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Abstract

Let D = (V, A) be a finite and simple digraph. A Roman dom-
inating function on D is a labeling f: V(D) — {0,1,2} such that
every vertex v with label 0 there is a vertex w with label 2 such
that wv is an arc in D. The weight of an RDF f is the value
w(f) = Yyev f(v). The Roman domination number of a digraph
D, denoted by yr(D), equals the minimum weight of an RDF on D.
The Roman reinforcement number rr(D) of a digraph D is the min-
imum number of arcs that must be added to D in order to decrease
the Roman domination number. In this paper, we initiate the study
of Roman reinforcement number in digraphs and we present some
sharp bounds for rr(D). In particular, we determine the Roman
reinforcement number of some classes of digraphs.

Key Words: Domination, Reinforcement, Roman domination, Ro-
man Reinforcement, digraph.
MSC 2000: 05C69

1 Introduction

Let D be a finite simple digraph with vertex set V(D) = V and arc set
A(D) = A. A digraph without directed cycles of length 2 is an oriented
graph. The order n = n(D) of a digraph D is the number of its vertices.
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We write df,(v) = d*(v) for the outdegree of a vertex v and dp;(v) = d~(v)
for its indegree. The minimum and mazimum indegree and minimum and
mazimum outdegree of D are denoted by 6~ = §~ (D), A~ = A~(D),
6t = 61(D) and A+ = A*(D), respectively. If uv is an arc of D, then we
also write u — v, and we say that v is an out-netghbor of v and u is an
in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-
neighbors and out-neighbors of v by N~ (v) = N5 (v) and N*(v) = N} (v),
respectively. Let N5[v] = N~[v] = N=(v) U {v} and Nj[v] = N*[v] =
N*+(v) U {v}. For a set S of vertices, we define N=(S) = |J,cg N~ (v),
N=[S] = UuesN™[t], N*(8) = Uyes N*(v) and N*+(S] = Uycs N*ol. It
X C V(D), then D[X] is the subdigraph induced by X. If X C V(D) and
v € V(D), then E(X,v) is the set of arcs from X to v. Consult [13] for
the notation and terminology which are not defined here. In this note, we
consider only finite simple digraphs.

A subset S of vertices of D is a dominating set if N*{S] = V. The
domination number (D) is the minimum cardinality of a dominating set of
D. The domination number was introduced by Lee [6]. The reinforcement
number (D) of a digraph D is the minimum number of arcs that must be
added to D in order to decrease the domination number [4].

A Roman dominating function (RDF) on a digraph D = (V,A) is a
function f: V — {0, 1,2} satisfying the condition that every vertex v with
f(v) = 0 has an in-neighbor v with f(u) = 2. The weight of an RDF
f is the value w(f) = > ,cy f(v). The Roman domination number of a
digraph D, denoted by yg(D), equals the minimum weight of an RDF on
D. A 4gr(D)-function is a Roman dominating function of D with weight
vr(D). Roman domination for digraphs was introduced by Kamaraj and
Jakkammal [5] and has been studied by several authors (see for example
(11]). A Roman dominating function f: V' — {0, 1,2} can be represented
by the ordered partition (Vp, Vi, V2) of V' (or (Vof ,Vlf ,Vf! ) to refer to f),
where V; = {v € V: f(v) =1i}. In this representation, its weight is w(f) =
[Vi] + 2|Va|. Since Vlf U sz is a dominating set when f is an RDF, and
since placing weight 2 at the vertices of a dominating set yields an RDF,
we have

(D) £ vr(D) £ 2v(D). (1)

For a digraph D, a subset S of V(D) and z € S, the private neighborhood
of = with respect to S is the set PN(z,S) = N*[z] - N*[S - {z}). It is
clear that every vertex of V; of a yr(D)-function has at least two Va-private
neighbors.

Let (Vo, V1, V2) be a yg(D)-function on a digraph D. If there exists an
arc uv in D such that u,v € Vi, then (Vo U {v}, V1 \ {u, v}, VaU{u}) is also
a yr(D)-function of D. We call a yr(D)-function with the property that
|V2| is maximum a nice yg-function of D.
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The definition of Roman dominating functions for undirected graphs
was given by Steward [12] and ReVelle and Rosing [10]. Cockayne, Dreyer
Jr., Hedetniemi and Hedetniemi [2] as well as Chambers, Kinnersley, Prince
and West [1] continued the investigation and have given a lot of results on
Roman domination.

The Roman reinforcement numberrg(D) of a digraph D is the minimum
number of arcs that must be added to D in order to decrease the Roman
domination number. It is obvious that if yr(D) € {1,2}, then addition of
arcs edges does not reduce the Roman domination number. In these cases
we define rg(D) = 0.

Our purpose in this paper is to initiate the study of the Roman re-
inforcement number of digraphs. We present some sharp bounds on the
Roman reinforcement number and we also determine exact values for the
Roman reinforcement number of some classes of digraphs.

We make use of the following observations and properties. The associ-
ated digraph D(G) of a graph G is the digraph obtained from G by replacing
each edge e of G by two oppositely oriented arcs. Since Np) [v] = Ng[v]
for each vertex v € V(G) = V(D(G)), the following useful observation is

valid.

Observation 1. For any graph G, vr(G) = vr(D(G)), 7(G) = r(D(G))
and rg(G) = rr(D(G)).

Theorem A ([4]). For any digraph D of order n and v(D) = 2, r(D) =
n—A¥(D)-1.

Observation 2. If D is a digraph of order n and E, is a minimum subset of
arcs of D(K,) — A(D) such that yg(D + E;) < yg(D), then yp(D+ E;) =
TrR(D) — 1.

Observation 3. If D is an empty digraph of order n > 3, then rg(D) = 2.

Proposition 4. Let D be a digraph. Then yg(D) = 24(D) if and only if
D has a yr(D)-function f = (Vp, V;, V2) with |V;| = 0.

Proof. Let yr(D) = 2v(D), and let S be a dominating set of D with
|S| = v(D). Then f = (V(D)-S5,0,S) = (Vo, 1, V2) is an RDF on D such
that

w(f) = 25| = 2v(D) = yr(D)
and therefore f is a yp(D)-function with V; = 0.

Conversely, let f = (Vo, V1, V2) be a yr(D)-function with |Vj| = 0 and,
consequently, yr(D) = 2|Vz|. Then V; is also a dominating set of D,
and hence we deduce that 2y(D) < 2|V3| = yg(D). Applying the second
inequality in (2), we obtain the identity yg(D) = 2v(D), and the proof is
complete. O
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2 Roman reinforcement number and reinforce-
ment number of digraphs

In this section we show that r(D) = rr(D) + 1 for any digraph D with
vr(D) = 2v(D) > 4. We start with the following lemmas.

Lemma 5. For a digraph D of order n with yg(D) > 4 and yr(D) =
2v(D),
rr(D) < r(D) -1.

Proof. Let E be a set of augmenting arcs such that |E| = r(D) and v(D +
E) < 4(D) — 1. Then the second inequality in (1) implies that

Yr(D+E) <2y(D+ E) < 2y(D) -2 =vr(D) - 2.
If e is an arbitrary arc of E, then it follows that
Yr(D + (E - {e})) < (vr(D) - 2) +1 =vr(D) - 1.

Hence, |E — {e}| 2 1 and rp(D) < |E| —1=r(D) — 1. This completes the
proof. O

Lemma 6. Let D be a digraph with yr(D) = 29(D) > 4. If there exists
an arc e € A(D) such that yp(D +e) = yr(D) — 1, then D + e has a
vr-function f = (Vp, V3, Vo) with [V}| = 1.

Proof. The proof is by induction on (D).

Let yr(D) = 2v(D) = 4. Note that by Observation 2, every yg-function
of D + e has weight 3. Let f = (V, V1, V2) be a nice yg-function of D + e
and assume that the proposition is not correct. It follows that f = (9, V;,0)
with |[V4| = 3. Because f is nice, we conclude that V; is an independent set.
Therefore, D + e consists of three independent vertices, a contradiction.

Let yr(D) = 2y(D) > 6 and suppose that the proposition is true for
every digraph D' with yr(D) > yr(D') = 2v(D’). According to Proposi-
tion 4, there exists a yg-function f = (Vof ,0, sz ) of D. Moreover, since
rr(D) = 1, there exists a vertex z € sz such that no private neighbor of z is
incident to e. Let D* be obtained from D by deleting the set X of all private
neighbors of z. It is easy to see that (V5 \ X,0,V{ \ {z}) is a yg-function
of D* and Vi \ {z} is a dominating set of D*. Hence, yr(D*) = yr(D) —2
and y(D*) = y(D) — 1. Furthermore, Yyr(D* + €) = yr(D* +€) — 1 and
thus, by induction, D* + e has a yg-function g = (V§, {v}, V). It follows
that h = (V§ U (X \ {z}),{v}, V7 U {z}) is & yg-function of D + e with
[V{#] = 1. This completes the proof of this lemma. ]

Theorem 7. If D is a digraph with yr(D) = 2y(D) > 4, then r(D) =
rr(D) + 1.
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Proof. Note that 7(D) > rg(D) + 1 by Lemma 5. Let E be a minimum
augemtning set such that |E| = rg(D) and yg(D + E) = vr(D) - 1. If
e € E, then D + E\ {e} fulfills the assumptions of Lemma 6. It follows
that D + E has a yg-function f = (Vo, V;, V,) with |V1] = 1. Let v be an
arbitrary vertex of V2 and V} = {w}. It follows that V; is a dominating set
of D + (E' U {vw}) of order v(D) — 1. Hence, (D) < rgr(D) + 1 and the
proof is complete. a

As an application of Observation 1, Theorem A and Theorem 7, we have
the next result.

Corollary 8 (Jafari Rad et al. (9] 2011). If G is a graph with vg(G) =
27(G) 2 4, then rg(G) =r(G) — 1.

3 Bounds on Roman reinforcement number
Proposition 9. If D is a digraph of order n with yg(D) > 3, then
rr(D) < n - A*(D) - yg(D) + 2.

Proof. Since yr(D) > 3, A+*(D) < n—2. Let u be a vertex of maximum
out-degree and let B/ = {(u,v): v € V(D) — N*[u]}. Then (V(D) —
{u},9, {«}) is a Roman dominating function of D + E’ and thus, yg(D +
E’) = 2. Hence, rr(D) < |E'| = n — A*(D) — 1. Therefore there are
rr(D) — 1 vertices vy, vs,... y Urp(D)-1 in V(D) — N"’[u]

Let D’ be a digraph obtained from D by adding rgr(D) — 1 arcs (u, v;)
for each i = 1,2,...,7r(D) — 1. By the definition of rg(D),

1r(D) = 1r(D') £n— A* (D) +1=n—(A*(D) +rr(D) - 1) +1,

which yields the result. O

The next example gives a class of digraphs satisfying the conditions of
Proposition 9.

Example 10. Let p > 1 be an integer, and let F' be a digraph with vertex
set {c,z1,Z2,...,Tp} and arc set {cz1,cTs,...,cx,}. Let D be the digraph
obtained as the disjoint union of two copies of F. Then n(D) = 2p + 2,
Yr(D) = 4, At (D) = p, and it is easy to see that rg(D) = p. It follows
that

rr(D) = n(D) - A*(D) ~vr(D) + 2 =p,

and therefore the upper bound in Proposition 9 is sharp.
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Theorem 11. Let D be a digraph of order n > 3 and A+(D) > 1. Then
rr(D) = 1 if and only if there is a yr(D)-function f = (Vo, V1, V2) with
Vi#0.

Proof. Let f = (Vo, V1, V2) be a ygr(D)-function with Vi # 0. If V5 # 0,
then let « € Vi and v € V5. Obviously yr(D + (v,u)) < yr(D) and thus,
rr(D) = 1. So assume that Vo = . Then Vi = V(D). Since A*(D) > 1,
we may assume vw € A(D). Obviously ({w}, Vi — {v,w}, {v}) is a yr(D)-
function and the result follows as above.

Conversely, let 7g(D) = 1. Suppose to the contrary that V{ =0 for
each yr(D)-function f = (Vof ,Vlf ,V#). Then vg(D) is even. Assume
that zy is an arc such that yr(D + zy) < Yr(D). By Observation 2,
vr(D + zy) = yr(D) — 1. Let g be a yr(D + zy)-function. If g(z) # 2,
then g is an RDF for D which is a contradiction. So g(z) = 2 and hence
g(y) = 0. Then f = (V§ — {y}, V¥ U {y},V7) is a yr(D)-function with
Vlf # 0. This contradiction completes the proof. a

Corollary 12. For a digraph D of order n > 4 with ygr(D) = 4 and
rr(D) 2 2, rr(D) =n~ A*(D) - 2.

Proof. If n = 4 and D is an empty digraph, then the result follows from
Observation 3. Hence, let n > 5 or n = 4 and A(D) # 0. Assume that
f = (Vo,W1, V2) is a ygr(D)-function. Since rr(D) > 2, we deduce that
Vi = 9. This implies that v(D) = 2 and so ygr(D) = 2v(D). It follows
from Theorem 7 and Theorem A that rr(D) =n — A+(D) — 2. O

Corollary 12 shows that the bound in Proposition 9 is sharp when
r(D) = 4.

Corollary 13. If D is a digraph of order n > 3 and A*(D) > 1 such that
vr(D) is odd, then rr(D) = 1.

In the following we transfer an idea from [4] to digraphs to present
an upper bound for the Roman reinforcement number. Let D be a di-
graph, and let S be a subset of V(D) with |S| > 2. Assume that 7(S) =
max{|N*[X]|: X C §,|X| =S| — 1} and define

(D) = max{n(V; UV,): f = (Vo, 1, V2) is a nice yr(D) — function}.

We call a nice yg(D)-function f = (Vp,V4,V2) an n-function if n(D) =
n(Vi U V2). It is clear that

nivlz) <n-—1 (2)

for any nice yr(D)-function and hence n(D) < n - 1.
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Theorem 14. Let D be a nonempty digraph of order n > 3 with yg(D) >

3. Then
rr(D) £ n—-n(D).

Proof. Let f = (Vo,V1,V2) be an n-function. Since D is nonempty and
f is a nice yr(D)-function, we have V5 # 0. Suppose that X is a subset
of Vi UV, such that n(D) = n(Vi U Vo) = |[N*[X]|. If |Vz] = 2, then
XNV, #0. Solet |Vo} =1 with V3 = {z}. Since yg(D) > 3, we have
V1] = 1. Suppose y € V; and set X’ = (X — {y}) U {z}. It is clear that
n(D) = n(V; UV2) = [N*[X']|. Hence, we may assume, without loss of
generality, that X NV, # 0, say z € X N V5. Since n(V; U V3) = [N*[X]],
by (2) there exists a subset Y of V(D) that is not dominated by X. Let
D' be a digraph obtained from D by adding all arcs leading from z to the
verticesin Y. Let y € UV, —X. Then (LU {y},Vi —{y},Va—{y}) isan
RDF of D'. Hence, yr(D') < [Vi—{y}|+2|V2—{y}| < [V1|+2|V2| = vr(D).
It follows that rp(D) < n — (D). ]

If D is a digraph and S a subset of V(D), then let p(S) = min{|PN(z, S)| :
z € S}. The private neighborhood number of D is defined by

p(D) = min{p(V2): f = (Vo, 1, V2) is a nice yr(D) — function}.
If A(D) # 0, then it is clear that
p(D) 2 2. (3)

Theorem 15. If D is a digraph of order n > 3 with A+(D) > 1, then
rr(D) < p(D) — 1.

Proof. If yp(D) = 2, then rp(D) = 0 < p(D) — 1. If yg(D) = 3, then
Corollary 13 leads to rg(D) =1 < p(D) — 1.

Now assume that yg(D) > 4. If there is a yg(D)-function (Vp, V;, V2)
with Vi # 0, then it follows from Theorem 11 that rg(D) = 1 < p(D) —
1. Assume next that V) = @ for each yg(D)-function (Vo,V1,V2). Let
f = (Vo,0,V;) be a nice yg(D)-function such that there exists a vertex
z € Vo with |PN(z,V3)| = p(D). Since yr(D) > 4, there exists a vertex
ueVp - {z}.

If z € PN(z,V3), then let D' = D + {(u,w): w € PN(z,V2) — {z}}.
We observe that g = (Vo, {z}, V2—{z}) is an RDF of D’, and thus rg(D) <
|PN(z,V3)| - 1= p(D) — 1.

If z ¢ PN(z,V2), then let PN(z,V2) = {y1,¥2,...,9,}. Now let
D'=D+ {(u4):i=12,...,p—1}. We see that h = ((Vp U {z}) —
{¥o},{vo}, V2 — {z}) is an RDF of D’ and thus, rg(D) < |PN(z,Vz)|-1=
p(D) —1. O
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Corollary 16. If D is a digraph of order n > 3 with A*(D) > 1, then

2n _
Yr(D)

Proof. If there is a yg(D)-function (Vp, Vi, V2) with V; # 0, then rg(D) =
1< ;;2(%5 —1. So assume that V] =  for every yr(D)-function (Vp, V4, V2).
Then Y& (D) = 2|Vs| for any v(D)-function (V, V4, Va). Let f = (Vo,0, V&)
be a ygr(D)-function such that there exists a vertex z € V, with |PN(z, V3)| =
p(D). Then

1.

rr(D) <

7R§D.._)p(p) =|Velp(D) < Y IPN(v, V)| < m.
veV,

Now the desired result follows from Theorem 15. O

Corollary 17. Let D be a digraph of order n > 3 with A*(D) > 1, and
let f = (Vo, Vi, V2) be a nice yg(D)-function. Then

rr(D) € min{d*(u): u € V5}.
An immediate consequence of Corollary 17 is the following result.

Corollary 18. For any digraph D of order n > 3 and A*(D) > 1, rr(D) <
A*(D). Moreover, the bound is sharp for any digraph D with A+(D) = 1.

Example 19. Let F be a digraph with vertex set {c, z1,z2,...,2,} with
p > 1 and arc set {czy,cxs,...,czp}. Let H be the digraph obtained from
the disjoint union of ¢ > 2 copies of F. Then yg(H) = 2t, A*(H) = p,
and it is easy to see that rg(H) = p and p(H) = p+ 1. It follows that
p(H) — 1 = rp(H) = A*(H) = p, and therefore the bounds given in
Theorem 15 and Corollary 18 are sharp.

The next result follows from Proposition 9 and Corollary 18.

Corollary 20. If D is a digraph of order n > 3 with A+ (D) > 1, then

ra(D) < z;m;iﬂ_

Digraphs D with A*(D) = 1 as well as Example 10 show that the
bounds in Corollaries 18 and 20 are sharp.
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4 Compositions of digraphs

For two undirected graphs G and H, the join G + H is defined as the
undirected graph consisting of G and H with each vertex of G adjacent to
every vertex of H. In the directed case, there are two possibilities to define
the join of two digraphs. Let G and H be digraphs. The digraph G — H
is obtained from G and H by adding all possible arcs from vertices of G
to vertices of H, and G & H is be obtained from G — H by adding all
possible arcs from vertices of H to vertices of G.

Proposition 21. Let G and H be two digraphs such that A*(G) > 1 and
A*(H) > 1. Then

1. rr(G — H) =rp(G),
2. rr(G & H) = min{n(G) - A*(G) - 2,n(H) — AT(H) - 2}.

Proof. (1) Let f = (Vp, V1, V2) be a yr(G)-function with V, # §. Then
f is also an RDF of G — H. Hence 7g(G — H) < w(f) = vr(G).
On the other hand, if g = (V,V1,V2) is a yr(G — H)-function, then
obviously glc = (Vo N V(G), V1 nV(G), V2 N V(G)) is an RDF of G and
thus, yr(G — H) = vr(G).

If yr(G) = 2, then obviously yr(G — H) = 2 and thus, rg(G) =
TR(G — H) = 0. Let yr(G) = 3 and let E be a minimum set of aug-
menting arcs with |E’| = 7r(G) and yr(G + E’) < vr(G). Then yr((G —
H) + E') = (G + E') - H) = vr(G + E') < 7r(G) = 1r(G — H).
Hence, rr(G — H) < rg(G).

Let E; be a minimum set of augmenting arcs with |E;| = rp(G — H)
and Yr((G — H) + E1) < yr(G = H). Suppose that E, is a subset of E;
such that two ends of arcs in Ej lie in V(G). Let f = (VJ,V{,V{) be a
Yr((G = H)+Ey)-function and let g = (Vi NV (G), V{ nV (@), Vi nV(@)).
If g is an RDF of G + Es, then we have

Yr((G = H) + Ey) w(f)

w(g)

Yr(G + E»)

YrR((G — H) + E3)

Yr((G — H) + E).

vV ILIVIVI

By the choice of E;, we have E; = E; and hence
YR(G + E3) < w(g) = 7r((G = H) + E3) < vr(G - H) = vr(G).

Thus, 7r(G) < |E2| = |E)| = rr(G — H) and so rr(G) = rr(G — H).
Assume that g is not an RDF of G + E;. Then obviously some ver-
tex u in Vof N V(G) has an in-neighbor u' € V2f in H where v'u € E;.
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Let v € V(G) and add an arc vu for each u € VJ N V(G) which does
not have in-neighbor in V§/ N V(@) and let B3 = {(v,u): u € Vof n
V(G) and u does not have in — neighbor in sz NV(G)}. Obviously |E, U
E3| < |Ey| and it is easy to see that h = (V NV(G)) - {v}, (V{ nV(G)) -
{v}, (Vf "V(G))U{v}) is an RDF of G+(E;UE3). Note that w(h) < w(f),
since [V N H| > 1. Now we have

Tr(G + (E2 U E3)) w(h)

w(f)
(G = H) + E)
vr(G — H)

Tr(G).

Thus 7r(G) < |E2UE3| < |Ey| = rr(G — H) and hence 7r(G) = rr(G —
H).

(2) If min{yr(G),Yr(H)} < 2, then Yr(G & H) <2 and rr(G « H) =0.
Otherwise yg(G + H) = 4. By Corollary 12,

A IHIALA

rr(G & H)=n(G o H)- AT (G e H) -2
= n(G) +n(H) — max{A*(G) + n(H),A*(H) + n(G)} — 2
— min{n(G) — A*(G) — 2,n(H) — A*(H) - 2},

and the proof is complete. ]

The corona GoH of two undirected graphs G and H is formed from
one copy of G and n(G) copies of H by joining v; to every vertex in H;,
where v; is the ith vertex of G and H; is the ith copy of H. For digraphs
G and H, if all the additional edges are from G to H;, then we denote the
resulting digraph by G H.

Proposition 22. Let G and H be two digraphs with n(H) > 2. Then

0 if n(G) =1,
rr(GOH) =< n(H) if G is the empty graph and n(G) 2 2,
n(H) —1 otherwise.

Proof. If n(G) = 1, then obviously 7r(GJH) = 2 and, by definition,
rr(GGH) = 0. Let n(G) > 2. In [4], it is shown that ¥(GGH) = n(G).
Now we show that yr(GG@H) = 2n(G). Obviously, f = (V(GFH) —
V(G),0,V(G)) is an RDF of GG H and thus, Yr(GT H) < 2n(G). Now
let f be a yr(G@ H)-function. To dominate the vertices of the ith copy
of H, i.e., H;, we must have }_ vy, (v} f(v) > 2. Since a single vertex
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of G does not dominate two vertices in different copies of H, we deduce
that yr(GFH) > 2n(G). Thus, yrR(GTH) = 2n(G) = 2y(GFH). We
consider two cases.

Case 1 Assume that A(G) =90.

Let A’ = {(v1,u): u € V(Hyp(c))}. Then obviously

(UEDV(H,), {vn}, {v1,v2,. .., Un-1})

is an RDF of (G@ H)+ A’ and thus, Yr((G G H)+A’) < yr(G? H). Hence,
rr(GTH) < n(H).

Let E; be a minimum set of augmenting arcs with |E;| = rr(GIH) and
Yr((GPH) + E;) < yr(GT H). By Observation 2, yr((GIH) + E;) =
YR(GTH)—1=2n(G)—1. Let Wi = {v;}UV(H;), 1 <i < n(G), and let
f=(Ve,W,V2) bea 73((G'3H) + Ej)-function. Then |VonW;| < 1 for
some i, say i = n(G). To dominate the vertices in W, ), E1 must contain
at least n(H) arcs which goes from some vertices in V; to vertices in W;
(note that some vertex in W; can belong to V}). Hence, |E)| > n(H) and
thus, 7r(GJ H) = |E;| < n(H). Therefore rp(Gd H) = n(H).

Case 2 Assume that A(G) # 0.

Assume, without loss of generality, that (v1, va(c)) € A(G). Let V(Hp(q)) =
{wi,wg,..., W)} and let A’ = {(v1,u): v € V(Hy)) — {w1}}. Then
obviously,

(UEDV(H:) U (v} (w1}, {o1,v2, ., 1))

is an RDF of (GG H) + A’ and thus, vp((GTH) + A’) < vr(G3H).
Hence, 7r(G@H) < n(H) — 1. An similar argument as in Case 1, shows
that rp(Gd H) = n(H) — 1. This completes the proof. a
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