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Abstract

In 1969, Dewdney introduced the set I’ of primal graphs, characterized by
the following two properties: every finite, simple graph G is the union of non-
isomorphic, edge-disjoint subgraphs of G so that each of the subgraphs is in T';
and, if G is in I, then the only such union consists of G itself. In the period
around 1990, several works concerning the determination of the graphs in T
were published and one Ph.D. thesis written. However, the classification of the
members of I' remains elusive. The main point of this work is to simplify and
unify some of the principal results of Preen’s Ph.D. thesis that generalize earlier
results about primal graphs with maximum degree 2.

1 Introduction

As an analogue of a basis of a vector space over the 2-element field, Dewdney
introduced the notion of sets of “primal graphs” [5]. This begins with the
following notion.

Definition 1.1 1. A decomposition of a graph G is a set of non-isomor-
phic, edge-disjoint subgraphs of G whose union is G.

2. If A is a set of graphs and ® is a decomposition of a graph G, then ®
is a decomposition of G over A if ® C A.

A graph typically has many different decompositions. In this work, we
are interested in finding decompositions with additional structure.

Definition 1.2 Let G be a set of finite, simple graphs. A subsetT of G is
primal relative to G if:
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1. each G € G has a decomposition ® so that ® CT'; and
2. if G €T, then the only decomposition ® of G with ® CT is ® = {G}.

Dewdney’s main result was to show that every set of graphs has a unique
primal subset.

Theorem 1.3 ([5]) If G is a set of finite, simple graphs, then there is a
unique subset I' of G that is primal relative to G.

This theorem is easily proved by recursively constructing I'. The graphs
in G with fewest edges are necessarily in I'. Given the current I', we add
to it all the graphs in G having fewest edges and no decomposition over I'.
In this way, we eventually determine, for each graph G € G, whether or
not G is in I'. It is an easy exercise to prove that the resulting I' is primal
relative to G.

By considering a graph with fewest edges that is in one, but not the
other, of distinct primal sets, uniqueness is also quite straightforward.

When G is the set of all (finite, simple) graphs, the primal set relative
to G is the set T of primal graphs. The determination of the primal graphs
with maximum degree 2 or the primal forests with maximum degree 3 is
far from complete.

Some effort has gone into classifying the members of I'; see for example
[1, 3, 5]. If G is a graph and n is a positive integer, then nG is the graph
consisting of n disjoint copies of G. For non-negative integers i and j,
the graphs 2'K 5; and 2°K, 3 are known to be primal [1]. In the context
of graphs with maximum degree at most 2, the problem then becomes:
what are the primal graphs with maximum degree 2 other than the graphs
in Tp := {2°K, | i > 0} U{2'K; 5 | i > 0} and the graphs of the form
2¢K,2? In considering graphs with maximum degree 2, we may assume
that no component is a K32, as all such components can be decomposed
using 2° K o’s, without affecting the decomposition of the remainder of the
graph.

For a graph G, Q(G) consists of those graphs all of whose components
are subgraphs of G. It follows from (3, Theorem 4] that (Cs) has infinitely
many primal graphs not in I'g (obviously none of these is of the form
2'Ks 2).

For two graphs H and K, H + K denotes the disjoint union of H and
K. Chinn, Richter, and Truszczynski [2] introduce a natural parameter
d(G) and prove that, for graphs with maximum degree at most 2, C5 + K>
and 7Cs + K3 are the only primal graphs with maximum degree 2 and d
between 1 and 42. Every graph G with maximum degree 2 and d(G) < 42
decomposes over ' U{Cs+ K32, 7Cs+ K3}. Unfortunately, several hundred
other primal examples with maximum degree 2 were determined, all having
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d = 43 and 296 edges (the smallest possible to have d > 43), so the simple
answer for d < 42 does not continue.

This result was generalized in one direction by Preen in his doctoral
work [7]. An important innovation in Preen’s work is the introduction of
the class of binary graphs: a (p, q)-binary graph is the edge-disjoint union
of pK, and ¢K) 2. A graph G is binary if, for some non-negative integers p
and g, G is a (p, g)-binary graph. Binary graphs trivially decompose over
T'o: use the primal graphs of the form 2¢K] ; to deal with the ¢K; 2 portion
and, independently, use those of the form 2¢ K, to deal with the pKs.

A principal result in Preen’s thesis is that if B is a binary graph, T has
maximum degree 2 and does not contain either Cy or Cs, and n is an integer
with 0 < n < 42, then B + T + nCjs is primal if and only if B+ T + nCjs
either is in I, or is Cs + K3, or is 7Cs + K5. These results are obtained
by complicated calculations.

Let B be a (p, g)-binary graph and let G be a graph. Then a*(B + G)
is the largest integer 7 such that B + G contains an isomorph H of 2K,
so that H N B is contained in the pK>. Similarly, 8*(B + G) is the largest
integer j so that B + G contains an isomorph K of 27K, 5 so that HN B is
contained in the ¢K; 2. These numbers give a natural upper bound on the
largest elements of I'y we can necessarily use in a decomposition of B + G.

It follows that a decomposition of B + G respecting the description of
B as a (p, q)-binary graph can cover at most 2 (B+G)+1 _ 1 edges with
primal graphs of the form 2'K, and at most 28" (B+G)+2 _ 2 edges with
primal graphs of the form 27K 5.

Thus, the parameter D(B+G) := |E(B+G)|~ (22" (B+G)+1498°(B+G)+2_
3) naturally records how far B+ G is from decomposing over I'y. Our main
results are summarized in the following theorem, simultaneously general-
izing the above-mentioned results for graphs with maximum degree 2 and
d < 42 and Preen’s theorem. We believe the methods we present here to
be simpler than those employed in the earlier arguments.

Theorem 1.4 Let B be a binary graph, and T a graph with mazimum
degree 2 that does not contain Ky 5. Then:

1. if D(B+T) <0, then B+ T has a decomposition over Ty;

2. if D(B+T) < 6, then B+T has a decomposition over [oU{Cs+ K3};
and

3. if D(B+T) < 42, then B+ T has a decomposition over I'o U {Cs +
K,,7Cs + K,}.

It is important to understand that there are at least several hundred
primal graphs with maximum degree at most 2 and D(G) = 43. Our
methods are inadequate to go beyond this point. On the other hand, unlike
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Preen’s work, our theorem includes many graphs that contain nCs with
n > 42. As long as there are other components to balance the extra Cs’s
so that D < 42, our theorem guarantees a decomposition.

The next section sets out some preliminary observations that will be
useful in later work. In Section 3 is the proof of Theorem 1.4 (1), while
Section 4 proves (2) and (3). In Section 5 we give some commentary on
the family of primal graphs G with maximum degree 2 and D(G) = 43, as
well as some additional related work and future directions.

2 Basic facts

In this section, we prove some basic lemmas that we will need for Theorem
1.4.

Let B consist of all the binary graphs and let T4 consist of those graphs
with maximum degree 2 that do not contain K 2. Because cycles of length a
multiple of 3 and all paths are in BNT*, a graph in B+%* may have multiple
representations in the form B + T, with B € B and T € T%. Initially we
shall be concerned as to which graphs B+7T in B +%* decompose over Ty.
Since we know nothing much about the structure of B, we will typically
only be able to use our limited knowledge to decompose it as in the three
paragraphs preceding Theorem 1.4.

Definition 2.1 Let T € T* and let B be the edge-disjoint union of B; =
pKs and By = qK1,3. A decomposition ® of B + T is conventional if, for
each edge e of B and for the element H of ® containing e, the component
of either By or By that contains e is a component of H.

In other words, a conventional decomposition of B+T uses, in a natural
way, the K3's and K »’s in the description of B as a (p, ¢)-binary graph.
Note that, for a conventional decomposition, p and g must be specified in
advance; we reserve p and g as the parameters for B € 8.

We now introduce several parameters that are central to the remainder
of this work (items (5)—(7) were already mentioned in the introduction).

Definition 2.2 Let G be an arbitrary graph, let B be a (p, q)-binary graph,
and let T € 4. Then:

1. my(G) is the largest m so that mK3 C G;

2. m{y(B+T)=p+m(T),

3. ma(G) is the largest m so that mK, 2 C G;

4. m3(B+T) =q+mo(T);

5. a*(B +T) is the largest integer i so that 2° <m}(B +T);
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6. B*(B +T) is the largest integer i so that 2° < m3(B + T); and
7. D(B+T) = |E(B +T)| — 20" (B+T)+1 _ 98°(B+T)+2 4 3,

As we mentioned in the introduction, D(G) counts the excess of E(G)
over the number 2°"+1 4 26°+2 _ 3, giving an indication of how far G is

from conventionally decomposing over I'g.
We need some simple observations.

Observation 2.3 1. If C is a cycle of length n, then m1(C) = |n/2]
and ma(C) = [n/3].
2. If P is a path of length n, then my(P) = |(n + 1)/2] and ma(P) =
l(n+1)/3].
3. IfG and H are graphs, then, fori= 1,2, m;(G+H) = m;(G)+m;(H).
4. If G and H are in B + T, then G+ H € B+ %4 and, fori=1,2,

m; (G + H) =m}(G) + m}(H). -

The following lemma relates D(B + T') and the components of T' that
are 5-cycles.

Lemma 2.4 1. If K is any path or cycle other than Cs, then
mi(K) + 2mq(K) > |E(K)|.

2. IfBe®B and T € T4, then T has at least D(B + T) components that
are 5-cycles.

Proof. The first item is a direct consequence of Observation 2.3.

As for the second item, let = be the largest integer so that rCs C T.
Then the first item implies the second line in the sequence below, while the
definitions of a* and $* imply the third.

|E(B+T)| = p+2g+|E(T)
< p+mi(T)) +2(qg+ma(T)) +7
< @ 1) 422t — 1) 41,
It follows that D(B + T) <, as claimed. n

Our final preliminary observation is the following.
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Lemma 2.5 Let T € % and let B be the edge-disjoint union of B, = pK,
and By = gK15. Let T' = pKo +T. Then B 4+ T has a conventional
decomposition if and only if By + T’ has a conventional decomposition.

Proof. Let & be a conventional decomposition of B + T. Fix a bijection
between the edges of B; and the pK» edges in T'. Replacing each edge e
of B; with its bijective image turns & into a conventional decomposition
of By +T', yielding a conventional decomposition &’ of By +T'. The same
argument works in reverse to convert ¢’ into &. | |

The impact of Lemma 2.5 is that, as far as conventional decompositions
go, we may assume B is simply ¢K; 2 and that B must be covered by K o-
components of the decomposition. Not every graph of the form ¢K, 5 + T
that we consider has a conventional decomposition. However, these are
quite exceptional and, in particular, for them, no component of T is Kj.
Therefore, the original graph B+T with B a (p, ¢)-binary graph must have
p = 0 anyway. The upshot is that, for us, there is no loss of generality in
assuming B = ¢Kj 5.

3 Graphs in B + T* that decompose over Iy
The main result in this section is the following observation.

Theorem 3.1 Let B = qK 3 and T € 3*. If D(B+ T) < 0, then either
B+T has a conventional decomposition over I'g or there exist non-negative
integers i and b, with b < 2%, so that T = (2° — b)Cs + (2b)P4. In the latter
case, the graph B + T decomposes over I'y.

We make two remarks about the exceptional case. Firstly, note that
no component of T is K. Therefore, if B is a (p,q)-binary graph and
T € %* are such that D(B + T) < 0, then either B + T has a conventional
decomposition over I'g or p =0, B = ¢K; 2 and, for some integers ¢ and b,
T= (2i —b)Cs + (2b) Py.

Secondly, we can be more precise about the exceptional case; we pro-
vide in the appendix a complete description. This greater precision is not
required to prove Theorem 1.4

For the proof of Theorem 3.1, we partition B + T4 into several subsets.

Definition 3.2 Let ¢ > —1 be an integer.

1. The set (B + T)eyen consists of those graphs B + T with B = qK, o
and T € T* each of whose components has an even number of edges.

2. The set (B + T*). consists of those graphs B + T for which:
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(e) T has at least one component with an odd number of edges;

(b) for some q, B = qK,2 and T has at most 2°t! — g — 1 cycles of
odd length;

(c) |E(B +T)| < 20" (B+T)+1 4 942 _ 3. gng

(d) |E(B +T)| <207 (B+T)+1 . 98" (B+T)+2 _ 3,

The constraint |[E(B + T)| < 297 (B+T)+1 | 9¢+2 _ 3 gllows for the
possibility of a conventional decomposition over I'y that uses only those
2¢K; » with i < c. We let PDI'y denote the set of graphs B + T in B + 34
for which D(B+T) < 0. (These graphs are Potentially D ecomposable over
To.)

We note that (B + T4)epen © PDI.

It is a triviality that, if D(B+T) < 0, then either B+T € (B+%*)even
or there is a ¢ < *(B + T) so that B+ T € (B + %*).. In order to prove
Theorem 3.1, we begin with the following. This is the key insight that
simplifies the decomposition over I'g of graphs in PDI.

Theorem 3.3 For each integer ¢ > —1, each graph in (B + %), has a
conventional decomposition over Iy that does not use any 2'K; 2 withi > c.

The proof will be by induction on ¢. The implication is that in the base
casec = —1,no 2'K 1,2 is used in the conventional decomposition. This fact
will be used to prove that (most) graphs in (B +T*).yen have conventional
decompositions.

Proof. Let B = ¢K, 2. As mentioned, we proceed by induction on c. For
the base case ¢ = —1, T € §* is such that B+ T € (B + T*)_;. Since T
has at most 2(-1)+1 — g — 1 odd cycles, T has no odd cycles and g = 0; in
particular, B is empty. We write m; and a* instead of m;(T') and a*(T),
respectively.

We claim that we may choose an isomorph H of 2°" K, so that T\ H
is of the form nXK,. To this end, let M be an isomorph of m; K3. Then M
is a maximum matching in T

Each component of T is either a path or an even cycle. The complement
of M in each of these components is a matching and, therefore, T\ M is a
matching. Furthermore, the augmenting paths of T\ M are precisely the
components of T that are odd paths.

Since |E(T)| < 22"+ + 27142 _ 3 = 20"+1 _ 1 we see that T\ M has
at most 2*° — 1 edges. As |[M|=my(T) > 2°"(T), T\ M has fewer edges
than M has. Thus, there are at least 2*" — |E(T \ M)| augmenting paths
for T\ M.

These augmenting paths are all components of T that are odd paths.
Thus, we can use them to find an isomorph H of 2* K, so that G\ H
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is a matching. As above with M, T\ H has at most 2* — 1 edges, so it
decomposes over I'g without using an isomorph of H, yielding the desired
conventional decomposition of T'.

We now proceed to the inductive step. We may assume B+ T € (B +
THe \ (B + T),-1. Thus, either T has at least 2° — ¢ odd cycles or
|E(B -I—T)I > 90"+l L gctl _ 3

Case 1: T has at least 2° — q odd cycles.
In this case, let H be an isomorph of 2°K) 5 selected as follows:

1. select one K 5 from each of as many as possible odd cycles of length
at least 5 in T

2. if T has fewer than 2¢ odd cycles of length at least 5, then additionally
select one K o from as many of the remaining odd cycles in T as
possible; '

3. if T has fewer than 2° odd cycles, then select the remaining K o's
from B = qK 2.

Since T ¢ T2,.,., some component C of T has an odd number of edges.
Therefore, some component of C'\ H, and so a component of T'\ H, has an
odd number of edges. This is Condition 2a for (B+T)\ H € (B +%4).-;.

Let o(T) denote the number of odd cycles in T. If o(T) > 2°, then
B\ H = B and T \ H has 2¢ fewer odd cycles than T has. That is,
T\ H has at most (2°+! — g — 1) —2° odd cycles. This is Condition 2b for
(B+T)\ H € (B +T*).-1 in this instance.

So suppose, on the other hand, that T has fewer than 2° odd cycles.
Then o(T\H) = 0 and B\ H is (g—(2°-0(T)))K1,2. Set ¢' = ¢—2°+0o(T);
to get Condition 2b for (B +T)\ H € (B + T*%).- in this case, we need to
know that T\ H has at most 2¢ — ¢’ — 1 odd cycles. Since o(T \ H) =0,
it suffices to show 2¢—-¢q¢' —1 > 0.

We know by assumption that o(T") < 2¢*! —g—1 and, by definition, ¢’ =
q—2°+0(T). Thus, 2°—¢'~1 = 2°—q+2°—a(T)—1 = 2¢t1—¢q—1-¢(T) 2 0,
as required.

The choice of H implies that m,(T \ H) = m,(T); therefore a*((B +
T)\ H) = o*(B + T). Consequently,

|E((B+T)\ H)| |E(B +T)| -2
(20'(3+T)+1 42042 _ 3) _ g+l
9o ((B+T)\H)+1 +9°t1 _ 3,

IN

This is Condition 2c for (B +T) \ H being in (B + T4)._;.
As a first possibility in establishing that the final condition holds, sup-
pose ¢ < *(B + T). Then the choice of H implies there is an isomorph K
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of 26°(B+T)K, 5 in B + T containing H. Therefore, K\ H C (B+T)\ H
shows 8*((B+T)\H) > f*(B+T)—1 > c. Combined with the preceding
paragraph, we conclude

|E((B+T)\ H)| < 20" (B+TNH+1 4 op*((B+TN\H)+1 _ 3

which is Condition 2d for (B + T) \ H being in (B + T%).-1.

In the remaining possibility for Condition 2d, ¢ > 8*(B + T). As one
subcase, suppose there are at least 2° odd cycles in T" having length at least
5. Then 2°K; 2 CT\ H, and so B*((B+T)\ H) > c. Again,

|E((B +T)\ H)| < 2" (B+TNH)+1 | get1 _ 3.

80
|[E((B +T)\ H)| < 22" (B+TNI)+1 | 98°(B+T\H)+2 _ 3,

which is Condition 2d for being in (B + T%)._;.
In the other subcase, T has fewer than 2¢ odd cycles of length at least
5. Therefore, T \ H has no 5-cycles; it follows from Lemma 2.4 that

|[E((B+T)\ H)| < 2% (B+TNH)+1 4 98" (B+T\H)+2 _ 3

as required for Condition 2d.
Thus, in all possibilities for Case 1, we have (B+T)\ H € (B+%*)c-1.

Case 2: T has fewer than 2° — q odd cycles.
In this case, the fact that B+ T ¢ (B + T*)._; implies

|E(B +T)| > 2% (B+D)+1 4 getl _ 3,

Let o(T) and p(T") denote, respectively, the numbers of odd cycles and odd
paths in T. By Condition 2a of the definition of (B+%%)., o(T)+(T) > 0.
Let s = mj(B+T)~—2%"(B+T), This “slack” is the amount by which m,(T)
may be reduced by deleting K 3’s from T in a conventional decomposition
without reducing o*. Obviously, the deletion of a Ko from T reduces
mi(B + T) by at most 1.

We aim to prove that g+s+0(T) > 2°. As astart, note that Observation
2.3 implies, for each component K of T, |E(K)| = 2m,;(K) +o(K) — p(K);
therefore, |E(T)| = 2m(T) + o(T) — p(T'). Consequently, we have

90" (B+T)+1 4 9ctl o < |E(B+T)|
= |E(B)|+|E(T)|
29 + (2m1(T) + o(T) ~ p(T))
2(2*° (B+T) + 5) 4 29 + o(T) — p(T)
22BN 4 9(g + 5+ 0(T)) — (0(T) + p(T)).
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Cancelling the 20" (B+T)+1 and recalling that o(T)+p(T) > 1, it follows

that
2°*1 2 < 2(g+s+0(T)) -1,

which implies that ¢ + s + o(T) > 2°, as claimed.
Condition 2d for B + T € (B + %), implies

|E(B +T)| < 2°"(B+T)+1 4 9f*(B+T)+2 _ 3.
while the fact that we are in Case 2 implies that
|E(B +T)| > 22" (B+T)+1 4 ge+1 _ g,

These inequalities combine to show *(B + T) > ¢. Thus, we can choose
an isomorph H of 2°K; 2 in B + T by first choosing an isomorph H; of
o(T)Ky,2 so that each odd cycle of T has a copy of K; 2 in H;. Now
extend H; to H using at most s other K 2’sin T. Since T'\ H has no odd
cycles, Lemma 2.4 implies Condition 2d for membership of (B+T)\ H in
(m + 3:4)c—1-

Since (B+T) ¢ (B +T*)even, we see that (B+T)\ H ¢ (B +T)even.
Thus, Condition 2a holds for (B + T) \ H being in (B + T*).-1. The fact
we are in Case 2 implies T' has at most 2° — ¢ — 1 odd cycles, showing that
2¢ —g—1 > 0. Since T\ H has no odd cycles, Condition 2b holds for
(B+T)\ H being in (B + T4)c1.

The choice of H implies that m (T \ H) = m1(T) — s, because m1(T \
H;) = my(T) and we chose at most s other K, o’s in H from T. It follows
that my (T \ H) > 2°"(B+T), We conclude a*((B +T)\ H) = o*(B+T).

Now we can get Condition 2¢ for (B +T') \ H being in (B + %%)._;:

|E(B+T)\H)| = |BE(B+T) -2
< (20'(B+T)+1 + 9¢+2 _ 3) — 9e+l
= 2&'((B+T)\H)+l + 2C+1 _ 3’
as required.
Therefore (B +T) \ H is in (B + T*)._1, as required. |

Theorem 3.3 goes a long way to proving Theorem 3.1; however, there
remain the graphs in (B + %4)eyen to consider.

Theorem 3.4 Let B+ T € (B +%%)even- Then B+ T has a conventional
decomposition into ['o, except in the case, for some non-negative integers i
and b with b < 2!, T = (2° —b)Cs + (2b)P;. In the exceptional case, B+ T
has a decomposition over I'y.
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Proof. Let g be that non-negative integer so that B = ¢K; 2. We may
assume T has at least one cycle C that is not of length a multiple of 3, as
otherwise B + T is binary and trivially has a conventional decomposition
over I'o. Since C has even length and is not Cy, C has length at least 8.

As we did earlier, we let the slack s be defined by s = m, (T) -2 (B+T),
Set a = a*(B + T); we have 2* < m;(T') < 2>t! and s < 2.

Subcase 1: either s > 0 or mp(T) > 2071,

If s > 0, then we claim that ma(T) > s+ 1. Since a component K of T
has an even number of edges, it is neither K5 nor Cs. Thus, Observation
2.3 implies that 4m,(K) > |E(K)|; consequently, 4mq(T) > |E(T)|.

On the other hand, because every component of T is even, |E(T)| =
2m,y(T), so

|E(T)] = 2(2% + s) > 4s,

the inequality because s < 2*. Putting these together, we have dmy(T) >
|E(T)| > 4s, which obviously implies mg(T") > s + 1, as claimed.
Now let H be an isomorph in B + T of either

(g+s+1)Ky2 ifs>0,0r
(g+2°7 1+ 1)Ky if my(T) > 2%71,

including B in H, and, furthermore, requiring H to contain two copies of
K, 3 in C that are separated by a single edge in C.

Suppose first that s > 0. With this choice of H, we claim that m(T\
H) > my(T) — s. This can be seen by ordering the choices for H. When
we choose the first Kj 5 in C, m; drops by 1. We may take our next choice
as the K 2 to also be in C, separated from the first one by a single edge.
At this point, m; does not change. Each remaining K} 2 in TN H reduces
my by at most 1. Moreover, some component of (B + T) \ H is a single
edge, so (B+T)\ H ¢ (B + T)even-

It follows that m,(T \ H) = 2. Also,

IE((B+T)\ H)| = |[ET)| —2(s +1) =25+ —_ 2.

Thus, (B+T)\ H € (B +%%)_;.

In the case ma(T) > 2%~1, the same argument shows that m; (T \ H) >
221 and that |E((B + T) \ H| = 2* — 2. Therefore, also in this case,
(B+T)\H € (B+%%_,.

Theorem 3.3 implies T\ H has a decomposition over {2'K> | i > 0}.
Combining this with an obvious decomposition of H over {2'K; 2 | i > 0}
yields the desired conventional decomposition of B + T'.

Subcase 2: s =0 and my(T) < 2*°1.
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As s = 0, my(T) = 2%. On the other hand, for each n > 3, |n/2] <
2|n/3), so Observation 2.3 implies m;(T) < 2mz(T). Therefore, mo(T) 2
921 Tt follows that, in this subcase, mo(T") = 2>~ and m;(T) = 2°.

We claim that there is a non-negative integer b < 2% — 2 so that T’ =
(252 —b)Cs + (2b) Py. If K is a path or cycle of even length and is not one
of C4, Cs, and Py, then Observation 2.3 implies 4my(K) > |E(K)|. Since
every component of T' has an even number of edges, |E(T)| = 2m,(T), so
|E(T)| = 22+ = 4my(T'). Since no component of T is Cy, every component
of T is either Cs or Pj.

Let m and n be the non-negative integers so that T = mCs + nPy;. We
noted at the beginning of the proof that T has a cycle, so m > 0. Then
my(T) = 4m + 2n, so 4m + 2n = 2°. As the left hand side is even, a > 1.
Thus, 2m + n = 21, whence n = 2°~! — 2m. If n = 0, then m = 272
and b= 0. If n > 0, then either

e n=1,a=1, and m =0, a contradiction, or

e n>1,a>1,and niseven. Set b =n/2 and notice that m = 2%~2—p.

Thus, the graph we are considering is ¢K; 2+ (22 —b)Cs +(2b) Py, with
b < 2°=2, If ¢ > 0, then, allowing for an unconventional decomposition,
we may interpret K, 2 + (2°=2 — b)Cs + (2b) P, as a graph in T4. Every
component is even, but now not every component is either a Cg or Py. It
follows that this graph decomposes over I'y by some earlier subcase.

Thus, we may assume ¢ = 0. In this case, there is a subgraph H of
(242 —b)Cs + (2b) Py that is an isomorph of 2*~1 K| 5 so that, for each Cs,
CsNH = 2K 3 and Cg\ H = K3+ P, while, for each of the 2b Py’s, P,NH =
K2 and Py\ H = 2K,. We next pick an isomorph H’ of (2*~2 —b)K 2 so
that H' NP3 = K 5. We see that (222 —b)Cs + (2b)Py) \ H) \ H' is just
rK3, showing that (2%~2)Cg + (2b) P, has a (conventional) decomposition
over I'g, as required. [ ]

4 Going further

In this section, we identify two additional primal graphs in B +%* and use

these with I’y to decompose many members of B + T*. We have already

seen in the arguments that 5-cycles play an important role, as these are

the only connected graphs K in T4 for which m,(K) + 2mz(K) < |E(K)|.
In particular, we have the following.

Theorem 4.1 Among all the graphs B+ T € B + T4 with 1 < D(B +
T) < 42, only Cs + K2 and 7Cs + K3 are primal. In particular, every
graph in B + T4 with 1 < D < 42 has a conventional decomposition over
Thu {Cs + K,,7Cs + Kg}.
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Proof. Suppose B = ¢K;; and T € T4 are such that 1 < D(B+T) < 42.
Lemma 2.4 implies T contains a 5-cycle. Since D(Cs) = 0, B + T has
another component and, therefore, Cs + K, C B+ T.

Since a proper subgraph K of Cs + K has D(K) < 0, K decomposes
over I'g. Since D(Cs + K3) > 1, Cs + K> does not decompose over I, so
Cs + Ko is primal.

We have argued above that there is an isomorph H of Cs+ K> contained
in B+ T so that the Cs is contained in T. We note that ¢K; 2 + Cs has
a conventional decomposition via (¢ + 1)K o, 2K, and K. In particular,
D(gK12 4+ Cs) £0,s0 B+ T # qKy,2 + Cs. That is, T has a component
other than the one Cj5. Thus, we may choose H so that the K, is also in a
component of T'; if possible, choose this component to be a Cs.

Suppose first that T\ H has no 5-cycle. Lemma 2.4 implies D((B +
T)\ H) <0. Aslong as (T'\ H) is not (2* — b)Cg + (2b)P;, Theorem 3.1
implies (B + T') \ H has a conventional decomposition over [.

The following observation will allow us to deal with the exceptional

case.

Claim 1 Let S be o graph with mazimum degree 2 and let e be an edge of
S so that there are non-negative integers i and b with b < 2° and S —e =
(2% — b)Cs + (2b)Py. Then there is another edge €' of S so that S — €' has
two components with an odd number of edges and |E(S — €')] < m1(S —
e') +2my(S —¢€').

Proof. If no component of S is Cs, then let ¢’ be any edge from a Cs.
Lemma 2.4 implies my(S — €') + 2mo(S - ¢') > |E(S — ¢€')]. Otherwise,
S = (2'—b)Cs + (2b—1) Py +Cs and we may choose €’ to be in a P;. Thus,
my(S — ') = 4(2%) and my(S — €’) = 2(2). Since |[E(S —¢')| = 8(2‘),
|E(S —€')] £ my(S —€') +2my(S - €).

In the exceptional case, we use the claim to pick e’ for H instead of e.
Now B + (T'\ H) has a conventional decomposition over Iy, as required.

In the remaining case, we may assume 3C5 C T'. In this case, (B+T)\
H=B+(T\H)and (B+T)\ H ¢ (B + T)even.

Claim 2 D(B + (T \ H)) = D(B +T) — 6.

Proof. It suffices to show that a*(B+ (T \ H)) = a*(B+T) and 8*(B +
(T \ H)) = B*(B + T). We start with the latter.
The choice of H implies m3(B + (T \ H)) = m%(B + T) — 1. Thus, if
B*(B+ (T \ H)) < B*(B +T), we must have m}(B + T) = 2°"(B+T),
Observation 2.3 shows that, for every component K of T, |E(K)| <
my(K) + 3mz(K), so my(T) + 3ma(T) > |E(T)|. Letting * = g*(B+T)
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and o* = a*(B + T), it follows that

(227 — 1) +3(2%")

\Y

my(T) + 3(g + ma(T)) (because
26" = g+ my(T) and 2°"+! — 1 > my(T))
20+ |E(T)|+4¢
|E(B+T)|+4q
(2%t 4 2°°+2 —2) + ¢ (because
DB+T)2>21).

v iV

Therefore, 1 > g + 28°, so m§(B +T) = 2%” < 1. However, 3Cs C T, so
m3(T) > 3, a contradiction. Therefore, 3*(B + (T'\ H)) = 8*(B+1T).

Now suppose o* (B+(T\H)) < a*(B+T). Since my(T\H) = my(T)-2,
we deduce that m;(T) < 2°" + 1. Using the fact that 2m,(T) + ma(T) >
|E(T)|, we conclude that

> 2q+|E(T)|
= |E(B+T)
> 207t 9F°+2 _ 9 (because D(B+T) > 1)
> 2(mi(T)—1)+2(q+me(T)+1) -2
(because 2%° > my(T) — 1 and
28+ > g+ my(T) +1)
2my (T) + 2q + 2mo(T) — 2.

2q + 2m;y (T) + mq (T)

Therefore, 2 > ma(T). However, 3Cs C T, so ma(T) > 3, a contradiction.
a

An immediate consequence of Claim 2 and Theorem 3.1 is that, if 3Cs C
T and D(B +T) < 6, then B + T has a conventional decomposition over
To U {Cs + K2}, completing the proof of the theorem for D(B + T) < 6.
We shall now repeat the preceding analysis to get the next step.

Let B+ T € B + T* be such that D(B +T) > 7. Lemma 2.4 implies
that T contains D(B + T) 5-cycles, and, therefore, 7Cs C T. However,
D(7Cs) = 6, and so D(B + T) > 7 implies 7C5 + K> is contained in
B + T. As every proper subgraph K of 7C5; + K, has D(K) < 6, all
proper subgraphs of 7Cs + K, decompose over I'o U {C5 + Ka}. Since
D(7Cs + K3) = 7, 7Cs + C; does not decompose over I'o U {Cs + K2}, and
therefore 7Cs + K3 is primal.

If B = qK 2 and T = 7Cs, we see that o*(B+T) = 3 and 28" (B+T)+1 >
g+ 7. It follows that

90" (B+T)+1 | 9F*(B+T)+2 _ 3> 164 2(q +8) — 3 =2¢ +29.
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Since |E(B +T')| = 2¢+ 35, D(B +T) < 6. Therefore, T has a component
other than 7C;. In exactly the same way as for the case D < 6, we can
use Claim 1 to choose the extra edge making 7C5 + K3 so as not to leave
(2¢ - b)Cs + (2b) Py. Thus, if 9Cs T, then B+ (T'\ H) has a conventional
decomposition over I'g, yielding a conventional decomposition of B+T over
ToU {705 + Kg}

In the remaining case, we can assume 7Cs C T'\ H, as otherwise D(B +
(T'\ H)) < 6 and B + T decomposes over 'y U {Cs + K»,7Cs + K>}, as
required.

Thus, we may assume the Ks-component in H is contained in a Cs in T'
and that there is an additional 7C5 contained in T'\ H. That is, 15C5 C T.

Note that m; (T'\ H) = m1(T') — 14 and ma(T \ H) = m(T) — 7. Now
we aim for the analogue of Claim 2.

Claim 3 D(B+ (T \ H))=D(B +T) - 36.

Proof. It suffices to prove the two equalities o*(B + (T\ H)) = a*(B+T)
and 8*(B+ (T\ H)) =8*(B+T7T).

Suppose first by way of contradiction that 8*(B+(T\ H)) < 8*(B+T).
Then m3(B+T) < 2°"(B+T) 4.6, Letting r be the number of Cs’s contained
in T, Lemma 2.4 implies m(T') + 2mo(T) +r > |E(T)|. Since 15C5 C T,
7 > 15,

We note that 7 < mo(T), so that r < m3(B + T) < 287 (B+T) L 6, or
26°(B+T) > r — 6. Since r > 15, 26" (B+T) > 9 whence §*(B+T) > 4.

On the other hand, letting 8* = 8*(B +T),

2%°+1 1 3(2°7) > 2%t 422 )4 r—6
> M) +1)+2(q+me(T)—6)+7—6
2 29+ |E(T)| -17
= |[E(B+T)|-17
> 2%+ 1 2F+2 1417 (because D(B+T) > 7).

Therefore, 13 > 28", so f* < 3, contradicting the earlier conclusion
that 8* > 4.

In order to prove the remaining equality a*(B + (T'\ H)) = a*(B+T),
suppose by way of contradiction that o*(B + (T \ H)) < o*(B +T). Since
m1(T \ H) = my(T) — 14, we deduce that m;(T) < 2°" +13.

We know that 7Cs + P, C T\ H, so a*((B+ T) \ H) > 4. Since
a*(B+T) > a*((B+T)\ H), we deduce that a*(B + T) > 5. Again we
let » be the number of Cs'sin T, a* = o*(B +T), and 8* = 8*(B+7T) to
get:
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22"+ 284 r > (m(T) - 13) +2(g +ma(T) +1) +r
> |[E(B+T)-11
>

20°+1 1 98°+2 1 411  (because D(B+T)>7).

It follows that 7+7 > 2% > m, (T)-13, so my(T) < 20+r. Evidently,
my(T) = 2r, so r < 20. On the other hand, a* > 5, so 2¢" > 32, so
7+ r > 32, or r > 25, a contradiction. 0O

The proof is completed by noting that if 7 < D(B + T) < 42, then
Claim 3 and the lead-up to it implies there is an isomorph H of 7Cs + K>
in T so that D((B + T)\ H) < 6. Claim 2 and the lead-up to it implies
(B+T)\ H conventionally decomposes over I'oU {C5 + K2} and the result
follows. |

5 Consequences and future work

One might hope from the main theorem that one can continue on indefi-
nitely finding the next primal graphs in B + . Unfortunately, this fails
at the next step.

Suppose B+T € B +%* is minimal with respect to having D(B+T) >
43. It is easy to see that D(B +T) = 43 and so |E(B + T)| = 2"+ +
26°+2 4 40. Moreover, 43Cs C B+ T, so o* > 6 and 8* > 5, whence
|E(B + T)| = 128 + 128 + 40 = 296. It is not hard to find graphs (even
T € T4) with D(B+T) = 43 and |E(B + T)| = 296. One example is
59C5 + K3, but there are hundreds of others. An interesting one (because
it has a long cycle) is Cyq; + 49Cs + K 2 + 8K».

Where we spent some effort of detail showing that D < 42 implies the
existence of a decomposition, one might hope for at least some start at a
general theory. However, we do not know how to prove the following, which
should be easy.

Conjecture 5.1 IfT € T* has D(T') > 43, then T has a subgraph T with
D(T') = 43 and |E(T")| = 296.

The proof of Theorem 4.1 seems adhoc to us; the proofs of Claims 2
and 3 seem to come from nowhere. Perhaps unifying these results would
help in understanding Conjecture 5.1.

There are other avenues to explore. The graphs A and P are obtained
from a triangle, the former by adding two new degree 1 vertices adjacent
to different vertices of the triangle, and the latter identifying one end of
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a path of length 2 with one of the vertices of the triangle. Both of these
graphs have |E(G)| = 5 and m1(G)+2m2(G) = 4. In the graphs in B +%4,
replacing all the Cy’s with either all A’s or all P’s yields the same theorems.
For example, A+ K; and 7A + K are both primal. There should be a
more general class of graphs to allow these so that they naturally come out
as the primal examples, but we have not determined one, other than (A)
and Q(P).

In the class of graphs with maximum degree 3, there are many primal
graphs that we have not mentioned yet. The graph Y obtained by subdivid-
ing once each edge of K 3 is one example. The family Q(Y) has infinitely
many primal graphs, the next one being 7Y + 10K.

For an integer k > 3, the k-sun is the graph obtained from a k-cycle by
adding k& new degree 1 vertices, each joined to a different one of the vertices
of the k-cycle. In [4] it is proved that the k-sun is primal if and only if
there is an integer i > 2 so that k = 2¢ — 1. That is, the class of graphs
with maximum degree 3 not containing a Y seems to be a rich class for
primal graphs. It is known [2, 3] that a primal forest in this class (which
is a forest of caterpillars with maximum degree 3) is in I'q.

6 Appendix
In this section we prove the following.

Lemma 6.1 Let i, b, and q be non-negative integers for which b < 2%
Then qK, 2 + (2¢ — b)Cs + (2b) P4 has no conventional decomposition over
Lo if and only if b = 0 and q is of the form 27tk —23+1 _1  for some integer
k>2.

Proof. If, for some integer k > 2, ¢ = 21tk —2i+1 _1 then 8* =i+ k—1
and o* = i+ 2. We first show we must use 2¢+2K, in a conventional

decomposition.
Otherwise, we can use at most

27 427742 _ 3 = 92 | gitk+l _3

edges in a conventional decomposition. On the other hand, ¢K; 2 + (2¢ —
b)Cs +(2b) P4 has 2(2'+% —2i+1 _1) +-8(2%) edges, which is 2i+2 4 2t+k+1 _9
too large for such a decomposition.

However, if b = 0, then 2'Cs \ 2:*2K; is always isomorphic to 2+2K,,
and so 2"*2K, cannot be used in a conventional decomposition of gK; 2 +
2'Cs.

Now for the converse. Suppose first that we are attempting to con-
ventionally decompose ¢gKj 2 + (2° — b)Cs + (2b)P;, with b > 0. Begin
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by choosing H = 2¢+2K, in (2* — b)Cs + (2b)Py so that, for every P,
P;\ H = K 2. Theorem 3.4 implies we can conventionally decompose the
remainder. Since 2°+2K is not contained in ((2° —b)Cs) + (2b)P,) \ H, this
completes a conventional decomposition of ¢Kj 2 + (2° — b)Cs + (2b) Py.

Thus, we may assume b = 0. The hypothesis implies g is not of the form
2i+k _9i _ 1 with k > 2. In this case, we proceed by induction on g, the
base case ¢ = 0 being trivial: Theorem 3.4 implies there is a decomposition
of 2¢Cs over Ty and every such decomposition is conventional.

There are three cases to consider: ¢ > 28", 2¢+1 < ¢ < 277, and
g < 2+'., We start with ¢ > 28", In this case ¢ > 26° > 21 5o
B*>i+2 Let H= 28" K12 C qK . Since 'mz((q 25 )K1 2 +2'C3) =
m3(gK1,2+2'Cg)—2?", a conventional decomposition of (g—2°")K12+2'Cs
completes a conventional decomposition of gKj 2 + 2'Cs.

However, there may be an integer k > 2 so that ¢ = 26" 4+ 2i+k _
2i+1 _ 1. in this circumstance, there is no conventional decomposition of
(g — 2° VK12 + 2/Cs. Cleatly, B* > i+ k. If p* = i+ k, then ¢ =
9i+k+l _ 9i+1 _ 1 5 a forbidden form. Thus, 8* > i+ k.

Modify H so that all but one component of H is in gK,2 and one
component is in a Cg. In this case,

(gK1,2 +2Cs) \ H = (2"*F —2*1) Ky 5 + (2° = 1)Cs + Ps..

Theorem 3.4 implies this has a conventional decomposition. Since mj((2i+*—
244Ky 5 + (2‘ — 1)Cg + P5) = 2tk this conventional decomposition
does not use 2" K 2 and so completes a conventional decomposition of
gK12 + 2'Cs.

In the second case, 2°+! < g < 27, Since m}(2'Cs) = 2+, B* > i +2.
Choose H = 28" K, 5 so that gK12 € H. Then (¢K, 2 + 2'Cs) \ H is
isomorphic to some proper subgraph of 2¢Cs. Theorem 3.1 shows this has
a conventional decomposition. Since m3(2°Cs) = 2¢+! and 8* > i + 2, this
completes a conventional decomposition of K1 2 + 2¢Cs.

In the remaining case, ¢ < 2'+1. Since g # 2!+2 —2i+1 1 g # 2¢+1 1,
so g < 21 — 2, Clearly, 8* =i+ 1. Let Hy = 2'+1K, , C 2{Cs be such
that 2:Cg \ Hy = 2! P; + 2' K. Now choose Hp = 2*+1K, C 2!P; + 2K, so
that (2°P; + 2'K) \ Hy = (2¢+! - 2)K; + K 2 (that is, choose two edges
from all but one of the P3’s to go into Hz and chose an end edge from the
last P3). Thus, (qK1,2 + ZiCs) \(HHUH;) = qu,z + (2i+1 —2)K> + Kl'g.

We complete the conventional decomposition of gK 2 + 2:Cs by using
29K 2’s to cover the remaining (g +1)K) 2 (since ¢ < 2i+1 _ 2, we will not
use 21K 1,2 in this decomposition) and 27 Ky's to cover the (2‘+1 2)K,
(this will not use 2:+1K). [ ]
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