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Abstract

Partially filled 6 x 6 Sudoku grids are categorised based on the
arrangement of the values in the first three rows. This categorisation
is then employed to determine the number of 6 x 6 Sudoku grids.

1 Introduction

A Sudoku grid, S, is a n x n array subdivided into n mini-grids of size
z X y (where n = zy); the values 1,...,n are contained within the array in
such a way that each value occurs exactly once in every row, column and
mini-grid.

A Sudoku grid can be thought of as a constrained Latin square, there-
fore these grids share many interesting properties and similar questions
about these structures can be explored. In this paper the number of 6 x 6
Sudoku (Rodoku) grids is determined through mathematical means. The
only known mathematical enumeration of the number of Sudoku grids is for
the trivial case of 4 x 4 Sudoku (Shidoku), which using the results of [8] can
be shown to have only 3 grids up to isomorphism. For the Sudoku-related
structures ‘NRC-Sudoku’ [12] and ‘2-Quasi-Magic Sudoku’ [9] the number
of grids has been established. Other mathematical research on Sudoku has
mainly concentrated on aspects of graph colouring, isomorphisms and their
links to integral graphs and cayley tables [2, 3, 4, 6, 7, 14, 15].

A Rodoku grid, $%2 consists of two bands, each composed of three
horizontally-consecutive mini-grids, and three stacks, each composed of two
vertically-consecutive mini-grids. Each 3 x 2 mini-grid possesses three sub-
rows, or tiers and two sub-columns, or pillars. Let $%2,, represent the

JCMCC 89 (2014), pp. 33-43



mini-grid in band @ and stack b for a € {1,2} and b € {1,2,3}. Each tier
in §%2, 5 contains a pair of values, considered as a set. Let T, 5 be the set
of all such sets of values, then T, j can be thought of as the set of tier-pairs
(of values). Each pillar in $%2, ; contains three values, considered as a set.
Let P, 5 be the set of all such sets of values, then P, 5 can be thought of as
the set of pillar-triples (of values).

A Rodoku grid will be called reduced, and labelled s3:2 if: the values in
532, | are in canonical form, [$%2, ,];; = (i — 1)2 + j; for each mini-grid
§32,,, with b = 2,3, the values in [$32;,],; for j = 1,2 are increas-
ing; [.S'3 2121 < [S’ 21 3]1,1; and for $32, 1, the values in [5'3 25.1)i,1 with
i =1,2,3 are increasing [8].

The strategy employed here for the enumeration of Rodoku grids is
based on the classification of partially filled grids, which is similar to the
method described for the enumeration of the number of Latin squares
{1, 10, 11, 16]. The method of calculation for Latin squares is based on
a k-regular bipartite graph G = (S, C, F) where S is the set of value ver-
tices, s; € S, and C the set of column vertices, c; € C. An edge, e € E,
is incident to ¢; and s; if and only if the value j does not appear in col-
umn i. Each row is successively calculated by computing the number of
one-factorizations in G producing a complete set of reduced k x n Latin
rectangles in which equivalent rectangles are eliminated as they appear.
The number of Latin squares is obtained by calculating the product of the
number of ways in which a rectangle is formed and the number of ways each
rectangle can be completed to a square. Due to the restrictive position of
the values in the mini-grids of a Rodoku grid only five cases occur for the
top band (first three rows) of the Rodoku grid (see Section 2) and in this
paper these are explicitly described and the number of occurences of each is
counted. For each of the cases, the number of ways of arranging the values
in the bottom band is determined (see Section 4).

A band of a Rodoku grid, comprising 1 x 3 contlguous mini-grids of
size 3 x 2 is termed .S'1 3, and its reduced form labelled sy’ 3.2 (the stated
constramts of Sudoku relating to the structure hold). The number of ways,

(6), of arranging the values within 51 3, is given by Equation (1) which
was first presented in [5].

3
S33(6) = (3 x 2)! x 21° Z ( ) = 460800. (1)

i=0
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The top band of a Rodoku grid will also be assumed to be in its reduced
form (8] such that: the values in §3:2 1,1 are in canonical form; for each mini-
grid §32, , with b = 2,3 the values in [$%2) ;], ; for j = 1,2 are increasing;
and [$32) )11 < ($%21,3)1,1. Henceforth all top bands of a Rodoku grid
will be in reduced form. The relationship between the number of Rodoku
band arrangements, Si’g(G), and the number of reduced Rodoku band ar-

rangements, sf:g(G), is given in Equation (2) which was first presented in

S3'3(6) = 460800 = 6! x 2C4~1 x (3 — 1)! x s3(6). 2

Therefore the number of reduced Rodoku band arrangements is sig(G) =
80.

2 Classification of Arrangements of Values in
the First Band

The set R contains all arrangements of the values in a band of a Rodoku
grid. The classification of the arrangements of the values in the top band
of %2 is defined by the relationships between Py,1, Py and P, 3, which
partition the set R into five disjoint subsets R;,...,Rs C R such that
RiURUR3UR4URs = Rand R;NR; =0 Vi,j i# j. The properties of
the elements of these subsets are described explicitly in the following ways:

e 71 € Ris an element in R, if P2 = P 3.
e 2 € Ris an element in Ry if 1,3 =T1,2 = T1,3 and Py 2 # Py 3.

e 73 € R is an element in R3 if: neither triple of P; > contains both
values from any t € T} ;, and one triple of P; 3 contains both values
from some ¢t € Ty ;; or if neither triple of P; 3 contains both values
from any ¢ € T1,1, and one triple of P, 2 contains both values from

some t € T} ;.

e 74 € R is an element in Ry if for t;,¢;,t; € Ty; (where 4, j, k are all
different) the triples of P; 2 and P; 3 each contain exactly one value
from ¢; and both values from either ¢; or .

e 75 € R is an element in Rj if for t;,¢;,tx € Py, (where 4,j,k are
all different) the triples of P; ; each contain exactly one value from
t; and both values from either ¢; or ¢x and the triples of P, 3 each
contain one value from ¢; and both values from either ¢; or tx.

35



Examples of a representative element, r;, for each R; are given in

Figure 1.
TTd 2150316 iTa[ 218316 TTa [ 3Ts 2T
1S 3o a1 TS 3 6] 411 s[5 16324
31821215 3Ts AT T8 12 31621 d 511
(a) m (b) 2 (c)rs

TTa 35N 26 TTaf[2]6 315

Z 1611 4]3 215 3461

TN 412351 316 5142

(d) r4 (e) s

Figure 1: Examples of Representative Elements for the Top Band of a
Rodoku Grid

Lemma 1. The cardinality of Ry is 8.

Proof. There is one way of arranging the values in $32; ;. Two subcases
occur: Firstly there is one way of arranging the tier-pairs from T3,; in T o
and T3 3 such that T ; = Ty,2 = T1,3. There are four ways of assigning the
values from each tier-pair to P 2 and then one way of assigning the values
to P 3 such that P, o = P; 3. Secondly there are four ways of arranging the
values in T} 2 and T 3 such that T} 3, T1,2 and T} 3 are all different. In each
arrangement there is one way of assigning the values to the pillar-triples
such that Pl,l = Pl,z = P1,3. O

Lemma 2. The cardinality of Ry is 12.

Proof. There is one way of arranging the values in $*2, ;. There is one way
of arranging the tier-pairs from T, in Ty 2 and T 3 such that T1; =Ty 2 =
Ti,3. There are four ways of assigning the values from each tier-pair to P 2,
and three ways of assigning the values to P, 3 such that P; 3 # P, 3. O

Lemma 3. The cardinality of R3 is 24.

Proof. There is one way of arranging the values in $*2; ;. There are four
ways of arranging the tier-pairs from T3, in T1 2 and T} 3 such that T} 1,
Ty2 and T 3 are all different. There is one way of assigning the values of
the tier-pairs of T; 2 such that the two values from every t € T3,) are in
different pillar-triples in P; 2 (or equivalently in P 3) and then three ways
of assigning the values to Py 3 (or P, ) such that P, # P 3. O
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Lemma 4. The cardinality of R4 is 12.

Proof. There is one way of arranging the values in $%2; ;. There are four
ways of arranging the values in T} 2 and T3 3 such that T3, T1,2 and T} 3
are all different. Any one of the three tier-pairs t € T} ; may be chosen such
that the values of ¢ are in different pillar-triples in P; o, thus determining the
positions of the remaining values. Since the values from the same tier-pair
are also in different pillar-triples in P; 3 then there is one way of arranging
the values in $32; ; such that Py, Py 2 and P, 3 are all different. ]

Lemma 5. The cardinality of Ry is 24.

Proof. There is one way of arranging the values in $%2; ;. There are four
ways of arranging the values in Ty 2 and T} 3 such that T}, T1,2 and T} 3
are all different. Any one of the three tier-pairs ¢ € T},; may be chosen such
that the values of ¢ are in different pillar-triples in P, 5, thus determining
the position of the remaining values. There remain two candidate tier-pairs
t € T1,; which are in different pillar-triples in P, 3; once selected there is
one way of assigning the values to Py 3 such that P, ;, P, 2 and P, 3 are all
different. g

3 Properties of the Second Band

Consider the top band of a Rodoku grid to have a given arrangement of
values. For p; = {[$32}3]1,2, [5%21,3]2.2, [S*?1,3]3.2} and for

i = {[8%%2,3]1,2,[S%%2,3]2,2, [S*?23]3,2}, p; = {1,...,6}/p: and there-
fore there are 3! ways of arranging the values in $%2; 3. Once the values
are assigned to $%2; 3 then for p; € P2 and p; € P22, p; = {1,...,6}/p;
and there are 2 ways of arranging the values in each pillar of $*2; 5. There
are therefore 24 ways of arranging the values in $%2; 5 and $%2; 3 (since
the grid is reduced), while 532, is not completed.

The mini-grid $32; ) contains a predetermined arrangement of the val-
ues (they are in canonical form). Relaxing the canonical form of $%2, ,,
consider the values in 532, ; to be assigned to the tier-pairs, T} ;, but not
to specific cells. This alteration results in the top band being not entirely
reduced (though since they meet all other conditions they will still be re-
ferred to as reduced) and the number of reduced Rodoku grids is increased
by a factor of 23. This alteration to §32, | simplifies the enumeration pro-
cess since if values are allocated to P;,; but unassigned to specific cells (a
process which will be used later) there always exist at least one way of
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assigning the values to the cells of $32;; and $%2, ;.

For §32,, for b = 2,3 consider the values in each row in these mini-
grids to each form a set. Let A be the set of all such sets. Similarly for
5§32, , for b = 2,3 consider the values in each row in these mini-grids to
each form a set. Let 2 be the set of all such sets. The tier-pairs in T} ;
and Ty,; are resolved since for every ¢; in T1,; and o; € A (for i = 1,2,3),
t; = {1,...,6} \ c, and for every t; € T3, and §; € Q (for j = 1,2,3),
tj = {1,,6}\[3]

Definition 6. If o = 8 for any a € A and any B € Q then the top two
bands are said to contain a twin-row.

If §32,, for a = 1,2 and b = 2,3 contains a valid arrangement of the
values then the values have effectively been assigned to T, and T5,. The
number of ways of assigning each of the values in the tier-pairs of T}
and Tz; to the cells of $%2;; and $%2;; is dependent on the relationship
between T},; and T3,;. Three situations oceur: [T1,; NTpa| = 3, [T1,1 N
T2 1| =1 and |T1,1 nTg 1| =0.

Lemma 7. For |Ty1 NTy,1| = z there are 2° ways of arranging the values
to the cells of S*2, 1 and $% 2,1 if z =3, and 2D otherwise.

Proof. Each tier-pair of values in T} 2 N7 ; represents a pair of ‘orientable’
values, for which the assignment of these values to the pillars of both of
532, | and of $32;; is independent of any of the other values in these mini-
grids. This gives z pairs of orientable values and therefore 2% arrangements.
The remaining values from the tier-pairs not in 77, N T}, form a set of
values for which the placement of any one value determines the assignment
to pillars of all the remaining values in both $32;; and $*2%;,. Thus if
|T1,1 N T2,1] = = then there are x pairs of orientable values if z = 3 and
z + 1 sets of orientable values if z # 3. O

There is a direct relationship between the number of twin-rows in $32, 3,
fora=1,2and b = 2,3, and T ; NT3, such that: if $32,, fora = 1,2 and
b = 2,3 contains three twin-rows then |T} ; N T3 ;| = 3, and there are eight
ways of arranging the values in $*2, ; and $%2;; (Lemma 7). If $32,, for
a =1,2 and b = 2, 3 contains one twin-row then [T} ; N T ;| =1 and there
are four ways of arranging the values in $2;; and $%2;; (Lemma 7). If
8§32, for a = 1,2 and b = 2,3 contains no twin-rows then {71 1N T3, =
and there are two ways of arranging the values in $%2, ; and S% 22 1 (Lemma
.
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4 Enumeration of Complete Grids

For each of the representative elements ry,...,rs the number of twin-rows
is now calculated for each of the 24 arrangements of the values in $%2;,
and 532, 3. In Lemmas 8 to 12 the number of ways of forming a complete
Rodoku grid for each of the representative elements ry,...,7s is calculated
and used in Theorem 13 to calculate the total number of Rodoku grids.

Lemma 8. An element of R, can be used to form a complete Rodoku grid
in 96 ways.

Proof. Let §32, 5 and $32; 3 have an arrangement of the values satisfying
the properties of the elements of R;. Consider the six ways of arranging the
values in $%2, ;. Three cases arise: Pp3 = P, 3 (one arrangement), | P, 3 N
P, 3| =1 (three arrangements) and [P 3 N P 3| = 0 (two arrangements).

If Po3 = P13, two of the four arrangements for $32; 5 result in three
twin-rows, otherwise there are no twin-rows. If |[P; 3N P, 3| = 1 all arrange-
ments of the values in %2, 5 result in one twin-row. If |P2,3NTy,3| = 0one
arrangement of the values in $2; 5 results in three twin-rows; since this is
the only arrangement for which a twin-row may be formed.

In total there are therefore 4 arrangements with three twin-rows, 12
arrangements with two twin-rows and 8 arrangements with no twin-rows.
An element of R; can be used to form a complete Rodoku grid in 4 x 8 +
12 x 44+ 8 x 2 =96 ways (Lemma 7). O

Lemma 9. An element of Ry can be used to form a complete Rodoku grid
in 80 ways.

Proof. Let §%2; 5 and §%2; 3 have an arrangement of the values satisfying
the properties of the elements of R;. Consider the six ways of arranging
the values in $%2;, ;. Four cases arise: T3,3 = Ti,3 (one arrangement,
equivalent to the same case for elements of R; in Lemma 8); [T33NT} 3| =0
(two arrangements); |T53 N T3] = 1 and Po3 = P, , (one arrangement,
equivalent to the same case for elements of R; in Lemma 8); and |T3 3 N
Ty 3| =1 and Py 3 # Py (two arrangements).

If |T2,3NT1,3| = 0 only one tier-pair in $*2; 3 contains values which are
in different pillars in $%2, ; and thus only the row containing this tier-pair
can be used to a form twin-row. If [T53NT 3| =1 and P23 # Py 2, two
arrangements of the values in $%2; 5 result in one twin-row (in the row
for which a tier of $%2; 3 contains the same values as a tier of $32; 3);
since the other two rows cannot form a twin-row then in all the remaining
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arrangements of the values in $32; 7 there are no twin-rows.

In total there are therefore 2 arrangements with three twin-rows, 10
arrangements with two twin-rows and 12 arrangements with no twin-rows.
An element of Ry can be used to form a complete Rodoku grid in 2 x 8 +
10 x 4 4+ 12 x 2 = 80 ways (Lemma 7). ]

Lemma 10. An element of Rz can be used to form a complete Rodoku grid
in 72 ways.

Proof. Let $32; 5 and $%2, 3 have an arrangement of the values satisfying
the properties of the elements of R3. Consider the six ways of arranging
the values in S32; 3. Four cases arise: [T23NTy 1| =1and [T33NT3| =1
(one arrangement, equivalent to the same case for elements of R, in Lemma
8); [T 3 NTy,1} = 1 and |T1,3 N To 3| = O (one arrangement, equivalent to
the same case for elements of Ry in Lemma 9); |T33 N Ty,;| = O (three
arrangements, equivalent to the same case for elements of R; in Lemma 9);
and |T,3 N Ty,3| =0 (one arrangement).

If |T2,3NT1 3| = O then in this case a twin-row is formed when T2 3 = T2
and Tp 2 = T 3; this is the only way in which a twin-row may be formed
and three twin-rows are formed.

In total there are therefore 1 arrangement with three twin-rows, 9 ar-
rangements with two twin-rows and 14 arrangements with no twin-rows.
An element r3 can be used to form a complete Rodoku grid in 1 x 84+ 9 x
4+ 14 x 2 = 72 ways (Lemma 7). O

Lemma 11. An element of R4 can be used to form a complete Rodoku grid
in 96 ways.

Proof. Let S%2, ; and $%2; 3 have an arrangement of the values satisfying
the properties of the elements of R4. Consider the six ways of arranging
the values in $%2; 3. Two cases arise: [T3NTy,1| =1 (two arrangements)
and |T5,3 N T1,1| = 0 (four arrangements).

If |To3N 71,1l =1 and [Ty 3 N T3 3| = 1 then in this case a twin-row can
only be formed with the row for which $%2, 5 does not contain a tier-pair
of values t where t € T3,;. There are therefore two arrangements with two
twin-rows and two arrangements with no twin-rows. If |75 3NTy 1| = 0 then
|Ty,3 N T2,3| = 0 and in this case there is one way of forming three twin-
rows. This is the only way of forming a twin-row with the rows which do
not contain either of the values from the tier-pair ¢ for ¢ € Ty,; where there
does not exist a p € Py such that t C p. Therefore in one arrangement



three twin-rows are formed, in two arrangements two twin-rows are formed
and in the final arrangement no twin-rows are formed.

In total there are therefore 4 ways of forming three twin-rows, 12 ways of
forming one twin-row and 8 ways of forming no twin-rows. An element of Ry
can therefore be used to form a complete Rodoku grid in 4x8+12x4+8x2 =
96 ways (Lemma 7). O

Lemma 12. An element of Ry can be used to form a complete Rodoku grid
in 80 ways.

Proof. Let §32, 5 and $%2; 3 have an arrangement of the values satisfying
the properties of the elements of Rs. Consider the six ways of arranging
the values in $32535. Three cases arise: |T3 N T13| = 1 and as such
|T2,3NT1,2| =1 (two arrangements); |T2,3NTy,1| = 3 and for every tier-pair
t € T3 3 there does not exist a p € P 3 such that ¢ C p (two arrangements);
and |T3,3 NT1,1| = 3 and there exists one tier-pair t C T3 3 such that t € p
forape Pl,g.

If |T53NT1,1] = 1 then [T 3N T12| = 1 and it is not possible to form
three twin-rows. One twin-row may be formed in two ways, in the row of
5325 3 which does not contain one value from the tier-pair ¢ for t € T
where there does not exist a p € P2 such that t C p. If [To3N Ty 3| =3
and for every tier-pair ¢ € T3 there does not exist a p € Py 2 such that
t C p, there is one way of forming a twin-row (with the row for which a tier
of 532, 3 does not contain either of the two values from ¢ where t € T;
and there does not exist a p € P2 such that t C p). If |Tp3NT1;:| = 3
and there exists one tier-pair ¢ € Tp3 such that ¢t C p for a p € P, there
are three twin-rows formed if T3 3 = T1,2 and T3 2 = T 3. This is the only
way in which a twin-row may be formed for the row for which the tier of
§32, 3 contains neither value from the tier-pair t where t € Ti,yandt € Ty 5.

In total there are therefore 2 ways of forming three twin-rows, 10 ways
of forming one twin-row and 12 ways of forming no twin-rows. An element
of Rs can therefore be used to form a complete Rodoku grid in 2 x 8+ 10 x
4+ 12 x 2 = 80 ways (Lemma 7). O

The number reduced Rodoku grids is now calculated in Theorem 13.
Theorem 13. The number of reduced Rodoku grids, s*2(6), is 816.

Proof. The set R contains all reduced arrangements of the values in the
top band of a Rodoku grid such that |R| = s{3(6) = 80. (Additionally the
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values are assigned to T}, but not assigned to specific cells in $2;;.) The
set R is partitioned into five subsets R; for i = 1,...,5, the cardinality of
each given by Lemmas 1 to 5. For each of the elements of the subsets the
number of ways of forming a complete Rodoku grid is given in Lemmas
8 to 12. If n(R;) is the number of ways of completing each representative
element 7; € R; to a Rodoku grid then the total number of reduced Rodoku
grids, s%2(6), is

1 5
P26) = o IRl xn(R)
i=1

= E]'E(SX96+12><80+24x72+12x96+24x80)=816.

0

Since the number of reduced Rodoku grids has been calculated the total
number of Rodoku grids, $32(6), can be calculated by Equation 3 from [8],
thus proving analytically the exhaustive computational count provided by
Pettersen on the Sudoku Forum [13].

$32(6) = (n)! x (¥ x (@)@ x (z — 1) x (y — 1)! x s*¥(n)3)
= 6!x2!2x3!x2!x1!x816
28200960.
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