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Abstract

A unit distance graph is a finite simple graph which may be drawn
on the plane so that its vertices are represented by distinct points
and the edges are represented by closed line segments of unit length.
In this paper we show that the only primitive strongly regular unit
distance graphs are (¢) the pentagon, (ii) K3 x K3 , (iii) the Petersen
graph, and (iv) possibly the Hoffman-Singleton graph.
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All graphs in this paper are simple, i.e.undirected, without loops or
multiple edges. The unit distance graph of the real euclidean plane R2,
sometimes denoted by G(R?), is the infinite graph whose vertices are all
the points of R2, two of them being adjacent if and only if they are at
euclidean distance 1. A long standing open problem due to Hadwiger and
Nelson [6] is the exact determination of the vertex chromatic number x(G)
of G = G(R?). It is well known that 4 < x(G) < 7. Indeed, R? may be
tiled by congruent copies of a regular hexagon of appropriate size so that
the plane has a colouring in seven colours in which the interior of each tile
is monochromatic and no two points of the same colour are exactly at dis-
tance one. See, for example, figure V1.3, page 112 in [1]. This shows that
x(G) £ 7. Also, the graph known as Moser’s spindle, displayed in Figure
1, is a subgraph of G(R?) (as Figure 1 itself shows) with chromatic number
4 (as is easily verified). Hence x(G) > 4.
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Figure 1: Moser’s Spindle

A unit distance representation of a finite simple graph H with vertex
set V is a one-one map f : V — R? such that, whenever z,y € V are
adjacent in H, we have || f(z) — f(y) ||= 1 (Here || . || denotes the usual
eucledian norm on R?). In other words a unit distance representation of H
is an isomorphism of H with a subgraph of G(R?). We say that H is a unit
distance graph if it has a unit distance representation. Thus a unit distance
graph is nothing but a finite subgraph of G(R2), up to isomorphism.

If one accepts Zermelo’s axiom of choice, then a well known compactness
argument shows that the chromatic number of any infinite graph is just the
supremum of the chromatic numbers of its finite subgraphs. In particular,
x(G(R?)) is the maximum of the chromatic numbers of the unit distance
graphs. Thus, the folklore conjecture that x(G(R?)) = 4 may be restated
as:

Four Colour Conjecture for unit distance graphs: The chromatic
number of any unit distance graph is at most 4.

It can be shown that Moser’s spindle is the smallest unit distance graph
with chromatic number four. In view of the above discussion, we have:

Proposition 1 For any unit distance graph H, we have x(H) < 7.

In looking for unit distance graphs which are counter-examples to the
four colour conjecture, it is natural to try to restrict the search to special
subclasses of simple graphs with a high degree of combinatorial regular-
ity. One such subclass is that of strongly regular graphs (s.r.g’s), which is
of great importance in finite geometry and group theory. Recall that an
s.r.g with parameters (v, k, A, u) is a regular graph of degree k on v vertices
such that any two adjacent vertices have exactly A common neighbours,
while any two (distinct but) non-adjacent vertices have exactly u common
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neighbours. An easy counting argument shows that the parameters of any
s.r.g satisfy k(k — A — 1) = p(v — k — 1). Since, clearly, any connected
s.r.g must have u > 1, this relation implies v < k2 + 1 for any connected
s.r.g (with equality only for A = 0,4 = 1). Thus there are only finitely
many connected s.r.g’s of any given degree. The s.r.g’s with A=0,u =1
(and hence v = k2 + 1) are collectively known as the Moore graphs. These
are precisely the finite graphs of diameter 2 and girth 5 (see[5, section 5.8]).

The complement H of an s.r.g H is again an s.r.g. An s.r.g H is said to
be primitive if both H and H are connected. The only imprimitive s.r.g’s
are mK, (the disjoint union of m copies of the n-vertex complete graph K,)
and the complement K, n of mK, (thus, K, , is the complete multipar-
tite graph with m parts of size n each). From this elementary observation,
it is easy to see that the only connected but imprimitive strongly regular
unit distance graphs are K,,n < 3, and K32 = Cj, the 4-cycle.

Among the simplest examples of primitive s.r.g’s are the trianguler
graphs T,,n > 5, and the graphs K, x K,,, n > 3. By definition, T},
is the line graph of K,, and K, x K, is the line graph of the complete
bipartite graph K3 ,. The parameters of T,, are (1("—'12 2n —4,n —2,4)
and the parameters of K, x K, are (n?,2n—2,n — 2,2). It is well known
that for n # 8, T), is uniquely determined (among s.r.g’s) by its parameters,
while for n # 4, K, x K, is uniquely determined by its parameters (see (2],
for instance).

It is well known (see [3]) that a Moore graph of degree k (i.e. an s.r.g
with parameters (k% + 1, ,0, 1)) can exist only for k = 2, 3, 7 or 57. The
pentagon Cs is the unique Moore graph of degree 2. The unique Moore
graph of degree 3 is called the Petersen graph; it may be described as the
complement T of the triangular graph T5. The unique Moore graph of
degree 7 is known as the Hoffman-Singleton graph. The following simple
description of this graph is due to N.Robertson. Its 50 vertices are named
z;; and y;;, where the indices %, j vary over Zs = Z/5Z. For i, j,k,l € Zs,
z;; and Ty are adjacent if and only if i = k and | — j = +1; y;; and yu
are adjacent if and only if i = k and ! — j = £2; z;; and yi are adjacent
if and only if I + j = ¢k. Here all arithmetic operations on the indices
are modulo 5. From this description, one sees a partition of vertex set of
Hoffman-Singleton into ten pentagons which fall into two classes of size five
each. The induced subgraph on the union of any two pentagons from the
same class is 2C5 (disjoint union of two Cs with no in-between edges), while
the induced subgraph on the union of two pentagons from different classes
is a copy of the Petersen graph. Thus, Hoffman-Singleton graph contains
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many (actually, exactly 525) copies of the Petersen graph. The existence
of a Moore graph of degree 57 is one of the outstanding open problems in
finite geometry.

Recall that if H; and H, are two graphs, with vertex sets V; and V; re-
spectively, then their cartesian product H; x H3 is defined to be the graph,
with vertex set Vi x Vi, where (21,¥1), (Z2,y2) € Vi x V, are adjacent if
and only if either £; = z, and y1,y2 are adjacent in Hj or else y; = 2
and z,z2 are adjacent in H;. The following result is due to Horvat and
Pisanski [7). We include a simpler proof for the sake of completeness.

Theorem 1 If H; and Hy are any two unit distance graphs, then so is
their cartestan product Hy x Hy.

Proof: Let the points 1, 29,...,Zm (respectively y1,¥2,...,¥Yn) represent
the vertices of H; (respectively H>) in a unit distance representation. Suit-
ably rotating the point set {y1,¥2,...,yn} ( While holding {z1,z2,...,Zm}
fixed) we may assume that the two sets {y; —y; : 1 < i # j < n} and
{zi—z;:1 <i#j < m}aredisjoint. Then {z;+y;:1<i<m,1 <5< n}
is a set of mn distinct points in R? providing a unit distance representation
of H 1 X Hz. I

Remark 1: It is easy to see that for any two graphs H; and H,, we
have x(H; x Hz) = maz{x(H1),x(Hz2)}. Indeed, both the graphs H;
occur as subgraphs of H; x Ha, so that x(Hy x Hs) 2 x(H;),i = 1,2.
Also, if n = maz{x(H1),x(H2)}, and f; : Vi = V(H;) — Z, is a proper
vertex colouring of H; in n colours, then f : V; x V3 — Z, defined by
f(z,y) = fi(z) + f2(y) (mod n) is a proper vertex colouring of Hy x Hs
in n colours. Thus, x(H; x Hz) = maz{x(H1),x(Hz2)}. This shows that,
not surprisingly, Theorem 1 does not lead to constructions of unit distance
graphs with large chromatic numbers.

The n-dimensional hypercube Q,, is defined to be the cartesian product
Ky % ...x Ky of n copies of K3. Thus @y, is a regular graph of degree n on
2" vertices. Since K is trivially a unit distance graph, Theorem 1 implies:

Corollary 1 For each n > 1, the hypercube Qr is a unit distance graph.

Our main result is an almost complete classification of the (primitive)
strongly regular unit distance graphs (except that we are unable to decide
if the Hoffman-Singleton graph has a unit distance representation):
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Theorem 2 The only primitive strongly regular unit distance graphs are
the pentagon, Ks x Ks, the Petersen graph, and possibly the Hoffman-

Singleton graph.

The regular pentagon (with unit side) is a unit distance representation
of Cs. Since Cy = Q2 = K3 x K>, Theorem 1 implies that these (as well as
K3 x K3) are unit distance s.r.g’s.

Remark 2: (A unit distance representation of K3 x K3 ) The best
such representation may be obtained as follows. Begin with a unit square
with sides AB, BC, CD, DA. Draw equilateral triangles ABE, BCF,
CDG, DAH so that the points E, F are outside the square while the points
G, H are inside the square. It turns out that the points E, F, G, H licon a
common unit circle. Let I be its center. Draw the edges EG, FH, IE, IF,
IG, IH. This gives a unit distance representation of K3 x K3 on the points
A,...,I. (The point I may be found as follows. Let O be the meeting point
of the diagonals AC and BD. Let X and Y be the midpoints of EF and
GH, respectively. Let Z be the midpoint of XY . Then I is the point such
that Z is the midpoint of OI.)

Remark 3: (A unit distance representation of the Petersen Graph)
For 1 < j <5, let w; = e*¥* be the five fifth roots of unity and let wj = iwj
be the other five tenth roots of unity. Here i = /—1. Also let 7 be the
golden ratio: 7 = ‘—1',545 Put V={-‘/—;-’_'=T 11<3 55}U{7;% 11<5<
5}. Then it is easy to see that V is the vertex set of Petersen graph in a
unit distance representation of the latter. This representation was found
by Erdos et. al. [4]. More generally, [8] shows that all generalized Petersen
graphs are unit distance.

The usual picture of the Petersen graph (as seen in the front cover of
the journal Discrete Mathematics, for instance) consists of a regular pen-
tagon and a concentric regular pentagram, with the vertices of the pentagon
joined to the corresponding vertices of the pentagram by five bridges. The
construction given above shows that if both the pentagon and the pen-
tagram are scaled to have unit sides, and then the pentagram is rotated
around its center by a right angle, then a unit distance representation of

Petersen results.

Thus all the graphs mentioned in Theorem 2 (except possibly Hoffman-
Singleton) are indeed unit distance graphs. In Figure 2, we present unit
distance representations of the connected unit distance s.r.g’s. Notice that,
with the trivial exception of the graphs K,, n < 3, all these representa-
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tions are flexible: they can be perturbed infinitesimally to get other (less
beautiful) unit distance representations of these graphs.

(a) K1 (b) K> (c) K3 (d) Cs
(e) Cs
(f) K3 x K3 (g) Petersen graph

Figure 2: Connected unit distance s.r.g’s
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Now we proceed to a proof of Theorem 2.

Lemma 1 If H is a primitive unit distance s.r.g then its parameters \ and
u satisfy (A, 1)=(0,1), (0,2) or (1,2).

Proof: Note that, in the plane, at most two points are at distance 1 from
any two given points. Thus we have A < 2,4 < 2. Also, primitivity implies
© > 1. We first rule out the possibility A = 2.

Suppose A = 2. We identify the vertices of H with the points represent-
ing them (in a unit distance representation of H). We define two sequences
{zn :n=1,2,...} and {y» : n = 1,2,...} of vertices of H such that, for
each n > 1, z, and y, are adjacent in H, and for each n > 2, y,, is adjacent
to both z,-; and y,—1, while z, is adjacent to z,_;. The definition is
inductive. Choose z; and y; to be any two adjacent vertices of H. Choose
y2 to be either of the two common neighbours of z; and y;. Choose 5 to
be the common neighbour, other than y;, of £, and y,. For n > 3, choose
¥n to be the common neighbour, other than x,,_», of z,,-; and y,_; finally
choose z, to be the common neighbour, other than y,_1, of zn—; and y,.
Then it is easy to see that the euclidean distance between z; and z, is
n — 1 for every n. Thus the vertices z, are pairwise distinct. This is a
contradiction since H is a finite graph.

Thus, 0 < A <1land 1 < pu £ 2. To complete the proof, it suffices
to note that there is no primitive s.r.g with A = p = 1 (This is essentially
Erdés’ friendship theorem, and is immediate from the usual restrictions on
the parameters of s.r.g’s [3]). [

Recall that, given a connected graph H, the usual (or graphical) dis-
tance between two vertices z,y of H is the length of a shortest path in A
joining z and y. The graphical diameter of a finite connected graph is the
maximum of the pairwise distances between its vertices. Given a unit dis-
tance representation of a finite connected graph H, we define its euclidean
diameter to be the maximum of the pairwise euclidean distances between
the points representing the vertices of H. Clearly, the euclidean diameter
of H is bounded above by its graphical diameter.

Lemma 2 The euclidean diameter of any unit distance representation of
the hypercube Qs is strictly bigger than 2.

Proof: Fix a unit distance representation of Q3 and identify the eight ver-
tices of Q3 with the eight points in R? representing them. Choose a vertex
zp and let z1, 23 and 23 be its neighbours in Q3. It is easy to see that there
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are two choices of 2o for which zg is in the interior of the triangle 2;2223.
(Indeed, the convex hull of all the vertices is a hexagon, with two vertices
in its interior. The vertex zp may be chosen to be either of the two vertices
in the interior of the hexagon.) Make such a choice of 2. Let 6, 82 and
93 be the angles (in radian) subtended at zp by z2 and 23, by z; and z3,
and by z; and z3, respectively. By our choice of 29, we have 0 < 8; < 7 for
i=1,2,3 and 0; + 6> + 63 = 27. Also, we may arrange the notation so that
8, < 83 < 63. Therefore, 03 > 27" Since cosine is strictly decreasing on
[0, 7], it follows that cosf; > cosflz and cosf3 < cos(%;-') = —-21;. Therefore

we get cos; — cosfy — cosfz > —cosblz > -,1,-

Hence, if u is the common neighbour of 22 and 23 other than zp, then the
squared euclidean distance between u and z; is 3+2(cosf; —cosfz —cosfs) >
4. Thus the euclidean distance between u and z is at least 2. If equality
holds here, then, by the above argument, we must have §; = 8; =03 = 331,
so that two of the points representing the vertices of Q3 coincide (viz. zg
and its “antipode” in Q3). Contradiction.  Ji

Proof of Theorem 2: Let H be a primitive s.r.g with a given unit dis-
tance representation. By Lemma 1, (A, #)=(0,1), (0,2) or (1,2).

First suppose (), 1)=(0,1), i.e., H is a Moore graph. Thus H is the
pentagon, the Petersen or the Hoffman-Singleton graph or a Moore graph
of degree 57. We need to rule out the last case. Suppose H has parameters
(3250,57,0,1). Then, by the Hoffman bound on the coclique number of a
regular graph (see Proposition 3.7.2, page 92 in [2]), the coclique number of
H is at most 400 and hence x(H) > 320 > 8. This contradicts Proposition
1.

Now suppose (A, ¢)=(0,2) or (1,2). Suppose the degree k of H sat-
isfies k > 2 if (A, #)=(0,2) and k > 4 if (A, p)=(1,2). In the first case,
the neighbours of any vertex are mutually non-adjacent. In the second
case, H induces the disjoint union of -'25 copies of K5 on the neighbours of
any vertex. Because of our assumption on k, in either case, we can take
a vertex zo and three mutually non-adjacent neighbours z;, 2, and 23 of
z9. For 1 <1 # j < 3, let z;; be the unique common neighbour, other
than 29, of z; and 2;. Since K4 is not a unit distance graph, the points
21, 22, 23 can not be at mutual euclidean distance 1. Say, without loss of
generality, that the distance between 2; and z3 is not equal to 1. Notice
that if a, b, c,d are points in R? such that the line segments ab, bc, ed and
da have euclidean length 1, then we must have a + ¢ = b + d (the paral-
lelogram law for vector addition), which determines d in terms of a,b,c.
Using this observation repeatedly, we see that if we assume (without loss
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of generality) 2o = 0 (the origin), then z;3 = z; + 23, 213 = z1 + 23, and
z23 = 22 + z3. Since the distance between z; and z; is not 1, it follows
that the distance between 213 and 233 is not 1. Therefore, z;3 and 233
are non-adjacent in H. Hence there is a vertex u # 23 which is adja-
cent to both 213 and zo3 (as ¢ = 2). By the above observation, we have
u = 213 + 203 — 23 = 21 + 22 + z3. Thus, eight of the points representing
the vertices of H are 0, z;, 29, 23, 21 + 22, 23 + 23, 21 + 23, 21 + 23 + 23. Now,
21, z9 and z3 are distinct points of norm 1, and z; + z3 # 0, 2o+ 23 # 0 and
23+ z1 # 0. Also, if 0 and u represented the same vertex of H, then the
adjacent vertices 0 and z;3 would have two common neighbours (namely,
z1 and z3); this is not possible since A < 1. Thus 2; + 20 + 23 # 0. It
follows that these eight points provide a unit distance representation of the
hypercube Q3 (even though Q3 may not be a subgraph of H). Therefore,
by Lemma 2, the euclidean diameter of this set of eight points is greater
than 2. Therefore, the euclidean diameter of the given unit distance rep-
resentation is greater than 2. This is a contradiction since the euclidean
diameter of any unit distance representation of H is at most the graphical
diameter of H, and the graphical diameter of any primitive s.r.g is clearly
equal to 2. This contradiction proves that if (A, u)=(0,2) then k < 2, and
if (A, u)=(1,2) then k < 4.

Now, to complete the proof, it suffices to note that there is no primitive
s.r.g with k < 2,A =0,u =2, and K3 X K3 is the only primitive s.r.g with
k<4r=1pu=2 |

Remark 4: (Chromatic number of Hoffman-Singleton) The Hoffman-
Singleton graph Ho-Si is the unique s.r.g with parameters (50,7,0,1). By
the Hoffman bound, its coclique number is at most 15, and hence its chro-
matic number is > 33 > 3. We show by explicit construction that it has
a proper vertex colouring in four colours, so that x(Ho — Si) = 4. By a
well known construction of Ho-Si (see [3]), this graph has a coclique of size
15 (in fact, it has exactly hundred such cocliques, and the automorphism
group of the graph acts transitively on them); fix such a coclique Cp. Then
the induced subgraph Hy of Ho-Si on the complement of Cp has the fol-
lowing description. Take a set S of seven symbols. Then the vertex set V5
of Ho consists of the (3) = 35 subsets of size 3 of the set 5. Two vertices
a,B € Vp are adjacent in Hp if and only if a8 = 0. Fix two elements
z#yofS LetCi={aeV:z€a},Co={aceVp:2z ¢ a,y€ a}
and C3 = {a € Vp:z ¢ a,y ¢ a}. Then C;, i = 1,2,3, are three pairwise
disjoint cocliques of Hp, covering the vertex set of Hy. Therefore, if we as-
sign the “colour” i to the vertices of C; (i = 1,2, 3), we get a proper vertex
colouring of Hp in three colours. Extend this to a proper vertex colouring
of the Hoffman-Singleton graph in four colours by assigning the “colour” 0
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to the vertices in Cp. This shows that x(Ho — Si) = 4.

It is easy to see that all the graphs in Figure 2 have chromatic number
< 3. Therefore, in view of the remark above, Theorem 2 implies:

Corollary 2 All the strongly regular unit distance graphs have chromatic
number < 4.

Thus, there is no counter example to the four colour conjecture among
strongly regular graphs.
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