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Abstract

A non-empty r-element subset A of an n-element set X,, and a
partition 7 of X, are said to be orthogonal if every class of 7 meets A
in exactly one element. A partition type is determined by the number
of classes of each distinct size of the partition. The Johnson graph
J(n,r) is the graph whose vertices are the r-element subsets of Xy,
with two sets being adjacent if they intersect in 7 — 1 elements. A
partition of a given type 7 is said to be a 7-label for an edge AB in
J(n,r) if the sets A and B are orthogonal to the partition. A cycle
‘H in the graph J(n,r) is said to be 7-labeled if for every edge of H
there exists a 7-label, and the 7-labels associated with distinct edges
are distinct. Labeled Hamiltonian cycles are used to produce minimal
generating sets for transformation semigroups. We identify a large class
of partition types 7 with a non-zero gap for which every Hamiltonian
cycle in the graph J(n,r) can be 7-labeled, showing, for example, that
this class includes all the partition types with at least one class of size
larger than 3 or at least three classes of size 3.

Key words: partition, graph, Hamiltonian cycle, labels.

MOS Classification number: 05A18, 05A17, 05C20

JCMCC 89 (2014), pp. 223-246



1 Introduction

This paper presents combinatorial results concerning interconnections be-
tween the graph of all fixed size subsets of a given finite set and partitions
of a subset of this set. Let X, be a non-empty set {1,2,...,n}, and let r
be a positive integer less than n. The Johnson graph J(n,r) is the graph
whose vertices are the r-element subsets of X,,, with two sets being adjacent
if they intersect in r — 1 elements.

For a non-negative integer g < n a partition of an (n — g)-element subset
of X, is a partition of X,, with gap g. A subset A of X,, and a partition =
of X, are said to be orthogonal if every class of # meets A in exactly one
element. A partition w of X,, with gap g has type 7 = d1#1da#? ... di** if
7 has p; classes of size d;, where d; > dp... > d for ¢ = 1,2,...,k, and
Zf=1 dipi = n — g. The number r = Z:;l pi of classes of 7 is its weight.

A partition «y of a given type 7 is said to be a 7-label for an edge AB in
J(n,r) if the sets A and B both are orthogonal to . A cycle H in the graph
J(n,r) is said to be T-labeled if for every edge of H there exists a 7-label, and
the T-labels associated with distinct edges of H are distinct. A Hamiltonian
path or cycle contains every vertex of the graph exactly once. Hamiltonian
cycles of J(n,r) are among the earliest examples of Gray codes [9] that were
used to minimize errors in certain computer operations.

The 7-labeled Hamiltonian cycles in J(n,r) are used to construct min-
imal generating sets for semigroups of total transformations of X, if 7 has
zero gap (5], and for semigroups of partial transformations of X, if 7 has
a non-zero gap [2]. To this end, existence of 7-labeled Hamiltonian cycles
in J(n,r) was established in [4] for 7 = 27 with a non-zero gap and for
7 = 277t 1! with zero gap, where r,t > 1. The authors of [4] conjectured
that for any partition type 7 of weight r defined on X, for which there exists
at least as many partitions as there are r-element subsets of X, there exists
an alternating list all the r-element subsets and distinct partitions of type
7 such that an adjacent set and a partition are orthogonal to each other.
Subsequently, it was shown in [6] that for every partition type = with zero
gap having at least two non-singleton classes there exists a 7-labeled Hamil-
tonian cycle in J(n,r). For partition types + with zero gap and a unique
non-singleton class, the existence of orthogonally 7-labeled Hamiltonian cy-
cles is equivalent to the difficult and generally yet unsolved Middle Levels
problem [10], [6].

Constructions of orthogonally labeled Hamiltonian cycles can be difficuit.
The authors of (5} identified large classes of partition types T with zero gap
that can be used to orthogonally label every Hamiltonian cycle in J(n,r) for
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appropriate 7 and r (see Theorem 4.1 and Remark 5.2 below). They also
presented the following problem for partition types with zero gap.

Problem 1 Characterize all the partition types T of weight r defined on X,
that can be used to 7-label every Hamiltonian cycle in J(n,r).

This paper presents a significant contribution to the solution of the prob-
lem above. We expand the set of techniques used in [5] and solve several
problems posed there. Moreover, we expand the scope of the problem, fo-
cusing on the partition types with non-zero gaps.

A partition type 7 of weight r defined on X, is said to be flexible if
every Hamiltonian cycle of the graph J(n,r) can be 7-labeled. Not every
partition type 7 for which there exists a 7-labeled Hamiltonian cycle in
J(n,r) is flexible. For example, it was shown in (7] that there exists 24-
labeled Hamiltonian cycle in J(8,4), and there exists another Hamiltonian
cycle in J(8,4) which can not be 2*-labeled. A partition type is non-trivial if
it has at least one non-singleton class. Our objective is to prove the following
results.

Theorem 1.1 Let n > 3 be an integer, and let T be a non-trivial partition
type defined on X, with a non-zero gap g and weight r > 1.

1. If 7 has at least one class of size greater than two then T is flexible
unless g =1 and 7 is one of the following:
(a) 32%;
(b) 321t witht > 0.
2. If the classes of T are of sizes at most two, then T is flezible unless it
is one of the following:
(a) 221 witht >0 and g > 1;
(b) 221 witht >0 and g > 1;
(c) 2* with1< g <4;
(d) 2°1 withg=1,2 or 2°12 with g = 1;
(e) 2° with1<g<3;
(f) 2% with g = 1.

For each partition type 7 as in Theorem 1.1(1a),(1b),(22)-(2f) there exists
at least one 7-labeled Hamiltonian cycle (Theorem 1.4 in [2] and Theorem
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3.1 in [4]). However, the question whether every Hamiltonian cycle of an
appropriate size can be 7-labeled for these partition types 7 is still an open
problem.

It was shown in (7] that partition type 2°1¢ with zero gap is flexible for
s> 9 and t > 0. We expand this result in the first and second parts of the
theorem below, addressing an open Problem 2(6) posed in [5] of determining
if the partition type 2"*1* with h = 2,...,8, ¢t > 0 and zero gap are flexible.
In the third part we address another open problem Problem 2(3) posed in (5]
to determine if the partition type 322 1% with ¢ > 0 and zero gap is flexible.

Theorem 1.2 1. Letr > 4 andt > 1. The partition type 2" 1* with zero
gap is flexible unless it is one of the following:
(a) 241t with t = 1,2,3,4;
(b) 251 witht =1,2;
(c) 281.
2. 27 1% with zero gap is flexible whenr >4,t > 1 and 2r +t > 14.
3. The partition type 3% 21t with zero gap is flezible if t > 2.

The remainder of the paper is focused on proving the above results. A
proof of Theorem 1.1 is presented in Section 7 of the paper, while a proof
of Theorem 1.2 is the content of Section 6.

2 Number of partitions

Let N(7,g) denote the number of partitions of type 7 of X, with gap g.
The partition type T of weight r is said to be ezceptional [4] if N(7,g) <
(%), otherwise a partition type is said to be non-ezceptional. Clearly if
there exists a 7-labeled Hamiltonian cycle in J(n,r) the partition type 7
has to be non-exceptional. The number of distinct partitions of type 7 =
difdqo#? . . . dpM* with zero gap is given by the following well-known formula
(see, for example, [1]):

n!
k(g g
.=1( LT

Given a partition of type 7 of X, with a gap g, let ¥ denote the corre-
sponding partition type of X,_, with zero gap. It is easy to see that the

N(Ta 0) =
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number of partitions of type 7 with a non-zero gap g is
Nra) = (D)W (7,0

For example, if 7 = 321 is a partition type with gap 2 defined on X,
# = 321 is a partition type with zero gap defined on X7. The partition
v = 134/578|9 of Xy is of type 7; v has classes{1, 3,4}, {5, 7,8}, {9} and the
gap set {2,6}. The partition 4 = 134|567|2 of X7 is of type #; & has zero
gap and classes {1,3,4}, {5,6,7},{2}. We have that N(,0) = @% and
N(7,2) = QN (#).

It was shown in [4], there are “very few” exceptional partitions with zero
gap. We show that there are no exceptional partitions with non-zero gap.

Lemma 2.1 1. A partition type T of weight r > 2 with zero gap is ez-
ceptional if and only if and only if T is of the form 22, 23, 32 or d171
withr < d.

2. Every non-trivial partition type with non-zero gap is non-ezxceptional.

Proof. Since the first part of the lemma was proved in [4], we assume that
Tisa partition type of X, with a non-zero gap g. If 7 = d for some d > 2,
then N(7,g) = (}) 2 n. Hence assume that the weight r of 7 is at least 2.
Suppose first that 7 is non-exceptional. In this case

o= (e ()(7) - ()3 ()

sincen >r+4g.
Now suppose that 7 is exceptional. If » < g < n — 3 then N(r,g) =
(5)NV(#,0) 2 (7). Therefore, referring to the first part of the present lemma,

we may assume that g < 7. If # = 22 or 32, then g = 1 and the inequality
N(d?1) > (%) is easily verified for d = 2,3 by direct computation.
Similarly if 7+ = 23, then g < 2 and N(2%,9) = 30(9"'6) > (9%) by direct
computation. Finally, if # =d1™! withr <dthenn=d+g+r—1 and

Mg = () Gt = (1) a2, (),

foralld>2and g,r>1. 0
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3 Counting techniques

An important technique for identification of flexible partition types is based
on the use of the Edge Inequality, introduced in [5] for partition types with
zero gap. We generalize the technique to identify large classes of flexible
partition types 7 with gap g > 0. For fixed n and r let 7 = d;#'d2#? . .. dp"*
be a partition type on X, with a gap g. Recall that a partition v of type
7 is a T-label for an edge AB in the graph J(n,r) if the sets A and B are
orthogonal to «v. The total number of available T-labels for the edge AB is
denoted by M(r,g). The number M (7,0) has been calculated in [5] as

(n—7)i(r —1)!
nz—l((di — 1))kl

It is not difficult to see that if 7 is a partition type on X,, with any gap g
and 7 is the corresponding partition type on X,_, with zero gap, then the
number of 7-labels for the edge AB in J(n,r) is equal to

o= (7 e ()

The term ("""1) reflects an observation that the union of the classes of a
7-label « for the edge AB has to contain AU B, so the complement of the
union of classes of 7 is a g-element subset of X, \ (A U B). The number
M(7,g) of T-labels that may be used to label the edge AB is independent
of the choice of A and B.

Now suppose that # is a Hamiltonian cycle in J(n,r). Assume that
we start at a fixed edge of H and transverse the edges of H sequentially
in a fixed direction assigning distinct 7-labels to each edge. Suppose v is a
possible 7-label for an arbitrary fixed edge AB in H, and let C(n,r) be the
set of all the “competitor” edges in H that could also be labeled by the same
4. If the number of available partition labels M(r,g) is at least as large as
|C(n, )| then we can simply choose a distinct 7-label for each edge of H.

A bound for |C(n,r)| may be calculated as follows. Since v is a 7-label
for the edge AB, the symmetric difference {a, b} of the sets A and B has to
be a subset of one of the classes of v. Thus if an edge DFE € C(n,r) then
the set D is orthogonal to v, so D contains at most one of the elements of
{a,b}. Thus the total number |C(n,r)| of “competitor” edges DE is at most

= (667 - et e

M(7,0) =
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If every class of 7 consists of at most two elements, then {a,b} is a class
of 4, and so D contains exactly one element of the set {a,b}. In this case
[C(n, )| does not exceed

m2(n,r) = (f) (:: f) < m(n,r).

The above bounds on the size of C(n,r) do not depend on the choices of the
Hamiltonian cycle H, the edge AB or the partition v. We summarize this
discussion in the following result.

Proposition 3.1 For fized n and r let 7 be a non-trivial partition type
defined on X,, with a gap g.

1. If 7 satisfies the inequality
M(r,9) 2 |C(n,7)| (3-2)
then 7 is flexible.
2. For any T, [C(n,7)| £ m(n,r).
3. If all classes of T contain at most two elements then |C(n,7)| < m2(n, ).
Note that Inequality (3.2) holds if
M(r,g) 2 m(n,r). 3.3)

Inequality (3.3) was first introduced in [5] as the Edge Inequality. In view
of this definition we refer to the Inequality (3.2) as the Generalized Edge

Inequality.

4 Partitions with no singleton classes

The Edge Inequality was used in [5] to describe large classes of flexible
partition types with zero gap. In many cases we will be able to use the
fact that if 7 is a partition type defined on X, with gap g and # is the
corresponding partition defined on X, _, that satisfies the Edge Inequality
then 7 satisfies the Edge Inequality as well.

Theorem 4.1 [5] Let T be a non-exceptional partition type with zero gap,
no singleton classes and weight r > 2. Then 1 satisfies the Edge Inequality,
unless T belongs to the set € below:

E={d3(d >4),d2°(d > 3,5 > 1),3%22,3%,42 52,33, 2" (h < 8)}.
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The objective of this section is to prove the following result describing the
flexible partition types with no singletons and a non-zero gap g:

Theorem 4.2 Let 7 be a non-trivial partition type defined on X,, with a
non-zero gap g, no singleton classes and weight r > 2.

1. If n > 9 and 7 has at least one class of size greater than two, then T
satisfies the Generalized Edge Inequality M(r,g) > |C(n,7)|, and T is
flexible.

2. Ifn >3 and 7 = 2" then 7 satisfies the Generalized Edge Inequality
M(27,9) 2 m2(2r + g,r), and T is flexible unless it is one of the
following:

(a) 2% or 23; or

(b) 2* and g < 4; or
(c) 2° and g < 3; or
(d) 25 and g = 1.

3. If 3 <n <8 and 7 has at least one class of size greater than two, then
T satisfies the Generalized Edge Inequality M(t,g) > |C(n,7)| and T
is flerible unless it is is one of the following:

(a) 32 withg=1 or2; or
(b) 42 or 52 and g=1; or
(c) 32% withg=1; or

(d) 3% with g =1.

While partition types 7 in (3a) and (3b) above do not satisfy the Gen-
eralized Edge Inequality M(r,g) > |C(n,r)|, we will show that they are
flexible using constructive methods. We prove the above theorem in a series
of results beginning with a general case below.

Proposition 4.3 Suppose that T is a partition type with a non-zero gap g
and weight r > 2 defined on X,. If 7 has no singleton classes, has at least
one class with at least three elements, and if the partition type 7 of Xn-g4
satisfies the Edge Inequality, then T satisfies the Edge Inequality elso, and T
is flezible.
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Proof. Since 7 satisfies the Edge Inequality, in view of Equation (3.1), we
have that

I G CORY () LCEPE)

_ (a=—r=1(n-g-2)(n—g+r-1)
- giri((n—g—r—1)1)2

To prove that 7 satisfies the Edge Inequality, we only need to show that the
last quotient is at least as large as m(n, ). Define a function f(n,r,g) such
that the last quotient is its numerator and m(n,r) is its denominator; we
will show that f(n,g,7) = 1. The function easily simplifies to

_((n=r=1))P(n—g—-2)(n—g+r—1)
f0n9,7) = = i =7 — g — D) —2in 7 =1)

We show that f(n,g,7) in an increasing function in n. Since 7 has no
singleton classes, and it has at least one class with at least three elements,
we have that n > 2r + g + 1. Consider

fnt16r) _(-gtr)ntr—1) (n-r)n-g—1)
fman  mFnfm-g+r=1) (n-g-rPn=1)

Direct computations show that the numerator of the first quotient is larger
than its denominator by g. The difference between the numerator and the
denominator in the second quotient can be written as g(((n — r)(n - 1) —
(n=7)?)+((rn=r)(n—1)—g(n—1))) >0sincen—r>r+g+1>g. So
each quotient is at least 1 and consequently, f(n+1,g9,7) 2 f(n,g,7). Thus
to show that f(n,r,g) > 1, we only need to show that

O 3((r+gM3(er—1)r
f@r+g+l9m) = G o - iGr 19) = &

To this end, to see that f(2r + g+ 1, g,7) increases as g increases, note that

f@r+(@+)+1,9+14r) _  (r+g+1)*3r+g)
f@r+g+1,g,7) T (g+1D)@Br+g+1)(2r+g)

The last quotient is at least 1 since direct computations show that the dif-
ference between its numerator and denominator is positive. If g = 1 then

n=2r+2, and f(2r +2,1,7) = %%%Z%% >3/2>1forallr > 1. Thus
fng,r)>lforn=2r+g+1.0
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It was shown in [5] that the partition type 27 with zero gap satisfies the
Edge Inequality for » > 9. However, if the gap g is non-zero, the partition
type 2" may not satisfy the Edge Inequality even for large values of r. Indeed,
assume that g > 1, r > 2 and take n = 2r + g, then

M@2,9)=(g+r-l/g'=(g+1)(g+2)...{(g+r-1),

and

(g+2r—2)g+3r— 1)
rli(g+r—1)!

m{g+2r,7) = . (g+r)(g+r+l) (g+2r—2)(g+3r-1).

Observe that M (2, g) is a polynomial in g of degree r—1, while m(g+2r,7)

is a polynomial in g of degree r, so for any fixed r there exists go large
enough so that M(2",g) < m(g + 2r,r) for all g > go. However, we use
Proposition 3.1(3) to identify a large number of flexible partition types 7 =
2" with non-zero gap g.

Proposition 4.4 1. Let r > 2. The partition type T = 2T with non-zero
gap g satisfies the Generalized Edge Inequality M(27,9) > m(2r+g,7)
unless one of the following holds

(a) r=2o0r3 withg>1; or
(b)) r=4and1<g<4;or
(¢) r=5and1<g<3;o0r
(d) r=6 andg=1.
2. Ifn > 14 andr > 4 then T = 2" with gap g > 1 satisfies the Generalzzed
Edge Inequality M(27,g) > m(2r + g,7).

Proof. The second part of the proposition follows directly from the first
part. To prove the first part of the proposition, in view of Proposition 3.1(3),
we will show that the inequality M(27,g) > m2(n,r) holds unless r and g
satisfy the conditions (1a)-(1d) above. Observe that n = 2r+ g, M(27,g) =
(r+g—1)!/g!, m2(2r + g,7) = 2(*57?) and define the function

M@,g) _ ((r+g—1)r—1)
m2(2r +g,r) 29!(2r+g-2)!

To show that f(g,r) > 1 for all r and g other than described in (1a)-(1d),
observe that f(g,r) is increasing in g as

flo+ir)  (r+g? . (r=1)?
flg,7) (g+1)(2r+g-1) (g+1)(2r+g-1)

flg,r) =
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Moreover f(g,7) is increasing in r for r > 4 as

flg,r+1) r(r + g)* r >

flor) ~@rrer+g-1)  (1+ )1+ ok

Also direct computations show that f(5,4) = 56/55, f(4,5) = 56/33, f(2,6) =
35/22 and f(1,7) = 210/143, while £(4,4), £(3,5) and f(1,6) < 1. Finally,
for any g > 1, we have f(g,3) = %ﬁ{%g <1and f(g,2) = -2-&*;—125 <10

Next we take up partition types 7 with a non-zero gap and no singleton
classes such that ¥ is one the partition types in the set £ of Theorem 4.1,
and 7 contains at least one class with more than 2 elements. We will show
that many such partition types satisfy the Edge Inequality.

21,

=]

Proposition 4.5 For d > 4, the partition type d3 with non-zero gap g
satisfies the Edge Inequality.

Proof. Observe that n =d+ g+ 3, r =2, and M(d3,g) = (d;g)ég-fll);l’
while m(n,r) = m(d+g+3,2) = (d+ g+ 1)(d+ g +4)/2. We need to show
that M(d3,g9) —m(d+4,2) 20ford>4and g > 1.

For d > 4 and g = 1, the difference M(d3,g) — m(d + 4,2) = d(d +
1)2/2 — (d+ 2)(d + 5)/2 is positive for d = 4 and the difference is increasing
(the derivative is positive) for d > 4.

Ford > 4 and g > 2, (d';g) > (d;'-"), and d(d + 1)/2 > 10 so that
M(d3,g) > 10(";’9). It follows that the difference M(d3,g) — m(d + g +
3,2) > 10((d+g)(d+g-1)/2)—(d+g+1)(d+g+4)/2. Since 2(d+g—1) >
(d+ g +4), it follows that M(d3,g9) > m(d+ g+ 3,2). O

While for some values of d and r, the partition type d 2"~! with zero gap
satisfies the Edge Inequality, generally this is not the case. The following
result was proved in [5].

Lemma 4.6 1. For any fized r > 3 there exists an integer dy > 2 such
that for all d > dp, the partition type 27~ with zero gap does not
satisfy the Edge Inequality.

2. For any fized d > 2, there exists an integer r¢ > 3 such that for
all 7 > 7o, the partition type d27~! with zero gap satisfies the Edge
Inequality.

In contrast, if the partition type d2"~! has positive gap, then, with a
very few exceptions, it satisfies the Edge Inequality.
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Proposition 4.7 Let r > 2 and d > 3.

1. The partition type d27! with non-zero gap g satisfies the Edge In-
equality unless it is of the following:
(a) 322 withg=1;
(b) 32 withg=1 or2;
(c) 42 or 52 withg=1.

2. Ifn > 9 then the partition type d 27! with non-zero gap g satisfies the
Edge Inequality.

Proof. Observe that for the partition type d 27! with a gap g > 1, we have
that n=d+ g+ 2r—2, and

_(d+g+r—3)Nd+7-2)
- g'(d - 1)! ’

(d+g+2r—4)(d+g+3r—3)
ri(d+g+7r—3) ’

We show that unless d, g, r as in either of the conditions (1a)-(1c) above, the

value of the function f(d, g,r), defined as f(d,g,7) = M(d2""%,g)/m(n,7),

is at least 1. First we show that f(d, g,7) is an increasing function of d by

considering

fd+1,9,7)  (d+r-1)(d+g+3r—3) (d+g+7-2)°
f(d,g,7) ~ (d+g+3r—2)(d+r—-2) dd+g+2r—-3)

M(d2t,g)

md+g+2r-2,7)=

Each quotient above is at least 1 as the difference between its numerator
and denominator is non-negative, indeed (d+r—1)(d+g+3r—-3)— (d+
g+3r—2)d+r—2)=g+2r—1>0and (d+g+r—2)°—d{d+g+
2r—3)=((r+9)—2)%>+d(g—1) >20for g > 1 and r > 2. Therefore
f(d,g,r) > f(3,g,7) foralld > 4,g> 1,7 2 2.

D2(rt1)! . . . . .
Now f(3,9,7) = g3 gi';r'_l '_’";iér is an increasing function of g, indeed

fGg+1,r)  (g+7r+1)*(g+3r)
f(31gsr) - (9+1)(g+27‘)(9+37'+1) =7

since (g+7+1)2(g+3r) — (g+1)(g+2r)(9+3r+1) = 3r’+r2g+rg+7 > 0.
Therefore f(3,g,7) > f(3,1,7) forallg > 1,7 > 2.
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a s . 3
Also f(3,1,7) = ﬁ% is an increasing function of » when r > 4, as

FB,L,r+1) r+2 3r4+1 (r+2)? -

f@1,7)  r+1 2r+1 6r+8 -

Thus, for d > 3,¢ > 1 and r > 4, we have that f(d,g,7) = f(3,1,4) =
150/91 > 1, so d 27! satisfies the Edge Inequality if r > 4.

Assume r = 3, then for d > 3 and g > 2 we have that f(d,g,3) >
f(3,2,3) =120/77 > 1, and ford > 4, g = 1,7 = 3, we have that f(d,1,3) >
f(4,1,3) = 100/77 > 1. Finally, f(3,1,3) = 24/25 < 1, so d 2? satisfies the
Edge Inequality unless d =3 and g = 1.

If r = 2 we have that f(d,g,2) > f(3,3,2) = 10/9 > 1 for d > 3 and
g > 3. Also f(d,9,2) > f(4,2,2) = 40/27 > 1 for g > 2 and d > 4,
while £(3,2,2) = 9/10 < 1. Finally if r =2, g = 1 and d > 6 we have
that f(d,1,2) > £(6,1,2) = 36/35, while f(5,1,2) = 25/27, f(4,1,2) =
4/5, f(3,1,2) = 9/14. Thus d2 with a gap g satisfies the Edge Inequality
unless eitherd =3 and g=1,2ord=4,5and g=1. O

To complete a proof of Theorem 4.2 we consider the following partition
types in the set £ (Theorem 4.1).

Proposition 4.8 Partition types 322, 33, 42, 52 with non-zero gap g, and
32 with gap g > 2 satisfy the Edge Inequality.

Proof. For a partition type 322 we have that n = g+ 8, r = 3, and
M(322,9) = 5(g+1)(g+2)(9+3)(9+4)/4, m(g+8,3) = (g+5)(g+6)(g+"
10)/6 are increasing functions of g > 1. Moreover M (322, g) increases faster
than m(g + 8,3) for g > 1, and the functions have respective values of 150
and 77 and when g = 1. Thus M(322,9) > m(g + 8,3) for g > 1, so 322
satisfies the Edge Inequality for g > 1.

For & partition type 3% we haven = g+9, r = 3, M(3%,9) = (g +1)(g+
2)(g+3)(g+4)(g+5)/4, m(g+9,3) = (9+6)(9+7)(g+11)/6 are increasing
functions of g > 1. Again, M(33,g) increases faster than m(g + 9,3), and
the functions take on values 180 and 112 respectively when g = 1. Thus
M(33%,g) > m(g +9,3) for g > 1, and 32 satisfies the Edge Inequality.

For a partition type d? we have that n = 2d + g, r = 2, M(d?,g) =
ot g, m(2d + 9,2) = (2d + g — 2)(2d + g + 1)/2. If d = 3 we have
M(3?,9)/m(g+6,2) = (g+1)(g+2)(g+3)/((g+4)(g+T) 2 Lforg > 2.
If d = 4 we have M(42,g)/m(g +8,2) = (g+ 1)(g + 2)(g + 3)(g + 4)(g +
5)/(6(g+6)(g+9)) > 1for g > 1. If d = 5 we have M(52,g)/m(g+10,2) =
(g+ l)g +2)(g+3)(g+4)(g+5)(g+6)(g+7)/(72(g +8)(g +11) 2 1 for
g=1l
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5 Partition types with singleton classes

The question whether a partition type with singleton classes is flexible is
often resolved based on the information about its non-singleton classes. To
this end we will use the following notation throughout this section. For a
partition type o of weight s > 1 with a gap g defined on X and a positive
integer ¢, the partition type o & 1° defined X4 of weight s+t and with the
same gap ¢ is obtained from o by adjoining ¢ singleton classes.

Let 7 be a partition type with ¢ > 1 singleton classes, weight » > 2 and
a gap g > 0 defined on X,,. We write 7 = 7 @ 1° where 7 is a partition type
with no singletons, weight r—t and gap g, defined on a set of n—t elements.
It was shown in Lemma 2.11 of (5] that if a partition type 7 of weight at
least two, with zero gap and no singletons satisfies the Edge Inequality then
T = 7@1* can be used to label any Hamiltonian cycle in J(n, r), that is 7&1*
is flexible. The proof readily extends to include partition types 7 with a non-
zero gap g that satisfy the Generalized Edge Inequality M (7, g) > [C(n,7)|.
As the proof is short, we present it here for completeness.

Lemma 5.1 Let 7 = T® 1! be a partition type with t > 1 singleton classes,
weight 7 > 2 and a gap g > 0 defined on X,. If ¥ contains no singleton
classes and satisfies the Generalized Edge Inequality M(7,g) 2 |C(n,7)|,
then 7 is flexible.

Proof. Let H be a Hamiltonian cycle in J(n,r) and let AB be an arbitrary
but fixed edge in H. Fix a t-element subset T of AN B. The number of
7-labels of AB with singleton classes in the set T equals the number of 7-
labels of the edge (A\ T)(B\T) in the graph J(n —t,r — t), which in turn
equals to M(7,g). Let 4 be a 7-label for AB such that T is the set of the
singleton classes of v, and let 4 be the partition of type 7 of X, \ T obtained
from v by removing its singleton classes. If DE is a “competitor” edge that
can be labeled by <, then T C DN E and the edge (D\T)(E\T) is a
“competitor” edge of (A\ T)(B\T) that can be labeled by the partition 7,
so (D\T)(E\T) € C(n—t,r —t). The result follows by the assumption
that 7 satisfies the Generalized Edge Inequality M(7,g) > |C(n,7)|. O

Remark 5.2 It follows directly from the above result that if 7 is ¢ non-
exceptional partition type with zero gap that does not belong to set £ in
Theorem 4.1 then 7 @ 1* is flexible for t > 1.

Recall that a partition type 7 = 2° with s > 7 and gap g > 1 satisfies the
Generalized Edge Inequality M (2%, g) > m2(2s+g, s) (Proposition 4.4), and
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so for any ¢ > 1, the partition type 2°1* is flexible. However, the partition
type 7 = 26 with gap g = 1 does not satisfy the Generalized Edge Inequality
M(25,1) > m2(13,6), and generally the partition type 28 1¢ with g > 1 does
not satisfy the Generalized Edge Inequality M (28 1%, g) > m2(t+g+12, t+6).
For example if g = 1 then M(281¢,1) = 6(¢t + 5)!/t! and m2(t + 13, + 6) =
2(4+8), and ﬁé%:%%j = 30550E45) takes on values less than 1 for
large enough values of ¢ since the numerator is a polynomial in ¢ of degree
5, while the denominator is a polynomial in ¢ of degree 6.

The counting technique developed below allows us to identify flexible
partition types 7 = 7 @ 1! with ¢ singleton classes where 7 does not satisfy
the Generalized Edge Inequality M(7,g) > |C(n,r)|. Such partition types
with no singletons are described in Theorem 4.1 (if the gap is zero) and
Theorem 4.2 (if the gap is non-zero).

Lemma 5.3 Let 7 = 7@ 1t be a a partition type with t > 1 singleton classes
and weight r > 2, defined on X, and let H be a Hamiltonian cycle in J(n,r)
to be T-labeled. Then the number of “competitor” edges |C(n,7)| in H does
not exceed

r=1
r-1N\/n-r-1 r-1\/n-r-1
=3 ()G ()C) e
If # =27 with gap g > 1, then |C(n,r)| does not exceed

b2(n, r,t) = 52(" . 1) (: i 1) (5.2)

k=t
withn=2r—t+g.

Proof. Take an edge AB in #, and suppose that v is a 7-label for AB. If
T is the set of singleton classes of «, then for any “competitor” edge DE
that could also be labeled by v we have that T C D and so |[DN(ANB)| =
k for some integer k with t < k < |[AN B| = r -~ 1. Hence using an
argument similar to that of Section 3, if v has at least one class of size at
least three, an upper bound for the number of edges DE that could have
been labeled by 4 previously can be estimated as the number of choices
for D with [DN (AN B)| = k > t and [D N {a,b}| < 2, where {a,b} is
the symmetric difference of A and B. This number is equal to b(n,r,t) in
Equation (5.1).

If every non-singleton class of 1 is of size two, this bound, similarly as in
Proposition 3.1(3), is reduced to 42(n,r,t), as in this case |D N {a,b}| = 1
since {a,b} has to be a class of 4. O
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Note that using the well-known Vandermonde’s identity J=0 (“) (::-_7)
( utv ) we can compare the values of b(n,r,t) and m(n,r) as follows. Since
(r—l) (*7721) = 0 when k = r, we have that

(2D (7)=E () IS ()0
TR > e [ R (i [ ity )

k=0

Il

m(n,r)

Similarly, if 7 = 27—t 1¢, we have that

m3(n, ) = b2(n, 1) +§2<" . 1) (’::I:D

k=0

So using b(n,r,t) or b2(n,r,t) for establishing finer bounds on the number
of “competitor” edges may yield fruitful results only for partition types
with singleton classes. Moreover, for 7 = 27 with gap g > 1 we have that
n=2r—t+g, and

m2(n, r)=b2(n, r, 1) =§2(’;l) (T“”g‘ 1) Z 2(r—1) (r:i:i; 1),

k=t-g

since ("71197') = 0 if k < t — g. Therefore we will use criterion in (5.2)

only for partition types with a non-zero gap. We use the above developed
criterion to prove the next result.

Lemma 5.4 Lett>1andr—t > 4.
1. The partition type 27—t 1* with a non-zero gap g is flexible unless it is
one of the following:
(a) 2°1 withg=1 or2,
(b) 2412 with g = 1.
2. 27t 1! with a non-zero gap g is flezible whenn =2r —t +g > 12.

Proof. Let 7 = 2"~ 1t with gap g > 1 and write T = 7@ 1%, where 7 = 27¢
with a gap g. If 7 satisfies the Generalized Edge Inequality M(27¢,g) >
m2(2r — 2t +g,7—t) then by Lemma 5.1 the partition type 2"~* 1* is flexible.
Thus in view of Theorem 4.2 we consider the following cases: 7 = 2% with
1<g<4,7=2%with1<g<3,and 7=20withg=1.
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First we show that for a fixed g > 1, if 2"~* 1! with gap g satisfies the
Generalized Edge Inequality M (27—t 1%,g) > b2(n,r,t) then 27" 1¢ with gap
g + 1 satisfies the Generalized Edge Inequality M(27"*1%,g + 1) > b2(n +
1,7,t) also. Indeed,

r—t+g) (1‘—1).’ t+gM(2r-t1t,g)

Tt 1t = =
M2 1% g +1) (g+1 0 o7

: n-r \ _ (n-r-1 —a n—r — r=t+g
Also, since (.77} = (72¢2)) sgearr o0d gt S aoderen o+1
forall k=t,...,r+t—1and n=2r —t+ g, we have that

r—1 n—r r—t+g
b2(n + 1,7,t) 22( )(r— k+1) < —g_IT-b2(n, 7, t).

k=t

Therefore M(277t1%, g+ 1)/b2(n + 1,7,t) > M(27t1%,9)/b2(n,7,t) > 1 as
required.

We proceed to calculate M (27 1%, g) — b2(n, 7, t) to show that unless r,
g and ¢ are such that 27~ 1* with gap g satisfy conditions (1a)-(1b) above,
the difference is positive, and so the partition type 27 1! is flexible.

If 7 = 2% with g = 1, direct computation shows that

93 /t+3 4
49t 1y _ = /4 —
M(2%1%,1) — b2(t + 9,t + 4,1) 4(t +3)!/¢! kZ:t:?( k )(t+3_k)

— %(sﬁ* +30£2 — 26t — 138) > 0

for all ¢ > 3. Thus by the above observation, 24 1* with t > 3 is flexible for
all 1 < g < 4. Additionally if g = 2 and ¢ = 2 we have that M (212,2) —
b2(12,6,2) = 148 > 0, so 2412 with gap g is flexible for all 2 < g < 4.
Also, if g = 2 and t = 1 we have that M(241,2) — b2(11,5,2) = —2 while
M(241,3) — b2(12,5,8) = 90, s0 241 is flexible if g = 3 o 4.

Similarly, if 7 = 25 with g = 1 then by direct computation M (2% 1¢,1) —
b2(t + 11,t + 5,t) = (55¢t* + 510> + 1445¢2 4+ 750t — 1584)/12 > 0 for all
t > 1. Finally, if 7 = 25 with ¢ = 1, M(2%1%,1) — b2(t + 13,¢ + 6,t) =
(35415 + 5235t + 28640t + 686252 + 57826t — 12240) /60 > 0 for all t > 1.0

Note that for partition types 7 = 231* and 22 1 with a non-zero gap g
do not satisfy the Generalized Edge Inequality M (r,g) > b2(n,r,t), indeed,
we have that M (23 1%, 9) —b2(t+g+6,t+3,t) = 9"'2)15',9- 2(43) (#3%) -
2(t + 2)(g + 2) — 2 < 0. Similarly M(221%,g) — b2(t +9g+4,t+2,t)<0.
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Lemma 5.5 Partition types T = d2°1* with a non-zero gap g and s,t > 1
satisfy the Generalized Edge Inequality M(t,g) > b(d+2s+t+g,s+t+1,t)
and are flexible unless g = 1 and the partition type is one of the following:

1. 321 witht > 1 or
2. 421.

Proof. Let 7 = d2°1! with gap g > 1, and write 7 = 7 @ 1* where
7 = d 2° with gap g. If 7 satisfies the Generalized Edge Inequality M (7, g) >
m(d + 2s + g,s + 1) then by Lemma 5.1 the partition type 7 & 1* is flexible.
Thus in view of Theorem 4.2 we may assume that 7 is one of the following:
32 with g = 1 or 2; or 322 with g = 1; or 42 or 52 with g = 1. We show that
unless 7 is as stated in (1)-(2) above, we have that M (7 @ 1%, g) > b(n,, t),
where n =d+2s+t+g and r = s + t + 1. Observe that

) d+s+g—2\(d+s—1)(s+1)
t =
M(rel,y)—( g ) (d—1)lste! 7
and
s+t
3 s+t\(d+s+g—2 s+t\(d+s+g—2

If # =32 with g = 1 or 2 then d = 3,5 = 1 and we have that M(F®1%,g) =
3(t+1)(73%) and bt +g+5,t+2,8) =2t + 1)(9+2) + (¢ +1)(°5%) + 9 +4,
soifg=2, M(F®14,2)—b(t+7,t+2,t)=4t—2> 0 for all t > 1. However
if g = 1 we have that M(7 & 1%,1) — b(t + 6, + 2,t) = —5 for all ¢.

In the remainder of the proof we may assume that g = 1. If 7 = 322, we
have that M(7@1¢,1) = 24(t+1)(t+2) and b(t +8,t+3,t) = 8t2+ 38t + 50,
so M(7®1%,1) > b(t+8,t+3,t) for all ¢ > 1. Now assume that 7 = d2 with
d=4orb5. Ifd =4, M(7®1%1) = 16(t+1) and b(t+7,t+2,t) = 14¢+20, so
MF®14,1) > b(t+7,t+2,¢) forallt > 2. Ifd = 5, M(F®1%,1) = 25(¢t + 1)
and b(t + 8, + 2,t) = 20t + 27, so M(F ® 1%,1) > b(t + 9,t + 2,¢) for all
t>1.0

1t is easy to check that neither 7 = 32 1* with gap g = 1 nor 7 = d 1 with
either d > 4 and g = 1, or g = 2, 3 satisfy the Generalized Edge Inequality
M(,g) > b(n,r,t). We show that partition types d1¢ and d21* are flexible
using counting and constructive arguments in Section 6.



5.1 Partition types with zero gap: a proof of Theorem 1.2

The following result presents a proof of the first and second parts of Theo-
rem 1.2.

Lemma 5.6 Lets>4 andt > 1.

1. The partition type 2° 1* with zero gap is flexible unless it is one of the
following:

(a) 221t and t = 1,2,3 or 4;
(b) 251 or 2512;
(c) 261.
2. 2°1! with zero gap is flexible when 2s +t > 14.

Proof. If s > 9 then 2° satisfies the Edge Inequality (Theorem 4.1), and
so by Lemma 5.1, 2°1% is flexible. We assume that s < 8 and show that if
s and ¢ are outside of the limits imposed by the conditions (1a)-(1c) above,
then 2° 1¢ satisfies the Generalized Edge Inequality M (2°1%,0) > m2(n, 7)),
where n = 2s + ¢t and r = s + t. We have M(2°1%,0) = (s + ¢t — 1)!/t! and
m2(2s +t,5 +t) = 2(¥F1 7). Let

O M(2°15,0) (s—1){(s+t—1)1)?
flst) = m2(2s+t,s+t)  2t1(2s+t —2)!

We show that then f(s,t) > 1 unless s =4 andt =1,2,3,4,0ors =5
andt = 1,2, or s = 6 and ¢t = 1 as imposed by one of the conditions (1a)-
(1c). Indeed, since f(s,t + 1)/f(s,t) = ;,‘i—“z%fz:% > 1for all s,t > 1, the
function f(s,t) is increasing in t. Moreover, direct calculations show that
if s = 8 we have that f(8,1) = 448/143 > 1so f(8,t) > 1 forallt > 1.
Similarly, f(7,1) = 210/143 > 1, so f(7,t) > 1. However, f(6,1) < 1,
while £(6,2) = 35/22, so f(6,t) > 1 for ¢ > 2. Similarly, f(5,2) < 1 while
£(5,3) = 14/11 > 1, f(4,5) = 56/55, while f(4,4) < 1. O

For the partition types in £ (Theorem 4.1) having a class with more than
2 elements only 7 = 322 is such that 7 @ 1* satisfies the Generalized Edge
Inequality. In particular, M(3221%,0) = 15(¢t+1)(t+2) and b(t+8,t+3,t) =
8t24+38t+50, and so M(3221¢,0) > b(8,3,t) when t > 2. Thus the following
result holds.

Lemma 5.7 The partition type 322 1% with zero gap is flexible if t > 2.

The result above provides a proof for the third part of Theorem 1.2.
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6 Partition types d1' and d21° with non-zero gap
and t>1

Note that the graph J(n,1) is a complete graph. The next results demon-
strates that certain partition types of weight one are flexible.

Proposition 6.1 Let d > 4, then the partition type d with a gap g > 2
satisfies the Edge Inequality.

Proof. Observe that n = d+ g, 7 = 1, M(d, g) = (3-2) and m(n,r) = n.
It is easy to see that the Edge Inequality holds for d = 4 and g > 2. Using
induction on g we have that M(d+1,9) = M(d,9)5=* > n3=} =n+ 74 >
n+1. 0

In many cases 7 = d 1* does not satisfy any form of the Generalized Edge
inequality. However we can show that 7 is flexible.

Proposition 6.2 A non-trivial partition type d1* with a non-zero gap g
and t > 0 is flexible.

Proof. Since by Proposition 6.1 a partition type d with gap g > 2 satisfies
the Edge Inequality when d > 4, Lemma 5.1 implies that the partition type
d1t is flexible for d > 4,g > 2. Thus we may assume that either ¢ = 1 or
d=2,3.

Let H be a Hamiltonian cycle in J(n,r), where n = d+g+t and r = t+1.
For an edge AB in H let C = AN B be the core of the edge, and let H(C)
be the list of all edges in H with the core C' appearing in the same relative
order as they appear in H. It was shown in [8] that if r > 2, then H(C)
has at most n — r edges, and it has n — r edges precisely when the edges
are consecutive. Note that if ¢ > 1 and v is a suitable label for an edge
DE € H(C), then the set of singletons of 4 coincides with the set C, and
so 7-labels associated with edges with distinct cores are distinct. Therefore
we can show that 7 = d 1¢ is flexible by identifying suitable 7-labels for each
H(C).

Assume first that 7 = 21%, g > 1 and ¢ > 0. For each edge DE of H(C)
there is a unique 7-label with the unique non-singleton class coinciding with
the symmetric difference of D and E, the set of singletons coinciding with
C. (Note that if ¢ = 0 then C' = 0 is the only core of an edge in H.) Thus
in this case the existance of 7-labeling is guaranteed by the existence of the
Hamiltonian cycle. In what follows we assume that d > 3.
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Consider the case when 7 consists of one non-singleton class, 7 = d,
son =d+g, 7 =1 and either d = 3,4, or d > 5 with g = 1. Write
H = {a1},{a2},...,{an}. Fori = 1,2,...,n, let v have a unique class

{ai,ait1y- ., 8ird—1} if i+d—1 < n, and let it have a unique class {ai,ai41,. ..

Gn,G1,. .. ,8i+d—n—1} Otherwise. Then +; is a 7-label for the edge {ai}, {ai4+1}
fori=1,...n -1, and 7, is a 7-label for the edge {an},{a1}, with v # ~;
if i # j. Thus in what follows we may assume that ¢ > 0.

Let 7 = 31 and g, > 1. For a given core C associated with an edge in ¥,
we label H(C) by partitions with singleton classes consisting of the elements
of C. If |H(C)| = n — r then the edges with the core C are consecutive in
H, and so the corresponding path in H can be written as {a1} UC, {a2} U
C,....{@n-+}UC,{an_rs1} U C for distinct a;,az,...,an—r;Cn-r+1 € Xn.
Notethat n—r+1=g+3>4,andfori=1,2,...,n—r -1, let ; have a
unique 3-element class {a;, @i+1,ai+2}, and let ,_, have a unique 3-clement
class {@n—r,an-r+1,a1}. Then v; is a T-label for the edge {a;}UC, {ai+1}UC
fori=1,2,...,n—r,and v #; if ¢ # j. If |H(C)| < n — r we can simply
choose a suitable 7-label v for an edge DE in H(C) that was not used
previously to label the edges in H(C). Since the set of singletons of such a
7-label coincides with C, we only need to choose a single third element for
the non-trivial 3-element class of v, there are | X, \ (DUE)|=n-r-1
elements to choose from, and there are at most n — r — 1 elements in H(C),
so we can choose an element that was not used previously in any 3-class of
a 7-label in H(C).

Finally assume that d > 4, g = 1 and t > 1. As above, if |H(C)| =
n — 7 then the edges with the core C are consecutive in 7, and so the
corresponding path in H can be written as {a;} UC, {a2} UC, ..., {an—r} U
C,{an—r+1} U C for distinct ay,ay,...,an—r,an_r41 € X,. Note that n —
T+1=d+12>4 and for i = 1,2,...,n — 7 — 1, let ; have the gap
set {ai+2}, and let y,_, have the gap set {a;}. Then 7; is a 7-label for
the edge {a;} UC,{ai1} UC for i = 1,2,...,n—r, and ; # v; if ¢ # j.
If |H(C)| < n — r we can simply choose a suitable 7-label v for an edge
DE in H(C) that was not used previously to label the edges in H(C).
Indeed, we only need to choose the single element gap set of -, there are
| X2 \ (DU E)| =n —r — 1 elements to choose from, and there are at most
n —7r — 1 elements in H(C). O

We use the above results to prove that any partition type d21* with
a non-zero gap and is flexible, regardless whether it has any non-singleton
classes. In view of Proposition 4.7, Lemma 5.1 and Lemma 5.5 we only need
to consider the cases outlined in the result below.
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Lemma 6.3 Partition types 321 withgapg =1 o0r2, 421 withgapg =1,
and 521 with gap g = 1 are flexible fort > 0.

Proof. Let d = 3,4,5, g = 1,2 and let 7 = d21° with ¢ > 0. Let H be a
Hamiltonian cycle in J(n,r), wheren =d+2+t+g,and r =t + 2. As
usual, we 7-label H sequentially, starting at an edge and following the cycle
in a fixed direction. .

First observe that if g =d+t+g, s =t+ 1 and Cl,CQ,...,C(q) is
a listing of all s-element subsets of X, then there exist distinct partitaions
71,2, .., T(q) Of type d 1¢ such that C; and ; are orthogonal to each other

for all j = 1,2,...., (9). Indeed, let B = By, By, .., Bs) be a Hamiltonian

cycle in J(g,s). By Lemma 6.2, B can be d 1*-labeled, so there exist distinct
partitions 11,72,... »Y(9) of type d1¢ such that «; is orthogonal to B; (as

well as B;+1). Let x be a permutation of the set {1,2,..., (9} such that
Ci = By(; for all 4, and let m; = 7,(5). Then C; and 7; are orthogonal to
each other for all j as required.

Now let H be a Hamiltonian cycle in J(n, r) as above, and suppose {a, b}
is the symmetric difference of the sets H;, H;4; forming an edge in H. Let
D(a, b) be the listing of all the edges Hj, H;41 in H for which {a, b} is the
symmetric difference of the sets H; and Hj;1 (appearing in the same relative
order as they appear in H. Note that |D(a,b)| < (7Z%) as any edge H;, Hj 1
in D(a, b) is uniquely determined by its core C; = H; N Hj;1. We define a
7-label o; for an edge in Hj, Hj4 in D(a,b) by letting the two-element class
of o; be the symmetric difference {a, b} and the rest of the classes coincide
with ; defined as above. Then o; is a 7-label for the edge H;, Hj11, the
7-labels for a given D(a,b) are distinct since the partitions my, g, ...,
are distinct, and the 7-labels for D(a,b) and D(c, d) with {a, b} # {c, d} are
distinct as they have different two-element classes. O

7 Proof of Theorem 1.1

Take n > 3 and let 7 be a partition type defined on X, with a non-zero
gap g and weight » > 1. Since Proposition 6.2 shows that a partition type
d 1t is flexible for d > 2 and ¢t > 0, we may assume that 7 has at least two
non-singleton classes.

To prove the first part of Theorem 1.1, suppose first that 7 has at least
one class of size greater than two. If n > 9 and 7 has no singleton classes,
then by Theorem 4.2, 7 is flexible. If 3 < n < 8 and 7 has no singleton



classes, it is either of the form d2 or 322 or 32 (Theorem 4.2). If 7 = d2
then by Lemma 6.3, 7 is flexible. That leaves 7 = 322 or 32 with gap g = 1.

Thus assume that 7 = 7 @ 1%, where ¢ > 1 and 7 is a partition type
with no singletons and gap g defined on a (n — t)-element set. If 7 satisfies
the Generalized Edge Inequality M(7,g) > |C(n,r)| then by Lemma 5.1,
T = 7 @ 1% is flexible. So assume that ¥ does not satisfy the Generalized
Edge Inequality, thus by Theorem 4.2 we have that n — ¢ < 8 and either
7 = d 271 (with restrictions on d, 7 and g as stated in Theorem 4.2) or 7 = 32
with g = 1. Lemma 5.5 shows that if F = d2"~ 1 then 7 =7 @ 1* with¢t > 1
is flexible unless 7 = 321% with g = 1 or 7 = 421 with ¢ = 1. Lemma 6.3
shows that 321° and 421 are flexible. It is easy to check that 32 1* does not
satisfy the Generalized Edge Inequality M(321%,1) > |C(t + 7,t + 2)|, and
this completes a proof of the first part of Theorem 1.1.

To prove the second part of the theorem, assume that 7 = 27—t 1t with
r—t>2andt>0. If t =0, Theorem 4.2 shows that 7 is flexible unless r
is between 2 and 6 and the gap that satisfies the stated conditions. If ¢ > 0,
Lemma 5.4 shows that 7 is flexible unless it is of the form 241 with g = 1,2
or2¢12 withg=1. O

In conclusion we list of the partition types with any gap g > 0 that may
not be flexible.

1. Partition types with zero gap

(a) d31° withd > 3,t > 0;
(b) d2°1* withd > 3, s,t > 1;
(c) 3221
(d) d?1* withd = 3,4,5 and t > 0;
(e) 331 with t > 0;
(f) 241* witht = 1,2,3,4;
(g) 251t witht =1,2;
(h) 2°1.
2. Partition types with non-zero gap g
(a) 321° with ¢t > 0 with g = 1;
(b) 322 with g = 1;
(c) 2°1* withs=2,3,:>0,g>1;
(d) 2 with1 < g<4;25with 1< g <3;20 withg=1;
(e) 241 with g = 1,2 or 2¢12 with g = 1.
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