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Abstract

In order to characterize convex polyhedra with regular polygonal
faces by minimal number of parameters we first introduce some new
parameters, then we analyze a table of their values to see how well
different sets of parameters tell these solids apart and finally we
present their characterization by four parameters.

1 Introduction

For any given class of elements we can formulate the following »charac-
terization problem«: » Find a minimal set of parameters (describing some
properties of the elements of the given class) such that the sequences of these
parameters (p1, pa, ..., k) are different for each element of the given class.«
If we find such parameters, then the sequences (p;, p, ..., px) uniquely de-
termine or »code« the elements of the given class. This does not mean that
we can reconstruct the elements from their parameters, it means only that
we can tell them apart by them. In other words, the code we are looking
for need not be »generic, it should only be a »separating« one.

The problem we discuss in this paper: »Find a minimal set of parame-
ters characterizing convex polyhedra with regular polygonal faces. « falls into
this category of problems. We believe that » the method of evaluating differ-
ent sets of parameters with respect to their capacity to tell the elements of
the given class apart« used for solving this particular problem is applicable
to other characterization problems.
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On the other hand, our characterization problem belongs to a great
family of problems with the same general theme: how well various sets of
parameters determine convez polyhedra. Several categories of such problems
were presented in detail by Alexandrov in his book on convex polyhedra
[1]. There, for example, the questions of uniqueness and existence of convex
polyhedra with prescribed development, or with prescribed face directions,
are discussed. Another similar yet different problem of establishing com-
binatorial equivalence of polyhedra, which remains unsolved since Euler’s
times, is discussed by Griinbaum ([4], p. 294).

2 Basic notions

2.1 Convex polyhedra with regular polygonal faces

Let C denote the class of convex polyhedra with regular polygonal faces.
The subclass of uniform convez polyhedra consist of the 5 Platonic solids,
the 13 Archimedean solids and two infinite families of prisms and antiprisms
([1]). Since they are uniform, they may be denoted by the vertex-type
symbol, for example 3 - 42, ([3] p. 107, 130 ff., [5], p. 170). The numbers 3,
4, 5, ... denote regular polygons, as in ([5], p. 169).

The subclass of non-uniform convez polyhedra consists of 92 solids, as
it was conjectured by Johnson [5] and proved in a series of paper by John-
son, Griinbaum and Zallgaler [9]. These solids, called Johnson solids, are
denoted J1, J2, ..., J92; their numbers are the same as in Johnson’s list
[5]. All the polyhedra from the class C have at least one symmetry.

2.2 Symmetry-type graphs and related parameters

Here we sketch the basic concepts of the theory of the symmetry-type
graphs, a useful tool for studying maps, polyhedra and tilings ([7],(8]).
FLAG GRAPH. A flag is an ordered triple (v, e, f) consisting of a vertex v, an
edge e incident with that vertex and a face f incident with that flag. If all
the faces f of a polyhedron P are regular polygons, we can identify each flag
® = (v, e, f) with the corresponding characteristic triangle Ay = (v, e, fe)
whose vertices are the vertex v, the midpoint e. of the edge e, and the
center f. of the face f face. Each flag ® has three adjacent flags, sharing
an edge with ®: the O-adjacent flag ®° lies in the same face f as & and
along the same edge of f; the 1-adjacent flag ®' lies in the same face f
as ®, but not along the same edge of f; the 2-adjacent flag ®? lies along
the same edge of f, but not in the same face as . The flag graph Gp of
a polyhedron P is a graph whose vertex set correspond to the flags of P.
The edges connecting pairs of adjacent flags (®, ®°), (®, ®!), (&, ®?) are
labeled 0,1 and 2, respectively.
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AUTOMORPHISMS OF THE FLAG GRAPH. Let Aut(Gp) denote the group
of automorphisms of the flag graph Gp, preserving not only adjacency of
vertices of Gp but also the labels 0,1, 2 of edges.

ORBIT OF A FLAG. The orbit T(®) of a flag @ is a set of all flags into which
® is carried by all the rotations and reflections preserving the polyhedron.
SYMMETRY-TYPE GRAPH T'(P). The quotient graph of Gp under the action
of the group of rotations and reflections preserving the polyhedron is called
the symmetry-type graph of the polyhedron P and is denoted by T'(P). Its
vertices are orbits of flags of Gp and its edges labeled 0, 1 and 2 correspond
to the labeled edges of their representatives. It is very useful to know that
the symmetry-type graph corresponds to a part of the polyhedron surface
whose reflected and rotated copies produce the whole polyhedron surface.
POLYHEDRON NET. Symmetry-type graph T(P) of any solid P € C can be
very easily deduced from the planar representation of its net:

i) If P has a rotation symmetry we first make a parallel projection of its
net on the surface of the cylinder ( the poles of the principal rotation axis
of P correspond to the top and bottom circle of the cylinder). Cutting the
cylinder along a vertical line we get a planar picture of a polyhedron net.

ii) If P has only one reflection symmetry (and no rotation symmetries),
we make a parallel projection of (any) half of its surface projected onto the
reflection plane of 7. From this projection we easily get the flag graph and
identify the orbits of flags, thus obtaining the symmetry-type graph T(P).

We can use also the Schlegel diagrams of the solids ([4], pp. 42-46)
showing their »stretched and twisted« 1-skeletons from a »bird’s eye view«.

The number of flag orbits equals the number of vertices of the symmetry-
type graph T'(P) (see Figure 1). The numbers of orbits of vertices, edges
and faces correspond to the numbers of connected components of the graphs,
obtained from T(P), if we delete its 0-, 1- or 2-edges, respectively ([8]).

Figure 1: A net of a Snub cube (3%.4) with 10 orbits of flags (left) and the
corresponding symmetry-type graph with 10 vertices (right).
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3 Review of parameters

In Section 4 we give the values of 16 parameters of convex polyhedra with
regular polygonal faces for which we believed they could help us solve our
characterization problem. We could not know in advance which of them
will be useful and which redundant; this became more clear only after a
long analysis of the gathered data.

We first give for each solid P € C the numbers of its vertices, edges and
faces, denoted by v,e, f, respectively. These three parameters, satisfying
the Euler formula v — e + f = 2 ([6]), are obviously not enough to tell the
solids of the class C apart (since, for example, the solids J72, J73, J74, J75
and J75 all have v = 60, e = 120 and f = 62).

Then we give the numbers of flag orbits flo, and the numbers of sym-
metries s of P. Since there are four flags along each edge the total number
of flags in the flag graph is 4e; and since the number of flags in each orbit
is the same, the number of symmetries is obtained by the formula ([2]):

s(P) = 4e/ flo.

Then follow the numbers vo, eo, fo of orbits of vertices, edges and faces,
and the »Euler orbit characteristic«, which we define by the formula:

Eo =vo ~ eo + fo.

From the Table 1 we can easily see that for each P € C an unexpected
inequality holds:
0<FEo<b.

Hence for each P € C the value of Eo differs from the Euler characteristic
E=v—e+ f for at most 3: |[Eo— E| <3.

From the Table 1 we can calculate the average value of Eo for the class of
Johnson solids: ;12-(0-6+1 ‘174+2.-32+3-164+4-154+5-6 = 2.391. The
average value of Eo for the Archimedean solids is %(1-9+4-2) = 1.307.
The average value of Fo for the Platonic solids is §(1-5) = 1.

The next two parameters are N, denoting the number of maximal faces,
and n, denoting the type (3, 4, 5, 6, 8, or 10) of the maximal faces in a
given solid.

Then we give the numbers of »polar orbits« of vertices, edges and faces
(i.e. the orbits, whose vertices, edges or faces are invariant for a non-trivial
rotation for the angle 2w /a, where a > 2). These parameters are denoted
voP, eo®, foP, respectively.

The last two parameters, denoted r and g, were introduced after it
became clear that all the previous ones do not separate the solids from the
class C. They were found by observing such pairs of solids (e. g. J76 and
Jr7).
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Parameter r is defined as the maximal sum f; + ...+ fx of all the faces
in the sequences (f1,..., fi) with the following properties:
i) the faces fi,..., fi intersect the same reflection plane of the given solid;
ii) any two consecutive faces f;, fi+1 share either an edge or a vertex;
iii) they are of the form (aP) or (a”.b?) (they consist of p > 2 equal faces
of the type a, and they may have also ¢ > 2 faces of the type b).

If no such sequence exists, we put r = 0.

Parameter q is defined as the maximal sum f; +...+ fj of all the faces
in the sequences (f,..., fi) with the following properties:
i) the faces fi,..., fi intersect the same reflection plane of the given solid;
ii*) any two consecutive faces f;, fi+1 share an edge;
iii*) at least two consecutive faces in this sequence are the same.

If no such sequence exists, we put g = 0.

For some spherical polyhedra the value of their Euler orbit characteristic
Eo = vo — eo + fo can be obtained from a simpler parameter:

Proposition 1 If a spherical polyhedron P has only one rotation azis and
no reflection symmetries then Eo = 2 — eo?. Hence:

Eo =0, if (voP,eo?, foP) equals (2,0,0) or (1,0,1) or (0,0,2);

Eo =1, if (voP,eo”, foP) equals (1,1,0) or (0,1,1);

Eo =2, if (vo?,eo®, foP) equals (0,2,0).

Proof. For any spherical polyhedron its Euler characteristic is £ =
v — e+ f = 2. If P is spherical and has no reflection symmetries, then it
has exactly two polar orbits. If I(P) = Z,, then all other orbits (of vertices,
edges and faces) contain exactly m elements. Let vo,,, €0y, form denote the
number of orbits of vertices, edges, or faces with with m elements. Then
Eo = (vo? — eo? + foP) + (Vo — €0m + fOm). And from the Euler formula
follows the relation: 2 = E = (vo? — eo® + foP).1 + (vor, — €0 + for).m,
implying: (voy, — €0m + fom) = (2 — (voP — eo® + foP))/m. Hence: Eo =
(vo® — eo? + foP) + (2 — (voP — eo? + foP))/m. The only possible values
of voP? — eo? + foP are 2, 0 and -2. If vo? — eo? 4+ fo? = 2, then Fo =
voP —eoP+foP = 2. IfvoP—eoP+foP = 0,thenm = 2 and Eo = 0+2/2 = 1.
If voP — eo? + foP = -2, then m =2 and Eo=-2+4/2=0. O

In Figure 2 it is shown how some of more complicated parameters are
determined (for the Johnson solid J36). There are 12 different flag orbits,
2 vertex orbits, 5 edge orbits and 4 face orbits, no polar orbit of vertices,
1 polar orbit of edges and 1 polar orbit of faces. The values of parameters
r and ¢ for this solid are both 14, but they are not calculated in the same
way: 7 is obtained from the sequence 4-4-3-3 of two squares followed by
two triangles, while g is obtained from the sequence 3-4-4-3.

In the Figure 2 (top left) we can see the representative flags of the
12 orbits of flags. They form a fundamental domain whose rotated and
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reflected copies cover all the surface of J36. The number of these copies is
the same as the number of symmetries of J36.

S

polar orbits: (voF, eoP, foP) = (0,1,1)

i r=24+23=14 q-3+2.4+3a14

Figure 2: Some parameters of the Johnson solid J36.
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4 Values of parameters

Jxx v, e, f flo ] Vo, €o, fo E, N,n v5, b, fg r a
J 58,5 4] 8 2,22 2 1,4 10,1 ofo
J2 6,10, 6 4 (10 2,22 2 1,5 1,0,1 0|0
13| o158 106 2244 |2]1,6] 002 |6]0
J4 || 12,20,10 | 10 | 8 2,4,4 2 1,8 0,02 121 20
J5 15,25,12 | 10 | 10 2,4,4 2 11,10 0,0,2 01]0
36 || 20,3517 | 14 | 10| 3,55 | 3 |1,10| 002 |16] 0
J7 7,12, 7 8|6 3, 4,3 2 3,4 1,0,1 0} 0
J8 9,16,9 8| 8 3,43 2 5,4 10,1 12 | 18
J9 )l 11,20,11 | 8 |10 3,4,3 2 1,5 1,01 0] 0
Jio || 9,20,13 | 10| 8 3,4, 4 3 1,4 1,0,1 12| 6
j11 || 11,25,16 | 10 | 10| 3,44 | 3| 1,5 | 1,01 [ 6|6
J12 59,6 3 ]12] 2,21 1 6,3 2,1,0 66
Jiz ff 7,15,10 | 3 120 2,21 1]10,3 2,1,0 6| 6
Ji4 8,15,9 5112 2,32 1 3,4 1,1,1 12
Ji15 1 10,20,12 | 5 {16 [ 23,2 1 4,4 ,1,1 16
Ji6 |[ 12,25,18 ) 5 } 20| 2,3,2 1 5,4 1,1,1 20
J17 ]1 10,24,16 | 6 | 16 [ 2, 3,2 1 (16,3 1,10 6
Ji18 || 15,27,14 | 18 | 6 3,7,6 2 1,6 0,0, 2 16
J19 | 18,36,20 | 18 | 8 3,76 2 1,8 0,0 2 28
J20 || 25,45,22 (18 (10 3,7,6 2 (110 00,2 21
J21 4 30,55,27 | 22|10 4,87 3 |1,10] 0,02 0
J22 | 15,33,20 ( 22 | 6 4,77 4 1,6 0,02 6
J23 || 20,44,26 { 22 | 8 4, 7,7 4 11,10 0,02 18
J24 || 25,55,32 | 22 | 10 4, 7,7 4 11,10 0,02 6
J25 || 30,65,37 | 26 | 10| 5,8,8 511,10} 0,0,2 6
J26 8,14, 8 7| 8 2,32 1 4,4 1, 1,0 14
Jor 12,2414 8 | 12| 2,43 [ 1 | 64| 0,21 14
Jog || 16,32,18 | 8 [ 16 | 2,4,3 1 ]10,4 0,21 24
J2g [ 16,32,18 | 8 (16| 2,4, 3 1 | 10,4 0,1 18
J30 |1 20,40,22 | 8 | 20| 2,4,3 1 2,5 0,21 18
J31 (1 20,40,22 | 8 (20| 2,33 2 2,5 1,0,1 0
J32 || 25,50,27 | 20 | 10 | 4,7, 7 4 7,5 0,02 0
J33 || 25,50,27 [ 20 | 10} 4,7, 7 4 7,5 0,0,2 6
J34 || 30,60,32 | 12 | 20| 3,5,4 2 112,85 0,21 10
J35 || 18, 36,20 { 12 | 12 2,55 2 | 12,4 0,03 24
J36 || 18,36,20 | 12 | 12 2,54 1 (12,4 0,1,1 14
J37 || 24, 48,26 | 12 | 16 2,54 1 ]18,4 0,1,1 26
J38 || 30,60,32 | 12 | 20| 2,5,5 2 2,5 0,0, 3 40
J39 | 30,60,32 | 12 |20 | 2,5,4 1 2,5 0,1,1 16
J40 | 35,70,37 | 28 | 10 | §5,10,9 4 7,5 0,02 16
J41 || 35,70,37 | 28 | 10| 5,10,9 4 7,5 0,0, 2 18
Ja2 || 40,80,42 | 16 [ 20| 3,6,6 3 10,5 0,0, 3 40
J43 || 40,80,42 [ 16 [ 20 | 3,6,5 2 12,5 0,1,1 0
J44 | 18,42,26 ( 28 | 6 3,85 0 6, 4 0,21 0
J45 || 24,56,34 | 28 | 6 3,85 0 {104 0,21 0
Ja6 || 30,7042 | 28 | 10| 3,85 | 0 | 25| 0,21 0
J47 || 35,80,47 | 64 | 5 | 7,16,11 | 2 7.5 0,0, 2 0
Jag || 40,90,52 | 36 | 10 | 4,10,6 0 12,5 0,21 0
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| Jxx v,e f flo | 8 | vos€orfo | Bo] N,n [vB,e8,f2 | r | q
J49 7,13, 8 13 4 3,54 2 2,4 1,1,0 14| 14
0|l 817,11 {17 | 4| 365 | 2| 1,4 | 01,1 |12} 6
J51 9,21, 14 7 12 2,33 2 14, 3 1,1,1 121 6
J52 11, 19, 10 19 4 4,6,5 3 2,5 1,1,0 22 | 22
J53 12, 23, 13 23 4 4,8,6 2 2,5 0,1,1 14| 14
J54 13, 22, 11 22 4 4,8,6 2 2,6 1,0,1 26 | 26
J55 14, 26, 14 13 8 3,54 2 2,6 1,1,1 141 14
J56 14, 26, 14 26 4 4,9, 7 2 2,6 0,0,2 18 | 18
J57 15, 30, 17 10 | 12 2,4,4 2 2,6 1,0,2 6 0
J58 21, 35, 16 14 | 10 5,6,4 3 11,5 1,0,1 10| 10
J59 22, 40, 20 8 20 3,4,2 1 10, 5 1,1,0 0 0
J60 22, 40, 20 40 4 8,10, 7 5 10,5 0,20 10 | 10
J61 23, 45, 24 30 6 7,10, 6 3 9,5 2,0,0 10 | 10
J62 10, 20, 12 20 4 4, 7,5 2 2,5 0,20 16 | 10
J63 9,15,8 10 6 3,4,4 3 3,5 2,0,0 6 6
J64 10, 18, 10 12 6 4,5,4 3 3,5 1,0,1 6 6
J6s 15, 27, 14 18 6 4,7,6 3 3,6 0,0,2 6 0
J66 28, 48, 22 24 8 59,7 3 58 0,0,2 24 | 30
J67 32, 60, 30 15 | 16 3,6,5 2 4,8 0,1,2 32 [ 32
J68 || 65, 105,24 | 42 | 10 | 9, 15, 10 4 11,5 0,0,2 16 | 22
J69 || 70, 120,52 | 24 | 20 59,6 2 10, 10 0,1,1 0 0
J70 || 70, 120,52 | 120 | 4 | 20, 35, 18 3 10, 10 0,20 16 | 22
J71 || 75, 135,62 | 90 6 |15,27,16 | 4 g, 10 0,0,2 16 | 22
372 || 60, 120,62 | 48 { 10| 8,16,13 | 5 | 12,5 | 0,0,2 | 8 | 16
J73 || 60, 120,62 | 24 | 20 4,8, 7 3 12,5 0,02 8 | 16
J74 || 60, 120,62 | 120 | 4 | 17, 34, 22 5 12,5 0,02 12 | 22
J75 || 60, 120,62 | 80 6 | 12,24,17 | & 12,5 0,0,2 8 | 16
J76 || 55,105,52 | 42 |10 | 7,14,11 4 1,10 0,0,2 0 0
J77 || 55,105,52 | 42 | 10| 7, 14,11 4 1,10 0,0,2 8 16
J78 || 55, 105,52 | 210 | 2 | 29, 56, 31 4 1,10 0,0,0 8 | 23
J79 || 55, 105,52 | 210 | 2 | 29, 56, 31 4 1, 10 0,0,0 0 0
J8o 50, 90, 42 18 | 20 3,6,5 2 2,10 0,0,2 0 0
J81 50, 90, 42 g0 4 | 14,26,16 | 4 2,10 0,0,2 0 0
J82 50, 90, 42 | 180 | 2 | 27,49, 27 5 2,10 0,0,0 8 | 16
J83 45, 75, 32 50 6 9, 16, 11 4 3,10 0,0,2 0 0
84 || 81812 | 9 | 8| 2,42 |0 |12,3 | 0,30 | 6|6
85 || 16,40,26 | 10 | 16| 3,43 | 2| 24 [ 01,1 [0 [0
J86 10, 22, 14 22 4 4,8,5 1 2,4 0,20 8 | 14
J87 11, 26, 17 52 2 7,15, 11 3 1,4 0,0,0 121 6
Js8 || 12,28,18 | 28 | 4 | 5,106 | 1 | 2,4 [ 0,2,0 | 8 |14
J89 14, 33, 21 33 4 511, 8 2 2,4 0,11 12 | 18
Jgo 16, 38, 24 19 8 3, 7,4 0 4,4 0,20 8114
Jo1 14, 26, 14 13 8 3,5,4 2 4,5 1,1,1 201 10
Jo2 18, 36, 20 24 6 4,8, 7 3 1,6 0,02 6 0

Table 1a: Parameters of Johnson solids.




solid v, e f flo] s |vo,€0fo| Bo| Nyn | 05,8, f2 | r q
3% 4,64 1]24] 1,,,1 |1 ] 4,3 1,1,1 [ 6] 6
34 6,12, 8 1] 48| 1,1,1 1 83 1,1,1 (12| 6
4 8,12,6 114 | 1,1,1 | 1] 64 1,1,1 |16 16
3 12, 30, 20 1120/ 1,1,1 1]2,3] 1,1,1 6] 6
52 20, 30, 12 1120 1,3,1 | 1| 12,51 1,1,1 |10 10

3.4.3.4 12, 24, 14 2| 48| 1,1,2 | 2| 64 1,0,2 |16} 0
3.5.3.5 30, 60, 32 2 (120 1,1,2 | 2 | 12,56 | 1,0,2 |16 0O

3.6 12,18, 8 3 (24| 1,2,2 | 1] 46 0,1,2 [12] 18

3.8? 24, 36, 14 3|48 1,2,2 |1 68 0,1,2 |32] 32

4.6° 24, 36, 14 3[4 1,22 [ 1] 86 0,1,2 |12 20

3.10 60, 80, 32 3 [120] 1,2,2 | 1 [12,10f 1,0,2 |20 26

5.62 60, 90, 32 3120 1,2,2 | 1] 20,6 | 1,0,2 |12 22

343 24, 48, 26 4 48| 1,2,3 | 2| 18,4 | 0,0,3 |32]32

3454 | 60,120,62 | 4 [120] 1,2,3 | 2 [ 12,5 | 0,0,3 [0 | O

4.6.8 120,180,62 | 6 | 48 | 1,3,3 [ 1 | 6,8 0,03 {0} 0

4.6.10 24, 60, 38 6 (120 1,83 | 1 12,10 0,03 [O[ O

344 16,38,24 (10 24 | 1,3,3 [ 1 | 6,4 0,1,2 [0 ] o0

3¢5 60,150,92 | 10| 60 | 1,33 | 1 | 12,5 | 0,1,2 |0 | O

£2n || 2n,3n,n+2 | 3 | 4n | 1,2,2 | 1 2,n 1,1,1 | n? | n?

3n [ 2m4n,2n+2) 4 | 4n ] 1,2,1 |1 2,n 0,21 |00

Table 1b: Parameters of the 5 Platonic solids, the 13 Archimedean solids,
and of nfinite families of n-prisms 4?n. and n-antiprisms 33n.

5 Analysis of solids and parameters

The information gathered in the Table 1 allows us not only to compare
and classify the solids with respect to different sets of parameters, but also
to compare different sets of parameters with respect to their capacity to
separate the solids (into as many different equivalent classes as possible)!

5.1 Two ratios by which we can compare sets of pa-
rameters

If a set of parameters {pi,...,px} divides a class with m objects into c
equivalent classes (two objects are in the same equivalent class if they have
the same values of all the parameters) and if it isolates 7 objects (an object is
isolated if it is alone in its equivalence class), this gives us two ratios: m/c,
the average number of objects in equivalence classes, and 0 < i/m < 1,
called the isolating quotient of the given set of parameters (with respect
to the classified class). Objects are completely separated by the set of
parameters {py,...,p:} if and only if its isolating quotient is 1.
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For example, for {s, Eo} the first ratio is m/c = 92/31 and the isolating
quotient with respect to the Johnson solids is i/m = 10/92 (see Table 2
below). The Table 2 shows equivalence classes of Johnson solids obtained
by two parameters: the Euler orbit characteristic Eo and the number of
symmetries s. We can see that the most common value of Euler orbit
characteristic for the class of Johnson solids is 2.

From Table 2 we can calculate the average number of the symmetries
of Johnson solids: it is &5(2-4+4-14+5-1+6-12+8-124+10-20+12-

74+16-7+20-13) = 9.51.

Eo/s| 2 4 5 6 8 101216 [ 20 |
0 Ja4 | J84 | J46

0 Ja5 | J90 | J48 6
1 J86 J26 Ji2 | J15 | J13

1 J8s Ji4 | J17 | J16

1 J27 | J28 | J30

1 J36 | J29 | J39

1 Jar | J59 | 17
2 Jao [Ja7 [ J3 | J1 [ J2 | J35 | J67 | J31

2 J50 Jr | Ja | J5 | J51 | J85 | J34

2 J53 Jig8 | J8 | J9 | J57 J38

2 J54 J19 | J20 J43

2 J56 J55 J69

2 J62 J91 J8o

2 J89 32
3 J87r | J52 J61 [ Jio | Jé J42

3 J70 J63 | Je6 | J11 J73

3 J64 J21

3 J65 J58

3 J92 16
4 J78 | J81 J22 | J23 | J24

4 J79 J7 J32

4 J83 J33

4 J40

4 J41

4 J6s

4 J76

4 J77 15
5 J82 | J6o J75 J25

5 J74 J72 6
>, 4 14| 1 12 [ 12 { 20 | 7 7 13 | 92

Table 2: Classification of Johnson solids by parameters Eo and s.
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The Table 3 shows how by increasing the number of observed parameters
we can gradually increase the number of equivalence classes defined by those
parameters. Finally, when we use all the 16 parameters from the Table 1
each Johnson solid is separated from all the others in its own equivalence

class.

set of parameters c | i
{Eo} 6|0

{n} 6|0

{s} 9 |1
{v2,¢8, f2} 9 1
{n} 14| 3

{s, Eo} 3110

{N, n} 34| 3

{flo} 36 | 16

{flo, Eo} 53 | 33
{flo, Eo, s} 72 | 60
{flo, Eo, N, n} 86 | 80
{v, e, £, flo, s, vo, eo, fo, Eo, N, n, v2,e?, fP} | 87 | 82

Table 3: The numbers of equivalence classes ¢ and of the isolated solids .

5.2 Two simple tricks for finding equivalence classes:
summation of parameters and lexicographic order-

ing
A simple trick how to find the values c and i (or how to find equivalence
classes of solids) for a chosen set of parameters {p;,...,px} is to form a

sum {p; + ...+ px} of these parameters. If for two solids these sums are
different, some of parameters must be different, and the solids must be in
different equivalence classes (with respect to these parameters). Then we
have to check only for the solids with the same sum {p; + ...+ pi} if they
have some parameters different. This we can do by lexicographic ordering
of these solids by the values of parameters {p;,...,px}

6 The coding problem

Some polyhedra (J28, J29), (J32, J33), (J40, J41), (J76, J77), (J78, J79)
differ only in the values of parameters r and g (see Table 1). That was the
reason why we introduced parameters r and g. Which of our 16 parameters
are redundant for the purpose of coding the solids of the class C ? Using the
summation trick (described in 5.2) and lexicographic ordering of parameters
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we can see that the parameters (v,e, f, flo, s,n,m,q) suffice to separate
the solids of the class C. What is the minimal number of parameters by
which we can code the solids of the class C'?

The next counterexamples show why certain combinations of three pa-
rameters do not separate the class C:
(v, e, f) = (14,26,14) for J55 and J56, (f,m,q) = (8,4,14) for J26 and J49,
(v,s,7) = (9,6,6) for J3 and J63, (s,q,m) = (10,0,10) for J5 and J6,
(e,m,q) = (80,5,0) for J31 and J59, (v,s,q) = (25,10,6) for J33 and J24,
(s,q,€) = (20,0,20) for J31 and J59, (s,q, f) = (10,0,27) for J21 and J32,
(s, q, flo) = (6,0,28) for J44 and J45, (v,m,r) = (9,4,12) for J10 and J8,
(v,m,q) = (40,5,0) for J48 and J43, (flo,N - n,q) = (4,60,0) for the
Archimedean solid 3.4.5.4 and the 30-gonal antiprism 33.30.

By a simple »multiplication trick« we can get from two parameters N
and n just one parameter N - n:

Proposition 2 The sequences of parameters (flo, N-n,q) are different for
each solid of the class consisting of the 92 Johnson solids, the 5 Platonic
solids and the 18 Archimedean solids.

Proof. This is easily seen by arranging these sequences in the lexico-
graphic order (Table 4). O

Proposition 3 The sequences of four parameters (flo, N, n, q) are differ-
ent for each solid of the class C. Likewise, the sequences of four parameters
(a, s, f, e) and (q, s, f, n) are different for each solid of the class C.

Proof. From the Tables 1b and 4 we see that the sequences of parameters
(flo, N - n,q) are different for each solid of the class C' except for the
Archimedean solid 3.4.5.4 and the 30-gonal antiprism 33.30 which both have
the values of these parameters (flo, N - n,q) = (4,60,0). Since these two
solids differ in parameters N and n, the sequences of four parameters ( flo,
N, n,q) are different for each solid of the class C. Likewise we can easily
see that the parameters (g, s, f) separate all the Johnson, Archimedean and
Platonic solids except two pairs: J21 and J22, which both have (g, s, f) =
(0,10,27), and J48 and J76, which both have (g, 5, f) = (0, 10, 52) and that
the values of e and n are different also for these pairs of solids. O

Table 4, together with values flo = 3 for prisms and flo = 4 for an-
tiprisms from Table 1c, gives us also the classification of convex polyhedra
with respect to the numbers of flag orbits:

Proposition 4 The class C of conver polyhedra with regular polygonal
faces is divided into 38 equivalent classes with respect to the number of
flag orbits.
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L{flo, N - n,q): solid
(1,12,6): 3° |

(1,24,6) : 3¢
(1,24,16) : 4°
(1,60,6) : 3°
(1,60,10) : 53
(2,24,0) : 3.4.34
(2,60,0) :3.5.3.5
(3,18,6) : J12
(3,24,18) : 3.6*
(3,30,6) : J13
(3,48,20) : 4.6°
(3,48,32) : 3.8°
(3,120,22) : 5.6

(3,120, 26) : 3.10%

(4,4,0): J1
(4,5,0) : J2
(4,60,0):3.4.5.4
(4,72,32) : 3.43
(5,12,12) : J14
(5,16,16) : J15
(5,20,20) : J16
(6,48,0) : 4.6.8
(6,48,6) : 117

(6,120,0) : 4.6.10

(7,6,14) : J26
(7,42,6) : J51
(8,5,0) : J9
(8,10,0) : J31

(flo,N - n,q): solid
(8,10,18): J30
(8,12,0): J7
(8,20,18): J8
(8,24,14): J27
(8,40,18): J29
(8,40,24): J28
(8,50,0): J59
(9,36,6): J84
(10,4,6): J10
(10,5,8): J11
(10,6,0): J3
(10,8,0): J85
(10,8,20): J4
(10,10,0): J5
(10,12,0): J57
(10,15,6): J63
(10,24,0) : 344
(10,60,0) : 345
(12,10,16): J39
(12,10,40): J38
(12,15,6): J64
(12,48,14): J36
(12,48,24): J35
(12,60,10): J34
(12,72,26): J37
(13,8,4): J49
(13,12,14): J55

(13,20,10): J91

(flo,N . n,q): solid
(14,10,0): 36

(14,55,10): J58
(15,32,32): J67
(16,50,40): J42
(16,60,0): J43
(17,4,6): J50
(18,6,16): J18
(18,8,28): J19
(18,10,21): J20
(18,18,0): J65
(18,20,0): J80
(19,10,22): J52
(19,16,14): J90
(20,10,0): J32
(20,10,10): J62
(20,35,6): J33
(22,6,6): J22
(22,8,14): J86
(22,10,0): J21
(22,10,8): J24
(22,10,18): J23
(22,12,26): J54
(23,10,14): J53
(24,6,0): 192
(24,40,30): J66
(24,60,16): J73
(24,100,0): J69
(26,10,6): J25

(flo, N - n,q): solid
(26,12,18): J56

(28,8,14): J88
(28,10,10): J46
(28,24,0): J44
(28,35,16): J40
(28,35,18): J41
(28,40,0): J45
(30,45,10): J61
(33,8,18): J89
(36,60,0): J48
(40,50,10): J60
(42,10,0): J76
(42,10,16): J77
(42,55,22): J68
(48,60,16): J72
(50,30,0): J83
(52,4,6): J87
(64,35,0): J47
(80,60,16): J75
(80,20,0): J81
(90,80,22): J71
(120,60,22): I74
(120,100,22): J70
(180,20,16): J82
(210,10,0): J79
(210,10,23): J78

Table 4: Lexicographic ordering of solids by three parameters flo, N - n and q.

Finally, there is a simple trick, based on the unique factorization the-
orem for primes, by which we can separate the solids of C by a single
parameter:

Proposition 5 If the solids of any class of objects are separated into dif-
ferent equivalent classes by k parameters qu,qa, ..., qx, then they can be sep-
arated by just one composed parameter 29 -39 . ... pi*, where 2,3,5,...,px
are the first k prime numbers.

7 Summary: why, how and what

A few words explaining the justification of this project and its results might
be appropriate. WHY: The idea was to find an algebraic description of John-
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son solids, similar to a description of uniform polyhedra by their vertex-
type symbol. Instead of using a long word for a uniform polyhedron such
as Rhombicosidodecahedron (which does not tell us much) or the corre-
sponding uniform notation number U27 (which tells us even less) we can
use a vertex-type symbol (3.4.5.4) (which contains some information about
the structure of the polyhedron). The selected data we collected (Table 4)
enable us to describe each Johnson solid with just three parameters. For
example, Triaugmented Truncated Dodecahedron J71 is described by the
ordered triple (flo, N - n,q) = (90, 90, 22).

HOW: For each polyhedron its net had to be drawn (this was difficult!),
as in Figure 3. Then the values of parameters could be easily detected.

WHAT: To obtain a characterization of convex polyhedra with regu-
lar polygonal faces by minimal number of parameters we have analyzed 16
parameters (Table 1, Section 4). Some of them are related to the symmetry-
type graphs ([7], [8]) of these solids. We have introduced a parameter called
»Euler orbit characteristic« and proved some of its properties (Proposi-
tion 1). Comparing various sets of parameters with respect to how well
they separate the solids we have found a characterization of the class C of
convex polyhedra with regular polygonal faces by four parameters (Propo-
sition 3). Likewise, the solids of the subclass of C consisting of the Johnson
solids ([5]), Archimedean solids and Platonic solids (Proposition 2) can be
separated by just three parameters. We have classified the solids of the
class C by the numbers of their flag orbits (Proposition 4). We have seen
that the average number of symmetries of Johnson solids is 9.51 and that
the average number of their Euler orbit characteristic is 2.391. Finally,
we see (by combining Proposition 3 and Proposition 5) that the solids of
the infinite class C' can be separated by just one composed parameter:
2flo. 3N . 5n . 79,
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Figure 3: The nets of the Johnson solids J82 and J87.
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