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Abstract

In this paper, we study a pair of simplicial complexes, which
we denote by B(k,d) and ST(k + 1,d — k — 1), for all nonnegative
integers k£ and d with 0 < k¥ < d — 2. We conjecture that their
underlying topological spaces |B(k,d)| and |ST(k+1,d — k—1)| are
homeomorphic for all such k and d. We answer this question when
k = d — 2 by relating the complexes through a series of well studied
combinatorial operations that transform a combinatorial manifold
while preserving its PL-homeomorphism type.

1 Introduction

A common problem in combinatorial topology asks for the minimal number
of vertices that are required to triangulate a given topological manifold.
In general, this is a very difficult problem as it requires both algebraic
techniques to give lower bounds on the minimal number of vertices that
are required and explicit constructions to establish the tightness of these
bounds. Lutz’s thesis [9], together with the references therein, provide an
excellent survey of the progress that has been made on this general problem.

In a recent paper, Novik and the second author [5] defined a simpli-
cial complex B(k,d) for all integers k£ and d with 0 < k < d — 2. These
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complexes are combinatorial manifolds with boundary such that 9B(k, d)
triangulates S* x S~%~2 (5, Theorem 1.2(e)]. Moreover, the boundary com-
plexes 8B(k, d) provide centrally symmetric, vertex-minimal triangulations
of §* x S9%-2 for all d. As such, and based on algebraic invariants of
these complexes [5, Theorem 1.2(d)], we are led to conjecture that B(k,d)
triangulates S* x B¢~%~!, From this, it would immediately follow that the
complexes B(k,d) are centrally symmetric, vertex-minimal triangulations
of §* x B¢~*-1 for all d.

One approach to solving this problem is to study a family of operations
known as bistellar flips, stellar exchanges, and (inverse) shellings, which
locally transform the combinatorial structure of a manifold triangulation
while preserving its PL-homeomorphism type. Our first goal in this paper
is to introduce another family of simplicial complexes, which we denote by
ST(m,n). By studying a modification of the classical staircase triangula-
tion (see [2, 3, 4, 12]), we are easily able to show that ST (m, n) triangulates
§™~1 x B". This leads us to ask the following question.

Question 1.1 Can B(k,d) be obtained from ST (k +1,d — k — 1) through
a series of bistellar moves, stellar exchanges, elemetary shellings, and their
inverses?

If the answer to this question is “yes,” then it follows that B(k, d) trian-
gulates S x BY~*-1 as we had hoped. In this paper, we answer Question
1.1 in the affirmative for two infinite classes of complexes when k = 0 (see
Section 2) and k = d — 2 (see Section 3). In Section 4, we answer Question
1.1 for two other cases when k = 1 and d = 4 or d = 5. These two cases
illustrate part of the difficulty in answering Question 1.1 in the general case.

The problem of testing whether or not two fixed simplicial complexes
are bistellar equivalent is highly computational. The software package BIS-
TELLAR._.EQUIVALENT [8] is quite efficient in solving this problem, and
it was very useful for us in checking small examples during the early stages
of this project. For our purposes, however, there were two main obsta-
cles to overcome in studying Question 1.1. First, the package BISTEL-
LAR_EQUIVALENT uses a randomized annealing algorithm, meaning that
there is no inherent structure to the series of bistellar flips that connects
two triangulations. In contrast, the series of bistellar operations outlined
in Section 3 is highly structured and hence is unlikely to be found by a ran-
domized computer search. Second, our goal is to find a series of bistellar
operations connecting B(k,d) to ST(k +1,d — k — 1) for all k and d.

We begin by defining all of the necessary definitions related to simplicial
complexes and combinatorial manifolds in Section 1.1. We then proceed to
define the main complexes of interest in Sections 1.2 and 1.3 and to prove
our main results.
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1.1 Simplicial complexes and combinatorial manifolds

Definition 1.2 An (abstract) simplicial complex A on vertez set V(A)
is a collection of subsets F' C V' (called faces) satisfying the following two

properties:
1. {v} €A forallveV, and
2. ifFelA and GCF, then G € A.

The dimension of a face F in A is dim F' := |F| -1, and the dimension
of A is dim A := max{dim F : F € A}. A simplicial complex A is pure if
all of its facets (maximal faces under inclusion) have the same dimension.
If A is a pure (d — 1)-dimensional simplicial complex, a (d — 2)-dimensional
face of A is called a ridge. Unless otherwise specified, we will assume that
all of our simplicial complexes A are pure and (d — 1)-dimensional.

For any abstract simplicial complex A, there is a corresponding topo-
logical space |A], called the geometric realization of A, which contains
a geometric i-simplex for each i-dimensional face F' of A. For a face F in
A, we let F := {G : G C F} denote the simplex whose vertices belong to
F. The boundary of F is defined as 6F := {G: G G F}.

Definition 1.3 Let F be a face in the simplicial complez A. The link of
FinAis

ka(F):={G€A:FNG=0and FUGE A}.

We note that if A is a pure simplicial complex of dimension d — 1, then
lka(F) is a pure (d — |F| — 1)-dimensional simplicial complex for any face
FeA.

Definition 1.4 Let T’ and A be simplicial complezes such that V(I') N
V(A)=0. The join of T and A is

'*A={FUG:Fel,GeA}.
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Next, we define a certain family of simplicial complexes known as com-
binatorial manifolds. For further information on combinatorial manifolds,
see [1] or [6].

We say that a simplicial complex I is a combinatorial n-ball if || is
piecewise linear (PL) homeomorphic to the standard n-simplex o™. Specif-
ically, this means that there is a homeomorphism ¢ : |[I'| = o™ with the
property that the restriction of ¢ to any face in the realization of T is a
piecewise linear map; and that the inverse map ¢! is also a PL map. Simi-
larly, we say that I is a combinatorial n-sphere if I' is PL homeomorphic
to o™ +1,

A combinatorial (d — 1)-manifold is a (d — 1)-dimensional simplicial
complex A with the property that lka (v) is either a combinatorial (d — 2)-
ball or a combinatorial (d — 2)-sphere for all vertices v € A. We say that a
face F in a combinatorial (d— 1)-manifold A is a boundary face if lka (F)
is a combinatorial (d — |F| — 1)-ball, and F' is an interior face if lka(F)
is a combinatorial (d — |F| — 1)-sphere.

The problem of determining whether or not two geometric simplicial
complexes are PL homeomorphic may seem to be (and in fact is) quite
difficult. Fortunately, there is a finite collection of local combinatorial op-
erations such that two combinatorial manifolds are PL homeomorphic if
and only if one can be obtained from the other through a finite sequence of
these operations (see Theorem 1.10). Now we define these operations.

Definition 1.5 Suppose that A is an r-simplez in a (d — 1)-dimensional
combinatorial manifold A and that lka(A) = 0B for some (d — r — 1)-
simplezx B ¢ A. The bistellar move x(A, B) consists of changing A by
removing A * 8B and inserting A x B. We say that x(A, B) is a bistellar
i-move if the size of B is i + 1. By interchanging the roles of A and B,
we see that the inverse of a bistellar i-move is a bistellar (d —i — 1)-move.

Example 1.6 In the 2-dimensional case (i.e. when d = 3), there are three
possible bistellar flips. In Figure 1(a), |A| = |B| = 2; this is called a I-
move. In Figure 1(b), |A| = 1 and |B| = 3; this is called a 2-move. The
inverse moves also exist. In Figure 1(a) the inverse is a 1-move, and in
Figure 1(b) the inverse is a 0-move.

Definition 1.7 Let A be a nonempty face in a combinatorial (d — 1)-
manifold A such that lka(A) = 8B * L for some nonempty simplez B
with B ¢ A and some subcomplez L C A. Then A is related to A’ by the
stellar exchange k(A, B), if A’ is obtained by removing Ax 0B * L from
A and inserting A + B * L.

68



(a) A bistellar 1-move

aB
2-move
—
0-move
éB 6B B B

(b) A bistellar 2-move and its inverse

A 0A
1-move
éB OB € > B B
A 8A
B

Figure 1: The 2-dimensional bistellar flips

Example 1.8 In Figure 2(a), we illustrate a stellar exchange with |A| =
|B| =2 and |L| = 1. In Figure 2(b), we illustrate a stellar exchange with
lA|=1, |B|=3, and |L| = 1.

Definition 1.9 Suppose that A and B are faces of a combinatorial (d—1)-
manifold A with boundary 84, that AUB is a facet of A, and that ANOA =
0A and Bx8A G 8A. The manifold A’ obtained from A by an elementary
shelling from B is obtained from A by removing all faces of A containing
B.

The fundamental property of these moves is that if A’ is obtained from
A by either a bistellar fip, a stellar exchange, or an elementary shelling,
then |A| is PL homeomorphic to |A’|. In fact, the converse to this is true
as well, as is illustrated by the following theorem, which was originally
proved by Newman [10] and Pachner [11].

Theorem 1.10 ([6, Theorem 5.10]) Two connected combinatorial (d — 1)-
manifolds with non-empty boundary are piecewise linear homeomorphic if
and only if they are related by a sequence of elementary shellings, inverse
shellings and a simplicial isomorphism.

In proving this theorem, Lickorish shows that any bistellar flip or stel-
lar exchange can be written as a finite sequence of shelling and inverse
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L
—>
0B 0B B B
0A

(a) A stellar exchange

L
—>
0B 0B B B
B

0B
(b) Another stellar exchange

Figure 2: Stellar exchanges

shelling operations. Thus, in order to prove that the geometric realizations
of ST(k +1,d — k — 1) and B(k,d) are homeomorphic, we need only show
that they are related by a sequence of bistellar operations, stellar exchanges,
and shelling/inverse shelling operations.

Definition 1.11 LetT and A be simplicial complezes with vertez sets V (I')
and V(A) respectively. We say thatT' and A are isomorphic if there is a
bijection ¢ : V(I') = V(A) with inverse ¢ : V(A) = V(T') such that:

o For all faces F = {vy,,..., v } €T, o(F) = {o(vs,),...,0(vi,)} isa
face of A.

o For all faces G = {uj,,...,u;} € A, ¥(G) is a face of .

At this point, we must introduce an additional property of combinatorial
manifolds that will be used later in the proof of our main theorem.

Definition 1.12 Let A be a pure (d — 1)-dimensional simplicial complez.
The dual graph of A, denoted G(A), is the graph defined as follows. The
vertices of G(A) correspond to the facets of A, and two vertices in G(A)
are connected by an edge if and only if their corresponding facets intersect

70



along a ridge. We say that A is strongly connected if the dual graph
G(A) is connected.

Definition 1.13 Let A be o pure (d — 1)-dimensional simplicial complez.
We say that A is a pseudomanifold if each ridge in A is contained in
either one or two facets.

Any combinatorial manifold is a pseudomanifold, but in general one
should not expect a pseudomanifold to be a combinatorial manifold. In
particular, if A is a combinatorial manifold, then lka(F') is a strongly
connected pseudomanifold for any nonempty face F' € A.

We use this fact to prove the following lemma.

Lemma 1.14 Let A be a (d—1)-dimensional combinatorial manifold. Sup-
pose A and B are disjoint sets of vertices in A such that

1 |A|+|Bl=d+1,
2. A€ A, and
3. Ika(A) 2 6B.

Then lka(A) = 8B. Specifically, if we further assume that B ¢ A, then it
is possible to perform the bistellar operation x(A, B) on A.

Proof: Suppose that lka (A) is (r —1)-dimensional so that |B| =r+1. We
first observe that any vertex in G(lka(A)) has degree at most r since any
facet of lka (A) contains r-many ridges and each such ridge is incident to at
most one other facet. Moreover, since lka(A) contains 8B, it follows that
G(8B) C G(lka(A)); and we can easily check that G(8B) is the complete
graph on 7 + 1 vertices.

Suppose now that there is a facet o € lka (A4) that does not belong to
8B, and let F be a facet of 8B. Since G(lka(A)) is a connected graph,
there is a path F' = Fy, Fy,...,F;, = o of vertices in G(lka(A)) such that
Fi_, is adjacent to F; for all i. Consider the smallest index j such that F;
is a facet of B but Fj, is not. The vertex F; has degree at least 7 + 1 (r
neighbors in 8B in addition to Fj1), which contradicts the degree bound

established earlier. O

1.2 The complex ST (m,n)

Fix nonnegative integers m and n. In this section, we define a modification
of the staircase triangulation of a product of two simplices to give a trian-
gulation of do™ x ¢”. We begin by defining the staircase triangulation of

the Cartesian product of two simplices.
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Let po, ..., Pm be the vertices of the m-dimensional simplex ¢™, and let
qo, .- . ,qn be the vertices of the n-dimensional simplex o™. The vertices of
o™ x o™ all have the form (p;,g;) with0<i<mand 0<j<n.

Let £ denote the n x m grid in the zy-plane whose lower-left corner is
(0,0) and whose upper-right corner is (m,n). We can identify each integer
lattice point (%, j) in £ with the vertex (p;, g;) in o™ X o™.

Definition 1.15 (see, e.g., [2]) The staircase triangulation of c™ x o™
is the simplicial complex whose facets correspond to all lattice paths from
(0,0) to (m,n) in £ with steps in directions (1,0) or (0, 1).

Let T and A be simplicial complexes on totally ordered vertex sets.
Having defined the staircase triangulation of a product of simplices, we can
define a simplicial complex called the Cartesian product [3] or staircase
refinement [12, 4] of || x |A| as follows. Let F' be a d;-dimensional face
in T’ and let G be a dj-dimensional face in A. We triangulate the cell
|F| x |G} € |I'| x |A| by using the staircase triangulation arising from the
dy x dj lattice whose columns are indexed by the vertices of F', and whose
rows are indexed by the vertices of G, ordered according to the total order
on the vertex sets of V(I') and V(A).

We define a simplicial complex ST (m, n) on vertex set {(p;,¢;) : 0 <i <
m,0 < j < n} to be the staircase refinement of d0™ x ¢™. Specifically, the
facets of ST (m,n) are described as follows. For each integer 0 < r < m, let
L. be the n x (m — 1) lattice whose columns are labeled 0,1,...,r — 1,7 +
1,...,m. For each lattice path L in the lattice L] starting in the lower-left
corner, ending in the upper right corner, and taking only north and east
steps, we form a facet in ST (m,n) whose vertices are the coordinates of
integer points (pi,q;) on the lattice path L.

Example 1.16 We label the vertices of the 1 X 2 lattice L as shown in
Figure 8 . The resulting simplicial complex ST (2,1) is shown in Figure 4.

Y2 z T3

[ 1]

Y3 T2 U1

Figure 3: The lattice £ defining S7(2,1)
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Y2 z z3 Y2

VN

Y3 T2 Y1 Y3

Figure 4: The simplicial complex S7(2,1)

1.3 The complex B(k,d)

Next we define a family of simplicial complexes denoted B(k,d) for all
nonnegative integers k and d with 0 < k < d. See [5] for further information
on the complexes B(k,d).

The boundary of the d-dimensional cross-polytope, which we denote by
C3, has vertex set V(C}) = {z1,...,%a,%1,...,yqa} and its facets are all sets
of the form {Z,,...,Z} such that Z; € {z;,y;} for all i. As such, we may
identify each facet F' of C] with a word W(F) = W) --- Wy in the letters =
and y with W; =z if Z; = z; and W; = y if Z; = y;. We define the switch
set of such a word to be

S(W(F)) i={i: W; # Wiy, 1<i<d—1},

and we say that the facet F has m switches if |S(W(F))| = m.

With this notation established, we define B(k,d) to be the simplicial
complex on vertex set {x1,...,Z4,¥1,...,Y4} whose facets are all facets of
C; with at most k switches.

Example 1.17 The compler B(1, 3) is shown in Figure 5.
Y2 T I3 Y2

4%

Y3 z2 n Y3

Figure 5: The complex B(1, 3).

Notice that B(1,3) (Figure 5) can be obtained from S7(2,1) (Figure
4) by performing the bistellar operation x(A, B) with A = {z3,ys} and
B = {y1,y2}. Geometrically, this is a bistellar 1-move as shown in Figure
1(a).
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2 An isomorphism between B(0,d) and S7(1,d—
1)

We begin by observing that S7(1,d — 1) is isomorphic to B(0,d) when we
choose an appropriate labeling of the lattice points in the (d —1) x 1 lattice.
Specifically, when the vertices of ST(1,d — 1) are labeled as in Figure 6,
the facets of ST(1,d — 1) are {z1,%2,...,24} and {y1,¥2,...,¥a}. These are
also the facets of B(0,d). Therefore the labeling of the lattice in Figure 6
gives an isomorphism between B(0,d) and 7 (1,d —1).

xdEIyd

Figure 6: The lattice defining ST(1,d — 1)

3 The bistellar equivalence of S7(1,d—1) and
B(d - 2,d)

In this section we will define an algorithm that generates a bistellar equiv-

alence between ST (d — 1,1) and B(d — 2,d) for all d > 3. First, we must

introduce the reverse lexicographic (revlex) order on the collection of sub-
sets of [N] :={1,...,N}.

Definition 3.1 The reverse lexicographic order on the collection of
subsets of [N] is defined by declaring that F < G if and only if the mazimum
element of the symmetric difference of F and G belongs to G.

Example 3.2 The revlex order on subsets of {1,2,3} is:
{1} < {2} < {1,2} < {3} < {1,3} < {2,3} < {1,2,3}.

Label the vertices of ST(d — 1,1) according to the lattice £ shown in
Figure 7, so that for all 1 <i < d,
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_Jy ifiisodd
® 2= g s
z; ifiis even;

y; if i is even.

{xi if 5 is odd
[ ) wi =

Wd—1 We wy wy
D ......... @

......... ® - m I

24 Zd—1 23 29 2

Figure 7: The lattice £ defining S7(d —1,1).

Definition 3.3 Let T := {T C [d—-1] : |T| > 2}. For each T = {t; <
--- < te} € T, we define sets Ar and Bt by

o Br:={z,,2t5,...,2t_, W}, and
o Ar:i={w;:i¢T,i<tg}U{zi:te <i<d-—1}U{24,wq}.

As our main result of this paper, we claim that performing the bistellar
flips x(Ar, Br) sequentially according to the revlex order on T gives a
bistellar equivalence between S7(1,d — 1) and B(d — 2,d).

Before we go on to state and prove our main result, let us pause to
discuss the motivation behind this choice of labeling and these choices of
A7 and Br. First, observe that B(d — 2,d) is generated by all facets of
C; with at most d — 2 switches. In other words, it has all facets except
{z1,92,%3,¥4,...} and {y1,Z2,¥3,Zs,...}, which are the facets with ex-
actly d — 1 switches. We choose to label the top and bottom rows of £ with
these unwanted facets, since the modified staircase triangulation method
will not produce them. Additionally, we shift the top row so that z; and
¥: are not contained in a common face of ST(1,d—1)for1 <i<d-1.
This is because the facets in ST(1,d — 1) are indexed by north/east lattice
paths, and w; lies northwest of z; for 1 <i<d - 1.

In order to motivate the seemingly complicated sets Ay and Br, we
appeal to the labeling of the lattice £ shown in Figure 7. In addition to
the issue that {zq,y4} is a face in ST(d — 1,1), we also observe that, for
example, {y1,¥2} is not a face of ST(d—1, 1), but it is a face of B(d—2,d).
More generally, any face ¢ in B(d—2, d) that does not belong to ST(d—1,1)
contains a pair of vertices z;, w; with i < j (i.e. such that w; lies northwest
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of z;). We have made a canonical choice of missing faces Br with the
property that B contains one vertex from the top row of £ that lies to the
northwest of its other vertices, all of which lie in the bottom row of L.

Having fixed this method for describing By, we now describe the cor-
responding face Ar. In order to justify this choice, it is actually easier to
work backwards. If we consider Ar U Br as a set of vertices on the lattice
L, the element w;, is the left-most element in the top row of L. All other
elements belonging to the top row of £ belong to Ar; all elements posi-
tioned strictly southeast of w;, belong to Br; and all elements positioned
either south or southwest of w,, belong to Ar. Given a collection W of
vertices from S7(d — 1,1) such that zg € W, ya € W, and either z; or
y; belongs to W for all 1 <7 < d — 1, then either (1) W can be uniquely
decomposed into corresponding sets Ar and By or (2) the vertices of W lie
on a north/east lattice path in £ from the lower-left to upper-right corner.

The vertices 4 and yq are originally connected by an edge in ST (1,d—
1), but they are not connected by an edge in B(d — 2,d). In the last step
X(A{d—1)» Bja-1)) corresponding to the revlex-maximal set T’ = [d — 1], we
have Aj4_y) = {Z4,ya}. Performing this bistellar operation disconnects zq
and yq4, and hence we can think of this sequence of bistellar operations as
slowly disintegrating the link of the edge {z4,va}-

The following theorem makes this argument rigorous.

Theorem 3.4 Fiz a positive integerd > 3. For allT C [d—1] with |T| > 2,
let AT and Bt be the sets defined in Definition 8.8. Under the revlex order
on the collection of such subsets T, the sequence of bistellar flips x(Ar, Br)
transforms ST (1,d — 1) into B(d — 2,d).

Before proving Theorem 3.4, we give an example illustrating this se-
quence of bistellar operations in the case that d = 4.

Example 3.5 The following is an ezample of the bistellar equivalence be-
tween ST(3,1) and B(2,4).

z3 Y2 ) Yq
T4 Y3 ] n

Figure 8: The lattice £ defining S7(3,1)

The facets of ST(3,1) according to Figure 8 are listed in the following
array. The r-th column shows the facets obtained by removing the r-th

column of L.
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{z1,92,y3,94} {z1,73,%4,va} {¥2, %3, 24,94}
{xl,x2ay37y4} {$1,$2,Z4,y4} {y2)y3yx4:y4}
{y1,72,v3,94}  {v1,%2,%4,va}  {v1,¥3,74,va} {T1,%2,¥3,7a} .

Now we define Br and At according to Definition 3.3. After performing
the following bistellar flips, we are left with the facets of B(2,4).

{z1,v2, 23,24}
{1’1, Y2,Ys3, 334}

Bistellar Moves

T Br At Facets Removed | Facets Gained
{v1,v3,74,ya} | {¥1,Y2,%4,94}
{1,2} {y1,v2} | {y3,z0,94} | {92,943, 24,94} | {1,92,93,24}
{y1,Y2,3, 94}
{yl,yz,x4,y4} {yl,xa,$4,y4}
{1)3} {yl:m.'.’»} {yZax4ay4} {3/2,153»1?4,?/4} {yl,y2$z3ax4}
{ylay2,¢37y4}
{z1,22, 24,94} | {Z2,73, 74,4}
{2,3} {z2,23} | {z1,%4,9a} | {x1,23,24,v4} | {z1, 22,23, 74}
{x17x21x3ay4}
{v1,22, 24,94} | {v1,%2,73,74}
{1,2,3} | {y1, 22,23} | {T4,9s} {v1,z3,2z4,y4} | {v1,72,%3,y4}

{$27x3,$4,y4}

In order to simplify the proof of Theorem 3.4, we prove some technical
lemmas here.

Lemma 3.6 Let F' be a facet of ST(d—1,1) that contains both 4 and yq.
Then there is a unique T € T such that F is a facet of Ax » 8Br.

Proof: =~ We view F as a north/east lattice path obtained from L by
removing the column whose vertices are w; and z;, forsome 1 < j < d—1.
We claim that exactly one of z; and w;4; belongs to F. This is because
F contains both x4 and yq, so there is only one index 1 < p < d—1 such
that F' contains neither z, nor y,. Since z; lies southeast of w;4; in £, it
is not possible that both z; and w;.1 belong to F. We examine these two
possibilities separately.
Case 1: z; € F

Let ¢ be the smallest index in [d — 1] such that z; € F and let T :=
{{,i+1,...,5+1}. Then

Br =
Ar =

as shown in Figure 9 with the vertices of Br colored black, the vertices of
Ar colored white, and the corresponding lattice path shown as a dashed
line. We see that F' = A7 U (Bt \ {wj+1}) € Ar x 8Br.

{z,-, Ziglye-oy Zj, ’LUj.H}, and
{zd, 2d-1y. . .y 2j42} U {wim1, wimg, ..., w1, wa},



Figure 9:

Case 2: wj41 € F
Let g be the largest index in {d — 1] such that w, € F and let T = {j, ¢}.
Then

Br = {zj,w,}, and
AT = {Zd,Zd-l,-..,Zq+1}U{wq—l,--.,'lUj+1,'lUj—1,--.,'UJl,'LUd},

as shown in Figure 10 with the vertices of Bt colored black, the vertices
of Ap colored white, and the corresponding lattice path shown as a dashed
line.

Wq .. Wil Wj—1 --. Wy

24 .- Zg4l z;

Figure 10:

Again we see that F = Ar U (Br \ {2;}) € 41 »0Br. O

Lemma 3.7 Let F be a facet of At * 8Bt for some T € T. Then either
1. F is a facet of ST(d —1,1); or
2. there is a unique S € T such that S < T and F € 80As » Bss.

Proof: We write T = {t; < --- < t¢} so that Br = {2y,,...,2,_,, W, }-
We must examine two possibilities based on the element of By that is
removed from A U Br to form the facet F'.
Case 1: F = Ar U (Bt \ {w:,})

Suppose first that there is no index 1 < j < t¢ such that w; € A7. In
this case, F' = {z4,..., 2t, 41, 2t,—1, . -, 21, Wa} is a facet of ST(d - 1,1).
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Otherwise, consider the largest index 1 < j < ¢t such that w; € Ar,
and let S = {t; € T : t; < j} U {j}. We see that S < T since ¢, is the
largest element of the symmetric difference of S and T. Then

Bs = {z,:t;e€T,t; <j}U{w;}, and
As = {zi:i>j}u{wi:i<j,i ¢ T}U{z4,ya},

and we may check that F = (A4s \ {2:,}) U Bs € 8Ag * Bs.
Case 2: F = ArU(Br \ {z,}) forsome 1< j<¢

If |T| = 2, then F = {za,... 26541, Weyye oy Wy 41, Wey—1,-- -, W1, We }
is a facet of ST(d — 1,1) since F' contains neither we, nor z;,+1. This is
illustrated in Figure 11 with the vertices in Bt colored black, the vertices
in At colored white, the eliminated column shown with a dotted line, and
the corresponding lattice path shown as a dashed line.

Wey ove Wegy oo W1 Wy

—®
Zg  eee Zty4l H 2t

Figure 11:

Otherwise, if |T| > 2, consider S := T\ {t;}. Then [S|] > 2 so that
S €T and § < T since S is a subset of T'. In this case, we see that
Bs = BT \ {ztj}, and
AS = AT U {wtj }7

so that F = Ap U (Br \ {th }) = (Ag\ {‘wt_,. }) UBs e 625 * -Es. O

Lemma 3.8 Let F be a facet of As » Bs for some S € T such that x4
and yq belong to F. Then there is a unique T € T such that S < T and F
is a facet of Ap » 0Br.

Proof: Since F' contains both z4 and yy, there is exactly one index
1 < j < d —1 such that neither z; nor y; belongs to F. Note that exactly
one of z; or y; belongs to Ag. Say S = {s; < - < s, }.
Case 1: j < s,

In this case, w; € As. Consider T'= S U {j}. Clearly S < T since S is

a subset of T, and we see that
Br = BsU{z;}, and
Ar = As\{w}.
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Thus F = (As \ {w;}) UBs = A7 UBr\ {2} € Ar * 8Br.
Case 2: j > s,

In this case, z; € As. Consider T = {81,...,8m-1} U {8m + 1,...,5}.
Then S < T since j > sy, and we see that

Br = (Bs\{ws.})U{zsm+1,---,2j-1,w;}, and
Ar = (As\{Zspm+1s--r2m1}) U{ws, }-

Thus F = A7 UBr \ {wj} € ZT * aPT.

(]
Lemma 3.9 Let F' be a facet of B(d — 2,d). Then either
1. F is a facet of ST(d —1,1), or
2. there is a unique T € T such that F is a facet of 8AT * Br.
Proof:  Since {2,...,z4} and {wy,...,wq} are the two facets of C; that

do not belong to B(d — 2, d), we see that F' must contain at least one vertex
from the top row of £ and at least one vertex from the bottom row of L.
Consider the largest index t such that w, € F. If t = d, then F =
{zd-1,24-2,...,21,wa} is a facet of ST(d — 1,1). Otherwise, if t < d -1,
consider the set I := {i<t:z; € F} C[d—1].
Case 1: I =0
In this case, F contains {z4_1,...,2¢+1,Wt,..., w1} and either z4 or
wg. In either case, F' corresponds to a lattice path obtained by removing
either the first or last column from £. This is illustrated in Figure 12,
where the dotted circles indicate that either z4 or y4 can be added, and the
corresponding lattice path is shown as a dashed line.

Wy Wi-1 . wy 'fl.).d

2
1 eEwesaeseseessen D Ry

z:d Zd—1 -+ 2t41

Figure 12:

Case 2: [ #0
In this case, we let T := I U {t}. Clearly F is either (Ar \ {z4}) U Br
or (At \ {y4}) U Br and hence F € At * Br. O

Proof of Theorem 3.4:
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Let us begin by establishing the notation that will be used for the re-
mainder of the proof. As above, let £ be the lattice shown in Figure 7. Let
T denote the collection of all subsets of [d — 1] of size at least two, and
let M := 291 —d = |T|. Order the sets in 7 under the revlex order as
T\ <Tp <T3<--<Tar. Let Ag =ST(d'—1,1), andforalll1 <j< M,
let A; be the simplicial complex obtained from A;_; by performing the
bistellar operation x(Ar;, Br;).

In order to prove this theorem, we must prove that for all 7,

1. Az, € Ay,
2. Br; ¢ Aj-y,

3. Kka,_, (Ar,) = 6Br,, and
4. Ay = B(d—2,d).

Conditions (1)-(3) say that the bistellar operation x(Ar;, Br;) can be
performed on the complex A;_; for all 1 < j < M; condition (4) says
that only those facets belonging to B(d — 2, d) remain after performing the
bistellar operations x(Ar,, B1,),"** » X(ATy, Bry )-

Let F be a facet of ZTj * 6§Tj. Since F contains all the vertices in Ar;,
both z4 and yg belong to F. Thus by Lemma 3.7, F was either originally a
facet of ST(d—1,1) or was created as a facet of 94 * B for some S < T;.
By Lemma 3.6 (in the former case) and Lemma 3.7 (in the latter case),
T; is the unique subset of [d — 1] such that F is a facet of A7, x B7,. In
particular, this means that F is a facet of A;_;, which proves that Ar, is a
face of Aj_; as well. Moreover, by the structure of our choices of the sets
Br, we see that Br; is not a face of A;_;.

Next, we show that lka,_,(A7;) = 8B7,. By the argument in the
previous paragraph, we see that each facet of XTJ. * aTB'T,. belongs to A;_;.
Thus Ika,_, (A7) 2 8Bz, and kka,_,(Ar,) = 8Br, by Lemma 1.14.

Finally, suppose ¢ is a facet of B(d — 2,d). By Lemma 3.9, either s is a
facet of ST(d—1,1) or o was created as a facet of A gxBg for some S € 7.
Since o contains either x4 or ¥4, but not both, ¢ will not be removed as
a facet of A % B for any T € T. Thus o is a facet of Ap. Moreover,
any facet of Aps contains exactly one of z; and y; for all 1 < ¢ < d. Since
{z1,...,24} and {w;,...,wa} are not created as facets of A * By for any

set T € T, we conclude that Ay = B(d — 2,d).
0O
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4 Other cases

Theorem 4.1 The complez B(1,4) can be obtained from ST (2,2) through
a series of bistellar flips, stellar exchanges, and elementary shellings.

Proof: We label the vertices of ST(2,2) as shown in Figure 13

Under this labeling, the facets of S7(2,2) are

{z1,22,73,74}, {v,¥3,Za, ¥}, {v,z1,93,v4},
{yl)z2yz31 x4}’ {yl;y&x‘h y4}a {371, xz,ys,%}»
{yl,y2,$3,$4}; {ylv Y2, T4, y4}a {$13$21$3) y4}

In comparison with the previously studied cases, we now have two issues
to overcome in proving this theorem. We still must disintegrate the link
of the edge {4, y4} while adding in the missing faces {y2,y3} and {z,,y2}
(amongst others). We also must remove the vertex v by using either elemen-
tary shellings or a bistellar 4-move. We begin by performing the following
bistellar operations and stellar exchanges.

Step A B L | Facets Removed | Facets Gained
1. {y11x41y4} {y2$y3} - {y11y2)1:4:y4} {yl’y2a'y3sz4}
{y1,y3, %4, ya} {¥1,92,v3, 94}

{y2,y3, T4, y4}

2. {za,ya} | {v,v2} [ {ws} | {v,y3, 24,94} | {v,v2,v3,24}
{y2sy3)$41y4} {viy2vy3)y4}

3. {vay4} {x11y2} {y3} {v’x11y3,y4} {v)xl’y2ay3}
{v,y2$y3sy4} {31,’!/2»3/3,?/4}

Let us denote by A the simplicial complex obtained from S7(2,2) by
performing these three operations. We observe that the vertex v is only
contained in the facets {v,z1,y2,y3} and {v,y,¥s,z4} in A. By using
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elementary shellings, we wish to remove these two facets, which will remove
the vertex v and leave us with precisely those facets in B(1,4).

We begin by considering the facet {v,z1,y2,y3s}. The link of the face
F := {v,z,} is the simplex on G := {y2,y3}. We claim that G is an interior
face of A, that its boundary faces {y2} and {ys} belong to the boundary of
A, and that F *9G is contained in the boundary of A. Since the boundary
of A is a subcomplex of A, we need only check that F' is an interior face of
A and that F * 8G is contained in the boundary of A.

First we show that F is an interior face of A. This can be easily
checked as lka(F), when viewed as a graph, is a cycle on the vertices
v, T4,Y1,Y4,T1,v. To see that F * 8G is contained in the boundary of
A, we check that {v,z),y2,¥3s} is the unique face of A that contains the
two-dimensional faces of F * 8G: {v,1,y2} and {v,z1,y3}. Thus we may
remove the facet {v,z1,y2,y3} using an elementary shelling to obtain a new
complex A’.

Now we consider the facet {v,y2,ys,z4}, which is the only remaining
facet of A’ that contains v. As before, welet F¥ = {v} and G’ = {y2,y3,z4}.
We can check that G’ is an interior face of A’ since it is contained in two
facets, {v, vz, 3,4} and {y1,y2,¥s,Z4}, and that F x 8G is contained in
the boundary of A’.

O

Theorem 4.2 The complex B(1,5) can be obtained from ST(2,3) through
a series of bistellar flips, stellar exchanges, and elementary shellings.

Proof:
We label the vertices of ST(2,3) as shown in Figure 14.

v o 5
Y3 a Y1
Y4 a Y2

Figure 14:

Under this labeling, the facets of ST(2, 3) are
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{z1,22, 23,24, 75},

{ylv Z2,Z3,Z4, 1'5},
{xl’x21$3yy4ay5}1 {ylay21y4,15;y5}1 {yl’y29m3ax4yx5},
{1:1132)1'33 1‘4,?/5}, {v,,yhyzax51y5}: {’U,) Y1, Y2, T4, 15}'

We begin by viewing the 3 x 2 lattice in Figure 14 as two overlapping
copies of the 2 x 2 lattice from Figure 13. We perform the following bistel-
lar/stellar operations, which are motivated by the three initial operations

used in the proof of Theorem 4.1.

{’U, Y3,Y4, 5, ys},

{v, 1,3, %4, U5}
{yly Y3, Y4, x51y5}7

{111 Z2,Y3, Y4, y5}’

Step A B L Facets Removed Facets Gained
L [ {vnvazs,ys} | {vo,ws} | — [ {vnv2,va,75,u5} | {v1,92,93, Vs, 45}
{v1, 93, 4, 5,45} | {v1,92,y3, 94,25}

Eyl,yzyys,zs,ysi

Y2,Y3,¥Y4,Ts5,Ys

2. {4, 5,95} {vive} | {ws} | {vivs,va,25,95} | {v,92,¥3, 94,05}
{v2,y3, 94, s, ¥s} | {v,v2,¥3,%4, %5}

{v,ymys,-‘rs,ys}

3. {v,v4,95} {z1,92} | {ys} | {v,z1,93,¥4,95} | {Z1,v2,¥3,¥4,¥s}
{v,v2,93, 94,95} | {v.Z1,92,¥3, 04}

{v3zl’y27y31y5}

4 {vi,zs,y5} | {v,vs} | {we} | {v 1,92, 25,05} | {v', 91,92, 93,25}
{y11y2:y3sz5’y5} EU:’ylay%yS:yS{

v, Y2,Y3, Ts5,Ys

5. {‘U','yhxs} {y3:m4} {y2} {v'1y11y21y3715} {y11y21y3)z41x5}
{v", vy, 92, 24,25} | {¥'s 01,92, v3, 74}

{U',yz,y3,14,15}

Let A denote the simplicial complex obtained by performing these five
operations. In addition to all of the facets of B(1,5), A contains the follow-
ing facets, which may be removed from A in the order that they are listed
through a series of elementary shellings. We list the decomposition of each
facet F into the interior face A and boundary face B such that lk(B) = A

and B * 84 C 8A.

Step Facet A B
6. | {v',v2,¥3,%4,%5} {y2,v3} {v/,z4, 5}
7. | {V,y1,92,¥3, 24} | {y1,92,¥3} {v', x4}
8. | {v,u1,y2,y3,95} | {v2,¥3, 5} (v, v1}
9. [ {v,y2,y3, 25,5} | {v2,y3,%5,¥5} {v'}
10. {Ua Y2,Y3, s, yS} {'v,y% y3} {x53y5}
11. [ {v,y2,¥3,v4,Z5} {v2,y3,y4} {v,z5}
12. | {v,21,92,¥3, ¥4} | {T1,92,¥3} {v,va}
13. | {v,z1,92,¥3, 45} | {T1,¥2,¥3,¥s} {v}
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After removing these facets by elementary shellings, we are left with

preciscely those facets of B(1, 5).
O

References

[1] A. Bjorner and F. Lutz. Simplicial manifolds, bistellar flips and a 16-
vertex triangulation of the Poincaré homology 3-sphere. Ezperiment.
Math., 9(2):275-289, 2000.

[2] J. A. De Loera, J. Rambau, and F. Santos. Triangulations, vol-
ume 25 of Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, 2010. Structures for algorithms and applications.

[3] S. Eilenberg and N. Steenrod. Foundations of algebraic topology.
Princeton University Press, Princeton, New Jersey, 1952.

[4] M. Joswig and N. Witte. Products of foldable triangulations. Adv.
Math., 210(2):769-796, 2007.

(5] S. Klee and I. Novik. Centrally symmetric manifolds with few vertices.
Adv. Math., 229:487-500, 2012.

[6) W. B. R. Lickorish. Simplicial moves on complexes and manifolds.
In Proceedings of the Kirbyfest (Berkeley, CA, 1998), volume 2 of
Geom. Topol. Monogr., pages 299-320 (electronic). Geom. Topol.

Publ., Coventry, 1999.

[7) F. Lutz. BISTELLAR, version June/2011. http://www.math.
tu-berlin.de/~1lutz/stellar/BISTELLAR.

(8] F. Lutz. BISTELLAR_EQUIVALENT, version June/2011. http://
www.math.tu-berlin.de/~lutz/stellar/BISTELLAR\ _EQUIVALENT.

[9] F. Lutz. Triangulated manifolds with few vertices and vertez-transitive
group actions. Berichte aus der Mathematik. [Reports from Mathe-
matics]. Verlag Shaker, Aachen, 1999. Dissertation, Technischen Uni-
versitat Berlin, Berlin, 1999,

[10] M. H. A. Newman. On the foundations of combinatorial Analysis Situs.
Proc. Royal Acad. Amsterdam, 29:610-641, 1926.

(11} U. Pachner. P.L. homeomorphic manifolds are equivalent by elemen-
tary shellings. European J. Combin., 12(2):129-145, 1991.

[12] F. Santos. A point set whose space of triangulations is disconnected.
J. Amer. Math. Soc., 13(3):611-637 (electronic), 2000.

85



