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Abstract For natural numbers n and k, where n > 2k, a gen-
eralized Petersen graph P(n,k) is obtained by letting its vertex set
be {uy,ug, -+, un} U {v1,v2,---,vn} and its edge set be the union of
Ui 1, UiVi, ViVitk OVer 1 < i < n, where subscripts are reduced modulo n.
In this paper, an integer programming formulation for Roman domination is
established, which is used to give upper bounds for the Roman domination
numbers of the generalized Petersen graphs P(n,3) and P(n,4). Together
with the dynamic algorithm, we determine the Roman domination number
of the generalized Petersen graph P(n,3) for n > 5.

1 Introduction

In this paper, only directed and undirected graphs without multiple edges
or loops are considered. For a graph G = (V, E), V(G) and E(G) are the
sets of vertices and edges of G, respectively. For a function f : V — {0,1,2}
and a vertex u € V, we say v is Roman dominated by f if f(u) # Ooruis
adjacent to at least one vertex v for which f(v) = 2. A Roman dominating
Junction on a graph G = (V, E) is a function f : V — {0,1,2} satisfying
the condition that every vertex u is Roman dominated by f. The weight
of a Roman dominating function is the value f(V) = X .y f(u). The
minimum weight of a Roman dominating function on a graph G is called
the Roman domination number yr(G) of G.

For natural numbers n and k, where n > 2k, a generalized Petersen
graph P(n, k) is obtained by letting its vertex set be {uj,uz,---,un} U
{v1,v2,--+,v,} and its edge set be the union of u;uiy1,u:v;, viVipr OVer
1 < ¢ < n, where subscripts are reduced modulo n (see [1, 2]). If n =5,k =
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2, the graph P(5,2), shown in Fig. 1, is the Petersen graph which serves
as a counterexample of many conjectures.
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Fig. 1: The Petersen graph P(5,2)

In the literature, dominations such as the standard domination, Roman
domination and rainbow domination of the generalized Petersen graphs
have attracted lots of interests (3, 4, 5, 6, 7]. In particular, Wang et al. [7]
obtain the following result of the Roman domination numbers of generalized

Petersen graphs.
Theorem 1 (7] Letn > 5. Then

& (P(1,2)) = [ 87"] .

In this paper, an integer programming formulation for Roman domi-
nation is established. By solving the integer programming formulation for
Roman domination, we established the upper bound for the Roman dom-
ination numbers of the generalized Petersen graphs P(n,3) and P(n,4).
Together with the dynamic algorithm, we determine the Roman domina-
tion number of the generalized Petersen graph P(n,3) for n > 5.

2 Constructing Roman dominating function
of the generalized Petersen graphs by dy-
namic algorithm

We first define the graph H, which will be used in the sequel. For natural
numbers n > 5, the graph H, is obtained by letting its vertex set be
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{u1,uz, -+, un} U {v1,v2,---,v,} and its edge set be the union of Ey, Ep
and E3, where E; = {ujuit1|]l <1 < n -1}, E; = {usus]l < ¢ < n},
E3 = {viviz2|l € ¢ < n —2}. Then the graph H, is the subgraph of
P(m,2) for m > n > 5. The right side of Fig. 2 shows the graph Hs.

The dynamic algorithm was proposed to solve these invariants for ro-
tagraphs and fasciagraphs (see [8]) in a general framework and later used
several times [9]. In this paper, we use the dynamic algorithm on the gen-
eralized Petersen graphs. We here focus on the generalized Petersen graphs
P(n,2). For fixed k, the graphs P(n, k) can be processed similarly.

o

The graph m112)

Fig. 2: The subgraph Hj in the Petersen graphs P(11,2)

We consider functions f : V(Hs) — {0,1,2} on the vertex set of the
graph Hy. We say f is locally feasible if both uz and vz are Roman domi-
nated by f. We define the local weight lw(f) of f as the sum of f(u3) and
f(va).

We construct a weighted auxiliary digraph W in the following way: the
vertices of W are all possible locally feasible Roman dominating functions
of Hs. For convenience we denote the vertices of W in the following way:
for a locally feasible function f of Hs, let s = 5152835455 € V(W), where
8i = (f(u), f(vs)). There is an arc between two vertices s and ¢ (which
represent locally feasible functions of Hz) if and only if s; = t;—; for all
i=2,83,4,5 where s = 5152835485 and ¢ = t;tot3t4ts. There is an example
of two locally feasible functions that are connected by an arc in W in Fig.
3.

Moreover we define the weight of an arc st as the sum of f(u3) and
f(va), where f is the locally feasible function represented in W with s.

Fig. 3 shows how two locally feasible functions s and t of Hjg, such
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that st € E(W), can be used to form a function h : V(Hg) — {0,1,2}.
In this example, s; = (0,0),s2 = (1,0),s3 = (0,1),84 = (2,1),s5 = (0,0)
and t; = (1,0),t2 = (0,1),t3 = (2,1),t4 = (0,0),¢t5s = (0,1). Moreover, s
is locally feasible because usz and vz are Roman dominated by s, and t is
locally feasible because also there uz and vz are Roman dominated by ¢.

By “gluing” consecutive locally feasible functions of Hy, we can obtain
functions on H,, with all its inner vertices Roman dominated. We call such
a function to be a partial Roman dominating function. As we can see, a
partial Roman dominating function on Hg can be obtained by a path of
two vertices of W. Similarly, a partial Roman dominating function on H,
can be obtained by a path of n — 4 vertices of W. When considering a
cycle instead of a path in W, we therefore construct a Roman dominating
function of P(n,2) and we have the following result:

Theorem 2 Let n > 5. A Roman dominating function f on P(n,2) cor-
responds to a closed directed walk of length n in W. The minimum weight
over all closed directed walks of length n is the Roman domination number.

Fig. 3: An example of how an edge is formed

In order to obtain the Roman domination number of P(n,2), we need
to apply Theorem 2. The algorithms with path algebra approach, intro-
duced in [10] and used in {11, 12], are implemented and carried out. We
rediscovered Theorem 1 from the result of computation. For more details,
we refer the reader to the reference {11] and here we omit it.
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3 Integer linear programming formulation
for Roman domination number

Since the Roman domination number of P(n, 2) is known, we here present
values of the Roman domination number of P(n,3) which is more com-
plicated. By using dynamic algorithm, we obtained the following result:

Theorem 3 Letn > 5. Then

n, n=0 (mod 4)

Yr(P(n,8))={ n+1, n=1,3 (mod 4)
n+2, n=2(mod})

Although Theorem 3 can be proved by using the dynamic algorithm, it
is not easy to explicitly construct a minimum Roman dominating function.
We usually call minimum Roman dominating function a yg-function. In
this section, we give an integer programming formulation for Roman dom-
ination problem of a graph which is used to construct a minimum Roman
dominating function. Let G = (V, E), the vertices of G be labeled with
{1,2,++,n}, and let f be a Roman dominating function of G. For a vertex
i € V and an integer j € {0,1,2}, let z;; equal 1 if i is labeled with j
(namely, f(i) = j), 0 otherwise.

We use the following integer programming formulation for Roman
domination problem of a graph G:

LP Roman Domination:

minimize Z J%ij (1)
1<ign,j€{1,2}

subject to:
Tio+Ti1+Zi2 =1, ieV; (2)
> T2 2 @ig, ieV; (3)
LEN (i)
zi; € {0,1}, 1<i<n,je{0,1,2}. (4)

Constrains (2) guarantees each vertex is labeled with only one number.
Constrains (3) guarantees that every vertex i for which f(i) = 0 is adjacent
to at least one vertex £ for which f(£) = 2. Binary requirements on the z; ;

variables are given by (4).
The lower bounds are detected by searching closed walks of given

lengths in the auxiliary graph W (applying Theorem 2), and the upper
bounds are established by solving this integer programming formulation
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for Roman domination. We use two lines to denote a Roman dominating
function, where in the first line there are the function values of vertices
{u1,u2,*--,un}, and in the second line of the vertices of {v1,v2, -+, vn},
such that u; lies above v; for all i. We take the result of Case 2 for example.
Let n = 5, then the Roman dominating function is shown in Fig. 4 (a).
Let n = 9, then the Roman dominating function is shown in Fig. 4 (b).

Ons

(2)

Fig. 4. (a) Roman dominating function of P(5,3) (b) Roman dominating
function of P(9, 3)

We show the desired Roman dominating function for other cases by
distinguished n into the following 4 cases:
Case 1. n = 4k with k > 2:
By repeating the following pattern, we have yr(P(n, 3)) < n.

0 0 20
2 000

Case 2. n=4k+ 1 withk > 1:
By repeating the leftmost 4 columns of the following pattern, we have

Yr(P(n,3)) Sn+1.

0 0 2 010
2 0 0 012

Case 3. n =4k +2 with k> 1:
By repeating the leftmost 4 columns of the following pattern, we have

YrR(P(n,3)) S n+2.

0 0 2 0

0o 2
2 0 0 0120
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Case 12. n =13k + 11 with k > 1:
By repeating the leftmost 13 columns of the following pattern, we have

Yr(P(n,4)) < [H].

2002000000200 20020000200
0000022220000 00001221000
Case 13. n =13k + 12 with k > 1:

By repeating the leftmost 13 columns of the following pattern, we have
1R(P(n,4)) < [4§] +1.

20020000002001201020000200
00000222200001020000221000
If n = 14, we use the following pattern, we have vg(P(14,4)) < 16

which is the desired upper bound.
02002010100020
00100002122000

a

By solving the integer programming formulation for Roman domina-
tion problem, we also obtain some exact values for the Roman domination
number of P(n,4) (see Table 1). From the results of Table 1, we guess the
upper bounds in Theorem 4 match the exact values.

Table 1: Exact values of yg(P(n,4)) for 10 < n < 51

n 10 11 12 13 14 15 16 17 18 19 20 21
yr(P(n,4)) 11 12 14 14 16 17 18 19 20 22 22 24
n 22 23 24 25 26 27 28 20 30 31 32 33
yr(P(n,4)) 24 25 26 28 28 30 31 32 33 34 36 36
n 34 35 36 37 38 30 40 41 42 43 44 45
r(P(n,4)) 38 38 39 40 42 42 44 45 46 47 48 50
n 46 47 48 49 50 51

yr(P(n,4)) 50 52 52 53 54 56
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