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Abstract

In this paper, some formulae for computing the numbers of spanning

trees of the corona and the join of graphs are deduced.
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1 Introduction

Let G be a simple connected graph with edge set E(G) and vertex set
V(G) = {v1,v2,...,vn}. The number of spanning trees of G, denoted by
t(G), is the total number of distinct spanning subgraphs of G that are trees.
Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of
vertex degrees of G, respectively. The Laplacian matrix of G is defined as
L(G) = D(G) — A(G), and the Laplacian characteristic polynomial (G, x)
of G is defined as &(G, z) = det(z] — L(G)). It is easy to see that L(G)
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is a syminetric positive semidefinite matrix having 0 as an eigenvalue. The
Laplacian spectrum of G is

S(G) = (#I(G)’ ,U,Q(G), o a/“n(G))’

where p1(G) > p2(G) = -+ 2 pa(G) = 0, are the eigenvalues of L(G) (or
the Laplacian eigenvalues of G) arranged in non-increasing order. When
one graph is under discussion, we may write u; instead of u;(G). For a
connected graph G of order n, it has been proven [1, p.284] that:

1 n—1

t(@G) == [ ws (1.1)
n

i=1
This formula can be used to obtain some sharp upper bounds for ¢(G)
in terms of graph structural parameters such as the number of vertices,
the number of edges, maximum vertex degree, minimum vertex degree,
connectivity, chromatic number and matching number in [2]. In this paper,
we mainly use this formula to compute the number of spanning trees of the

corona and the join of graphs, respectively.

2 Preliminaries

Let G and H be two graphs. The corona G o H is obtained by taking
one copy of G and |V (G)| copies of H, and by joining each vertex of the ith
copy of H to the ith vertex of G, i = 1,2,...,|V(G)|. The vertex-disjoint
union of the graphs G and H is denoted by G U H. The join GV H is
obtained from G U H by adding all possible edges from vertices of G to
vertices of H, i.e., GV H = GU H, where G is the complement of a graph
G.

Lemma 2.1 ( [4]) Let G and H be two graphs of order v and s, respec-
tively. If S(G) = (u1(G), u2(G), ..., ur(G)) and

S(H) = (u1(H), po(H), ..., us(H)), then the Laplacian eigenvalues of GoH
are:

(a) pi(Gtotlt "2(3“)2-4“"(0) with multiplicity 1 fori=1,2,...,r, and

(b) pi(H) + 1 with multiplicity r for j=1,2,...,s— L.



Lemma 2.2 ( [5]) Let G and H be two connected graphs of order r and
s, respectively. If

S(H) = (m1(H),p2(H),...,us(H)), then the Laplacian polynomial of
G o H can be ezpressed as follows

-L(G) —(z—-s-1)I,
zl, (z-1DI, |

s—1
®(GoH, z)= (H(z —1—p(H ))’)
i=1

Lemma 2.3 ( [3]) Let G and H be two graphs of order r and s, respec-
tively. If S(G) = (p1(G), u2(G), ..., ur(G)) and

S(H) = (p1(H), p2(H),...,us(H)), then the Laplacian spectrum of GV H
is S(GVH) = (r+s, t1(G) + s, p2(G) + s, ..., pr—1(G) + s, 11 (H) +
o p2(H)+7, .o, g1 (H) +r, 0).

3 Main results

Let G and H be two graphs of orders r and s, respectively. In this
section, the number of spanning trees of G o H and G V H are computed,

respectively.

3.1 GoH

If G is connected, then G o H is also connected.
Lr(O)ts+i-y 2(8“)2_4“'(@ = 0 since u.(G) = 0. Combining with Lem-

ma 2.1, we have

Theorem 3.1 Let G be a connected graph of order r, and H be a graph of

order s. If
S(G) = (u1(G), ..., pr—1(G), 0) and S(H) = (1 (H), ..., us—1(H), 0),
then

r—

[ (426 + 205+ (O] T (ua() + 1)

r4r-1

H(Go H) = =

(3.2)
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Proof. By Lemma 2.1 and Eq.(1.1), we have

(s+1) H (u.(G)+s+1)’—(s+1)’+4u.(c) H(# (H) +1)
t(GoH) = i=1

(s+1)r
H [:“' (G)+2 S+3)#1(G] H(th(H)'l'l)r

r4r-1

This completes the proof of (3.2). O

The expression (3.2) is somewhat complicated. In what follows, we will
give a simpler expression for t(G o H) in terms of ¢(G) and ¢(H Vv K}).

Theorem 3.2 Let G be a connected graph of order r, and H be a graph of

order s with
S(H) = (u(H), ..., ps—1(H), 0). Then

s—1
t(G o H) = t(G) [ [ (w:i(H) +1)". (3.3)
i=1
Proof. Let
= LG —(
=)= :c},. :(vz -1)I pard

Then, by Lemma 2.2, we have

s—1
®(G o H, z) = f(z) (H(x -1~ m(H))’) :

=1

Since 1 + u;(H) >0 for 1 <i< s—1, f(z) can be written as
f(z) =z = b1)(z —b2) - (z — bar—1),

where b; > 0 is a root of equation f(z)=0,1<i<2r — 1.
Hence, (1.1) implies that
2r—1 s—1
H bi H (m(H)+1)"  (—a1) .Hl(“"(H) +1)"
1=

i=1
UG H) = (s+1)r = (s+1)r

In what follows, we will prove that a; = —r(s + 1)t(G).



For a matrix C, let C(i) and C(i,j) denote the submatrices obtained
from C by deleting the ith row and column, and by deleting the ith row
and jth column, respectively. Let C*(i) and C*(3) denote the submatrices
obtained from C by deleting the ith row and ith column, respectively. Let
I, and 0, be the identity matrix and the zero matrix of order r, respectively.

Since
_|-L©® -(@-s-1I
@=L el
| =L(G) —(z—-s-1)I, I. 0, I, I,
_H zI. :(t:x—l)Ir }[ I Ir][Or I,]
(zx—s—-1)I, - L(G)
I zl,
Let M := —(s+ I)II - L) _L(G) . Note that f(0) = det M.

Since the (r + i)th row of M (z) has all zero entries when 1 < i < r,
det M(i)=0for1 <i<r.

2r 2r
= detM(i)= > det M(i)

i=1 i=r4l

-3

=1

-(s+1)I. - L(G) —-LYG)(3)
I7(5) Or_1

Let A; be the r x r matrix whose (i,%)—entry is s + 1 and other entries are
all zero. By consecutively interchanging the ith column with the (i + 1)th,
(i4+2)th, --- and (r 4+ ¢ — 1)th columns in the last determinant. We have

( l)r—l Z

1.-1

(s+1 I*(z) +ING)(i) L(G) + Ai '
-1 07(3)

Q)+ A;i (s+1II[E) + LYG)()
0*(2) i

= —Zdet (G)+ A;) = - Z(detL(G) + (s + 1) det L(G)(3))

i=1

=—(s+1) Zt(G) = —r(s+ 1)t(G).
i=1
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(—an) TT (el ED+1)" o1
Therefore, t(G o H) = T = t(G) [I (ui(H) + 1)7, which
i=1

completes the proof. O
Note that S(HVK)) = (s+1, ia(H)+1, ..., ps—1(H)+1, 0) and t(HV
s—1
K1) = ] (u:(H) + 1). Then (3.3) can be rewritten as follows.
i=1

Theorem 3.3 Let G be o connected graph of order r. Then t(G o H) =
Gt (H V K)).

32 GVH

Theorem 3.4 Let G and H be two graphs of order r and s, respectively.
If

S(G) = (m(G), ..., #r-1(G), 0) and S(H) = (m1(H), ..., ps—1(H), 0),
then

r—1 s—1

GV H) =[] (s +m(@) [[(r + m(H)).

i=1 i=1
Proof. By Lemma 2.3 and Eq.(1.1), the result follows. ' O

Let K,, and K,, denote the complete graph and empty graph of order n,
respectively, K, » denote the complete bipartite graph such that one part
has n vertices and the other has m vertices. It is interesting that t(G v H)
not only can be determined by the Laplacian spectra of G and H, but also
can be expressed as the following form.

Theorem 3.5 Let G and H be two graphs of order r and s, respectively.

Then
t(G Vv EK,)t(H VE;)

t(Kr,s)

t(GV H) =

Proof. By Lemma 2.3, the Laplacian spectra of GV K, and H VK, are
SGVE)=(r+s,7....,7, m(G) +s, ..., pr—1(G) +5, 0),
1
8§

S(HVK)':(T'*'S: 8, .y S m(H)+ 7, psa (H) + 1y 0).
-1

Note that the Laplacian spectrum of K, ; is
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S(Kys)=(r+s7...,7,8...,50).
N e N e’

—_— r=1 ' _
Therefore we have t(G Vv K;) = r®~! H (ui(G) + 3), t(HV K,) =

st H (ui(H) +7) and t(K,, s) = r*~1s™1,
Hence, by Theorem 3.4, the result follows. |

Theorem 3.6 Let G and H be two connected graphs of order r and s,
respectively. Then
t(GV H)
t(G)t(H)
and equality holds if and only if GV H is complete.

Proof. Let S(G) = (,u,l(G), oory #r—1(G), 0) and
S(H) = (u1(H), ..., 4s—1(H), 0). Then by Theorem 3.4, we have

> (r+9)%(1+ )1+ 2y

r—1 s—1

GV H) _ T
ERE) rsH(1+ 11(1+m).
And
(r+ )21+ D) M1+ 1) 2 = (14 2)I (14 D)
Hence,

o HIH_@HHT-

(r+ o2+ &)y —2(1+ L)2 1+:2 1+

i=1
Note that u;(G) < rforalll < i <r -1 and u;(H) < s for all
1 <4 < s— 1. Hence the desired inequality holds, and the equality holds if

andonly if u;(G) =rforalll <i<r-land y;(H) =sforalll <i< s—1.
Therefore G and H are complete graphs. Thus G V H is also complete. 0

3.3 Examples

The Laplacian spectra of P,, C, and K, [1] are

_ .g(n—‘l)ﬂ .2(11-2)7I' .2_71'_
S(Pn)—(4sm o , 4sin o , ..., 4sin 2n’0 ,

S(Cr) = (4sin2 (n _nl)", 4sin? (n ;2)71., ..., 4sin? %, 0) and

S(Kn)=(n,n,...,n,0).
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And it is well known that t(P,) = 1, t(Cp) = n and t(K,) = n" "2
The fan graph F. , and cone graph C, , are defined as P, VK, and
C, V K, respectively. Hence by Theorem 3.4, we have

r—1

. r—1 .
Lo im - Lo i
t(Fy,s) = ! H (s + 4 sin? '2_1”) and t(Cr ) =1r° 1 H (s + 4sin? -;—) .

t=1 i=1

In particular, for the fan Fi.;; and wheel graph W,,.; which are defined as
F. ; and C;. 1, we have
= in p i
= in2 20 = in2 —
t(Frp1) = H (1 + 4sin 27') and t(Cry1) = H (1 + 4sin - ) .

The r-corona graph of a graph G, denoted by I.(G), is defined as Go K.
Since K, V K; = S,41, and ¢(Sy4+1) = 1, by Theorem 3.3, we have

t(I(G)) = (G).
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