(G)
3 P rok+1

2(G) ak (k +1)
= Mareasr VOO0 - ErekaT)
oy 24(0)
- kt(k2+6k+1 -
2. Lﬁi—%’cﬂ
Mrreerr D

v

1)

=0,

v

which is a contradiction.

From the argument above, we deduce the contradictions. Hence, H has
a fractional k-factor, that is, G is fractional ID-k-factor-critical. This com-
pletes the proof of Theorem 3.
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