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Abstract Pooling designs are standard experimental tools in many biotech-
nical applications. In this paper, we construct a family of error-correcting
pooling designs with the incidence matrix of two types of subspaces of sin-
gular symplectic spaces over finite fields.
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1. Introduction

Given a set of n items with some defectives, the group testing problem
is asking to identify all defectives with the minimum number of tests each
of which is on a subset of items, called a pool, and the test-outcome is
negative if the pool does not contain any defective and positive if the pool
contains a defective.

A pooling design is a group testing algorithm of special type, also called
nonadaptive group testing, in which all pools are given at the beginning
of the algorithm so that no test-outcome of one pool can effect the deter-
mination of another pool. The pooling design has many applications in
molecular biology, such as DNA library screening, nonunique probe selec-
tion, gene detection, etc. (Du and Hwang [1]; Du et al. [2]; D’yachkov et
al. [3]).

A pooling design can be represented by a binary matrix whose columns
are indexed with items and rows are indexed with pools; an entry at cell
(4,7) is 1 if the ith pool contains the jth item, and 0, otherwise. Such
a binary matrix is said to be d—disjunct. With d—disjunct pooling de-
sign, decoding is very simple. Remove all items in negative pools, the
remaining items are all defectives. In practice, test-outcomes may con-
tain errors. To make pooling design error tolerant, one introduced the
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concept of d®—disjunct matrix (Macula [4]). A binary matrix M is said
to be d®—disjunct if given any d + 1 columns of M with one designated,
there are e + 1 rows with a 1 in the designated column and 0 in each of
the other d columns. The d°—disjunctness is actually the d—disjunctness.
D’yachkov et al. [5] proposed the concept of fully d®~disjunct matrices. A
de-disjunct matrix is fully d®-disjunct if it is neither (d + 1)°- disjunct nor
detl-disjunct. There are several constructions of d®—disjunct matrices in
the literature (Balding and Torney [6]; Erdés et al. [7]; Guo et al. [8]; Guo
(9]; Huang and Weng [10]; Li et al. [11]; Macula [12]; Nan and Guo [13];
Ngo and Du [14]; Zhang et al. [15], [16]). In this paper we present a new

. . . . 2
construction associated with subspaces in F.,( v

2.Singular symplectic spaces

In this section we shall introduce the concepts of subspaces of type
(m, s, k) in singular symplectic spaces. Notations and terminologies will
be adopted from Wan [17].

We always assume that

0 IW
K=| I o :
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Let Fy be a finite field with g elements, where g is a prime power.

Let E denote the subspace of Fq(z"'*'l) generated by eay 1, €2042,° ** y €2u+1,
where e; is the row vector in Fq(z"H) whose ith coordinate is 1 and all other
coordinates are 0.

The singular symplectic group of degree 2v + ! over Fy, denoted by

Spay+1,2,(Fg), consists of all (2v+1) x (2v +1) nonsingular matrices T' over
F, satisfying TK;T* = K;. The row vector space Fq(z"“) together with the
right multiplication action of Spg, 41,2, (Fy) is called the (2v+1)-dimensional
singular symplectic space over Fy;. An m-dimensional subspace P in the
(2v+1)-dimensional singular symplectic space is said to be of type (m, s, k),
if PK P* is of rank 2s and dim(P N E) = k. In particular, subspaces of
type (m,0,0) are called m-dimensional totally isotropic subspaces.Clearly,
singular symplectic group Spa2,+1,2.(Fy) is transitive on the set of all sub-
spaces of the same type in F{2V+",

We begin with some useful propositions.

Denote by M(m, s, k; 2v + I, v) the set of all subspaces of Féz"“) of
type (m, s, k). Then we have
Proposition 2.1(Wan [17], Theorem 3.22) M(m, s, k;2v + l,v) is non-
empty if and only if k <! and 2s <m —k < v+ s, and if and only if max
{0,m — v — s} < k < min{l,m — 2s}.
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Proposition 2.2 (Wan [17], Theorem 3.24) Let max{0,m —v —s} <k <
min{l,m — 2s}.Denote by N(m,s,k;2v + l,v) =| M(m,s,k;2v + L,v) |.
Then
N(m, s, k;2v + 1, v) = g?sWts—mtk)+(m—k)(I-k)
n{_vin—mik*l(q ._l)ni—-l k+l(q
* M - 1)n:’;:""'(q-—l)n.-l(q-—l)

Denote by M(my, sy, k1;m,s,k;2v + [,v) the set of all subspaces of
type (mi, s1, k1) contained in a given subspace of type (m, s, k) and denote
by N(my, s1,k1;m, s,k 2v+1,v) =| M(my, s1,k1;m, s,k;2v+1,v) |. Then
we have

Proposition 2.3 (Wan [17], Theorem 3.28) M(m,, s1,k1;m, s,k; 2v+1,v)
is non-empty if and only if by < k < ,2s < m—-k < v+s,25 <
my—k1 Sv+s, and 0 < s—38 < (m—k)— (m — ki), and these
four conditions are equivalent to k1 < k <1l,2s <m—-k < v+s, and
max{0,m; — k; — s — 51} <min{m —k — 2s,m; — k; — 251}

Proposition 2.4 Assume that ky < k < 1,28 < m—k < v+s, and
max{0,m; — k1 — s — 81} < min{m — k — 2s,m; — ky — 2s;}. Then

N(my, sy, k1;m, s, k20 + Lv) =
(Z:""‘;‘{a’:{-o";% ;"1-8"18 Z;81} g2or(ssr—mathikt)+(m1—k1 —t)(m—k—2s—1)
= 1—R1=8=8) ;
n:_o+al (ml—k1)+¢+l(q _l)n‘_m—k 20—t+l(q _l))
n._,(q=-—1>n.":1;"*" -1 @ -1)
-1)

x _—"k_"zﬂ(q__ (ma—k) (k1)

.=1 (¢°-1)

Proof By Wan [17], Theorem 3.29, Corollary 3.25 and Theorem 1.7, the
desired result follows.

Denote by M’(my, sy, k1;m, s, k;2v + L, v) the set of all subspaces of
type (m, s, k) containing a given subspace of type (m;, s1,k;) and denote by
N'(my, s1,k1;m, 8,k 2v + L, v) =| M'(mq, 81,k1;m,s,k;2v + 1,v) |. Then
we have

X

Proposition 2.5 Assume that ky < k < 1,25 < m—-k < v+s, and
max{0,m; — k1 — s —s1} <min{m — k - 2s,m; — ky — 28,}. Then

Ny, 51, kxim, 5,20+ 1, ) = MLk B N s et
Proof Let

M = {(P,Q)|P € M(my,s1,k1;20 +1,v),Q € M(m,s,k;2v +1,v),P C Q}.

We compute the size of M in the following two ways.

287



For a fixed subspace P of type (m,, s1, k1), there are N'(my, s1, k1;m, s, k;
2v + I, v) subspaces of type (m, s, k) containing P. By Proposition 2.2

|M| = Nl(mly sl,kl;m’sv k; 2v +l,V)N(m1,31,k1;2l/ +l7 V)-

For a fixed subspace Q of type (m, s, k), there are N(m,, s1, k1;m, 5, k; 2v+
l,v) subspaces of type (my,s1,k1) containing Q. By Proposition 2.2 and
Proposition 2.4

'Ml = N(mlasl)kl;masrk;2u+l’V)N(m,sak;ZV'i'lau)‘
Hence the desired result follows.

Proposition 2.6 (Wan [17], Corollary 1.9) Let 0 < k < m < n. Then
the number N'(k,m,n) of m—dimensional vector subspaces containing a
given k—dimensional vector subspace Fq(") is equal to 17:1_—-]1:: .

q

3. The construction

In this section, we construct a family of inclusion matrices associated

with subspaces of F,,(Z”“), and exhibit its disjunct property.

Definition 3.1 Assume k; < k<[,2s<m-k<v+s50<m -k <
v,1<m; <m, m—k; <2s, s>2. Let A(my,0,k1;m, s, k;2v+1,v) be the
binary matrix whose rows (resp. columns) are indexed by M(m,,0, k1;2v+
l,v) (resp. M(m,s,k;2v +1,v)). We also order elements of these sets lex-
icographically. A(m,,0,k;;m,s,k;2v+1,v) has a 1 in row ¢ and column j
if and only if the i—th subspace of M(m;,0, k1;2v + [, v) is a subspace of
the j—th subspace of M(m, s, k;2v + {,v).

By Propositions 2.2, 2.4 and 2.5, A(m,,0, ky; m, s, k; 2v+l, v) is N(m,, 0,
ky;2v + 1, v) x N(m, s, k; 2v + I, v) matrix, whose constant row (resp. col-
umn) weight is N'(m,, 0, k1;m, s, k; 2v+l,v) (resp. N(my,0,ky;m, s, k; 2v+
L, v)).

Theorem 3.2 Assumek; <k <[,28<m—-k<v+s5,0<m—-k <1,1<
my <mm—k; <2, 522 and let y = N(m1,0,ky;m,s,k; 2v + 1, v),
z=N(my,0,k;;m—1,s—1,k;2v+1,v), u=N(my,0,k;;m—-2,m—1—
ky—s,k;;2v+Lv), v=N(m,0,ky;m—2,m—2—ky—s,ky;2v+1,v) and
z =max{z—u,z—v},if1<d < L%lj+1, then A(my,0,k1;m, s, k; 2v+
l,v) is d®*—disjunct, where e = y — z — (d — 1)z — 1. In particular, if
1<d< min{[y+'lj +1,g+1}, then A(m1,0,k1;m, s, k; 2v+1,v) is fully
d®—disjunct.
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Proof Let P, P, P,,--- ,P; be d+ 1 distinct columns of A(m1,0,ky;m,
8,k;2v +1,v). To obtain the maximum number of subspaces of M(m;,0,
ki;2v+1Lv) in

d d
palJr=Uenp),

i=1 i=1
we may assume that dim(PNF;) = m—1 and dim(PNP;NP;) = dim((PN
P;)n (PN FPy)) =m —2, for any two distinct i and j , where 1 < 4,5 < d.
Since P € M(m,s,k;2v +1,v), PN P; (resp. PN P;N P;) is a subspace
of type (m — 1,5 — 1,k) (resp. type (m —2,m —1 —k; — s,k;)) or type
(m—-2,m—-2—k; —s,k;) of Fq(2"+l). By Proposition 2.3, v > 0 and
v > 0. By Proposition 2.4, the number of subspaces of P not covered by
P, Py, ... P, is at least

y—2z—(d—1)[z—min{u,v}] = y—dz+(d—1) x min{u,v} = y—z—(d—1)z.

Hence, we may take e = y — z— (d — 1)z — 1 under the given d. Since e > 0,
we obtain

d<[y—_—:;lj+1.

Now we show that the maximal dimension of PnUf=1 P; is achieved by an
explicit construction. For PNP,, by Proposition 2.4, N(m,,0, k;; m—2,m—
1—k1—s,k1;2v+1,v) > 1 and N(m,,0, k1; m—2, m—2—k;—s, k1; 2v+1,v) >
1. Hence there exists an (m —2)—dimensional subspace contained in PN Py,
denoted by Q, such that the number of subspace of type (m;,0,k;) con-
tained in @ is equal to min{u,v}. By Proposition 2.6, the number of
(m — 1)—dimensional subspaces containing Q and contained in P is equal
to ¢+ 1, and each of these subspaces is a subspace of type (m—1,s—1,k).
Forl < d < min{|¥=2=1| + 1,9 + 1}, we choose d distinct (m — 1)-
dimensional subspaces between Q and P, say Q;,(1 < i < d). Since
N'(m —1,s - 1,k;m, s, k;2v + l,v) > 2, by Proposition 2.5, for each Q;
, we can choose a subspace of type (m,s, k) denoted by P;, such that
Pn P, = Q;.Hence, each pair of P; and P; overlap at the same subspace
Q. This completes the proof.
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