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Abstract

Let k be a positive integer and G = (V| E) be a graph of min-
imum degree at least k — 1. A function f : V — {-1,1} is called
a signed k-dominating function of G if 37 .y vl f(u) > k for all
v € V. The signed k-domination number of G is the minimum value
of 33, ¢y f(v) taken over all signed k-dominating functions of G. The
signed total k-dominating function and signed total k-domination
number of G can be similarly defined by changing the closed neigh-
borhood Ng[v] to the open neighborhood Ng(v) in the definition.
The upper signed k-domination number is the maximum value of
2 vev f(v) taken over all minimal signed k-dominating functions of
G. In this paper, we study these graph parameters from both algo-
rithmic complexity and graph-theoretic perspectives. We prove that
for every fixed k > 1, the problems of computing these three param-
eters are all A"P-hard. We also present sharp lower bounds on the
signed k-domination number and signed total k-domination number
for general graphs in terms of their minimum and maximum degrees,
generalizing several known results about signed domination.

1 Introduction

All graphs considered in this paper are simple and undirected. We generally
follow [4] for standard notation and terminology in graph theory. Let G
be a graph with vertex set V(G) and edge set E(G). The order of G is
[V(G)|. For each vertex v € V(G), let Ng(v) = {u € V(G) | wv € E(G)}
and Ng[v] = Ng(v) U {v}, which are called the open neighborhood and
closed neighborhood of v (in G), respectively. The degree of v (in G) is
dg(v) = |[Ng(v)|. The minimum degree of G is §(G) = minyev(c){dc(v)},
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and the mazimum degree of G is A(G) = max,ev(g){dc(v)}. For an
integer r, G is called r-regular if A(G) = §(G) = r, and is called nearly
r-regular if A(G) = r and §(G) = r — 1. For S C V(G), G[S] is the
subgraph of G induced by S; that is, G[S] is a graph with vertex set S and
edge set {uv € E(G) | {u,v} C S}. For an integer n > 1, let K, denote
the complete graph of order n; i.e., K, is an (n — 1)-regular graph of order
n. For any function f : V(G) — R, we write f(S) = }_ g f(v) for all
S C V(G), and the weight of f is w(f) = f(V(G)).

Domination is an important subject in graph theory, and has numer-
ous applications in other fields; see [11, 12] for comprehensive treatment
and detailed surveys on (earlier) results in domination theory from both
theoretical and applied perspectives. A set S C V(G) is called a domi-
nating set (resp. total dominating set) of G if |J,eg Na[v] = V(G) (resp.
Uves Ne(v) = V(G)). The domination number (resp. total domination
number) of G, denoted by v(G) (resp. 7:(G)), is the minimum size of a
dominating set (resp. total dominating set) of G.

Let k > 1 be a fixed integer and G be a graph of minimum degree at
least k — 1. A function f : V(G) — {-1,1} is called a signed k-dominating
function of G if f(Ng[v]) 2 k for all v € V(G). The signed k-domination
number of G, denoted by 4xs(G), is the minimum weight of a signed k-
dominating function of G. When G is of minimum degree at least k, the
signed total k-dominating function and signed total k-domination number
of G (denoted by v} ¢(G)) can be analogously defined by changing the closed
neighborhood Ng [v] to the open neighborhood Ng(v) in the definition. The
concepts of signed k-domination number and signed total k-domination
number are introduced in [16], where sharp lower bounds of these numbers
are established for general graphs, bipartite graphs and r-regular graphs
in terms of the order of the graphs. A related graph parameter called the
upper signed k-domination number of G, denoted by I'ys(G), is defined in
[17] as the maximum weight of a minimal signed k-dominating function of
G. (A signed k-dominating function f of G is called minimal if there exists
no signed k-dominating function f’ of G such that f’ # f and f'(v) < f(v)
for every v € V(G).) This parameter has also been studied in [3].

In the special case where k¥ = 1, the signed k-domination number
and signed total k-domination number are exactly the signed domination
number [5] and signed total domination number (18], respectively. These
two parameters have been extensively studied in the literature; see e.g.
[1,2,5,6,7,9, 13, 14, 18, 19] and the references therein.

In this paper, we continue the investigation of the signed k-domination
number and signed total k-domination number of graphs, from both algo-
rithmic complexity and graph theoretic points of view. In Section 2 we
show that, for every fixed k > 1, the problems of computing the signed k-
domination number, the signed total k-domination number, and the upper
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signed k-domination number of a graph are all N'P-hard. We then present,
in Section 3, sharp lower bounds on the signed k-domination number and
signed total k-domination number for general graphs in terms of their min-
imum and maximum degrees, from which several interesting results follow

immediately.

2 Complexity of Signed (Total) k-Domination

In this section we first show the AN"P-hardness of computing the signed k-
domination number and signed total k-domination number of a graph for
all £k > 1. Since the proofs for the two parameters are very similar, we
only detail the proof for the signed total k-domination number, and merely
point out the changes that need to be made for establishing hardness for
the signed k-domination number. We now formally define the two decision
problems corresponding to the computation of these two graph parameters.

SIGNED k-DOMINATION PROBLEM (SkDP)
Instance: A graph G = (V, E) and an integer r.
Question: Is y,5(G) < r?

SIGNED TOTAL k-DOMINATION PrROBLEM (STkDP)
Instance: A graph G = (V, E) and an integer r.
Question: Is vfg(G) < r?

Theorem 1. For every integer k > 1, the STkDP problem is N'P-complete.

Proof. Let k > 1 be a fixed integer. The STkDP problem is clearly in
NP. We now present a polynomial-time reduction from MINIMUM TOTAL
DOMINATING SET (MTDS), which is a classical N'P-complete problem (8],
to STEDP. The MTDS problem is defined as follows: Given a graph G and
an integer 7, decide whether G has a total dominating set of size at most
T,

Let (G,r) be an instance of the MTDS problem. Construct another
graph H as follows. First let H contain of a copy of G, which is denoted
by G’. Also, for each vertex v € V(G), let v’ denote its counterpart in
G'. For each v € V(G), we add t(v) disjoint copies of Ki43 to H, where
t(v) = dg(v) + k — 2; call these copies K\, Kp', . .. ,K,‘c":g"). Then, for
each i € {1,2,...,t(v)}, add an edge between v and an (arbitrary) vertex
from K,. This finishes the construction of H. It is easy to verify that
dy (V') = 2dg(v) + k — 2 for all v € V(G).

Let T = (k+2) X ey (e tv) = (k+2) 2vev(c)(k+da(v) —2) be the
number of vertices in V(H \ G'). We will prove that v,(G) < r if and only
if ¢ s(H) < 2r — [V(G)| +T.

89



First consider the “if” direction. Assume that vfg(H) < 2r—|V(G)|+T,
and f: V(H) = {-1,1} is a signed total k-dominating function of H of
weight vig(H). Let ' = {v' € V(G') | f(v') = 1}. It is easy to see that,
for each v € V(G) and 1 < ¢ < t(v), all vertices in K| ,‘::;2 must have function
value “1” under f. It follows that vi5(H) = w(f) =T +|S'| - (J[V(G')| -
|5']) = 2|S"|=|V(G)|+T. Since vig(H) < 2r—|V(G)|+T, we have |§'| <.
Now define S = {v € V(G) | v' € §'}; i.e., S is the counterpart of S’ in G.
We show that S is a total dominating set of G. Assume to the contrary
that S is not a total dominating set of G, and let v € V(G) be such that
Ng(v)NS = 0. By our definitions of S and §’, f(u') = —1 for all v € Ng(v).
Thus, 3-.e Ny ) £ () < E(v) — de(v) = k — 2, contradicting with the fact
that f is a signed total k-dominating function of H. Therefore, $’ is indeed
a total dominating set of G, from which 7(G) < |S’| < r follows. This
completes the proof for the “if” direction.

Now comes the “only if” part of the reduction. Suppose v(G) < r and
S C V(G) is a total dominating set of G of size at most r. Define a function
f:V(H) - {-1,1} as follows: f(z) = —1 if z = ' for some v € V(G)\ S,
and f(z) = 1 otherwise. The weight of f is T + |S| — (|V(G)| - |9]) =
2|S|-|V(G)|+T < 2r—|V(G)|+T. We now verify that f is a signed total k-
dominating function of H. For each z € V(H\G"), f(Ng(z)) 2 (k+1)-1 =
k. For each v’ € V(G’) (with v € V(G)), since S is a total dominating set of
G, f(Ng(v")) 2 t(v)+1—(dg(v)—1) =t(v) +2—dg(v) = k. Hence, fisa
signed total k-dominating function of H of weight at most 2r — |V (G)|+T.
This completes the “only if” part of the reduction.

Therefore, 7,(G) < r if and only if vig(H) < 2r — [V(G)| + T. This
finishes the whole reduction, and hence concludes the proof of Theorem 1.

a

Theorem 2. For every integer k > 1, the SkDP problem is N'P-complete.

Proof. The proof is very similar to that of Theorem 1, with two differences
in the reduction. Therefore, we only describe the reduction. We reduce
from the N'P-complete problem MINIMUM DOMINATING SET (which, given
a graph G and an integer 7, needs to decide whether G has a dominating
set of size at most r) to SkDP. Let (G,7) be an instance of MINIMUM
DOMINATING SET. Construct another graph H as follows. First let H
contain of a copy of G, which is denoted by G’. For each vertex v € V(G),
add s(v) disjoint copies of K41 to H, where s(v) = dg(v) + k — 1; call
these copies K1y, Kp'2,... Kpo™. Then, for each i € {1,2,...,5(v)},
add an edge between v’ (the counterpart of v in G') and an arbitrary
vertex from K,;,. This finishes the construction of H. Using similar
argument to that in Theorem 1, we can prove that v(G) < r if and only
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if yws(H) < 2r — |V(G)| + T, where T = (k + 1) 3= cv(c) $(v). The N'P-
completeness of SkDP is thus established. O

We now define the problem corresponding to the computation of the
upper signed k-domination number of graphs as follows.

UPPER SIGNED k-DOMINATION PROBLEM (USKDP)
Instance: A graph G = (V, E) and an integer 7.
Question: Is T'ks(G) > r?

Theorem 3. For every integerk > 1, the USkDP problem is N'P-complete.

Proof. The USkDP problem is in NP because given a function f : V(G) —
{-1,1}, we can verify in polynomial time whether f is a minimal signed
k-dominating function of G using Lemma 4 in [3]. We will describe a
polynomial time reduction from the 1-in-3 SAT problem to it. The 1-in-3
SAT problem is defined as follows: Given a Boolean formula in conjunctive
normal form, each clause of which contains exactly three positive literals
(i.e., variables with no negations), decide whether the formula is 1-in-8
satisfiable, i.e., if there exists an assignment of the variables such that
exactly one variable of each clause is assigned TRUE. This problem is
known to be N'P-complete [15].

Let F' be a Boolean formula with variables {z1,zs,...,2n}, which is
an input of the 1-in-3 SAT problem. Assume F = /\i";lc,- where ¢; =
(ziy V x4, V z3,) for each i € {1,2,...,m}. We construct a graph G as
follows. Take m disjoint copies of Kj42, each of which corresponds to a
clause ¢; with i € {1,2,...,m}, and n disjoint copies of K3 (also disjoint
from the copies of K}.2’s) each of which corresponds to a variable z; with
J € {1,2,...,n}. Delete one edge from each copy of Ki.,3. We will call the
copy of K42 corresponding to ¢; the i-th clause block, and call the copy of
K43 (with one edge missing) corresponding to z; the j-th variable block.
For each i € {1,2,...,m}, let c| be an (arbitrary) vertex in the i-th clause
block. For every j € {1,2,...,n}, let z; and z be the two vertices in the
Jj-th variable block for which the edge z’z} is removed. For each clause
¢ = (zi, V Zi, V Ty), add three cross-block edges cjz} ,ciz},, and cjz},.
This finishes the construction of G. Note that |V(G)| = (k+3)n+(k+2)m.

We claim that I'rs(G) > (k + 1)n + (k + 2)m if and only if F is 1-in-3
satisfiable. First consider the “if” direction, and let A : {z1,22,...,Z,} —
{TRUE, FALSE} be an assignment that witnesses the 1-in-3 satisfiability
of F. Define f : V(G) - {-1,1} as follows: For each j € {1,2,...,n}, let

f@) = 1 if A(z;) = TRUE;
Ti) =1 -1 if A(z;) = FALSE
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and

m_{ -1 if Az;) = TRUE;
f(z5) ‘{ 1 if A(zy) = FALSE.

Let f(v) =1 for all v € V(G) \ Uj_, {z}, =7}

Clearly, w(f) = (k+1)n+ (k+2)m. Since exactly one of A(z;, ), A(z:,)
and A(z;,) is TRUE for each 1 < i < m, it is easy to verify that f is a
signed k-dominating function of G. We next prove that f is minimeal, that
is, for every vertex v € V(G) with f(v) = 1 there exists u € Ng[v] for which
f(Nglu]) € {k,k+1} (see [3]). For every j € {1,2,...,n}, there is (at least)
one vertex u in the j-th variable block such that u ¢ {z},z7}. This vertex
u is adjacent to all other vertices in the j-th variable block, and clearly
f(Ng[u]) = k + 1. For every i € {1,2,...,m}, c; is adjacent to all other
vertices in the i-th clause block, and f(Ng(c}]) = (k+2)+(1-2)=k+1
since exactly one of f(z},), f(x},) and f(z;,) is 1. Therefore, f is indeed a
minimal signed k-dominating function of G with weight (k+1)n+(k+2)m,
and the correctness of the “if” direction follows.

We now turn to the “only if” part of the claim. Assume that f is a
minimal signed k-dominating function of G of weight at least (k + 1)n +
(k + 2)m. If for some j € {1,2,...,n}, the vertices in the j-th variable
block all have value 1 under f, then f(Ng{v]) > k +2 for every v # z} in
the j-th variable block. Thus, there is no u € Ng[z}] such that f(Ng(u]) €
{k,k + 1}, which violates the minimality of f. Hence, at least one vertex
from each variable block must have value —1 under f, implying that w(f) <
(k+1)n+(k+2)m. We thus have w(f) = (k+1)n+(k+2)m, and therefore
(1) f(v) = 1 for every vertex v in the clause blocks, and (2) for each
j € {1,2,...,n}, f(v) = —1 for exactly one vertex v in the j-th variable
block. Now produce an assignment A as follows: For each j € {1,2,...,n},
let A(z;) =TRUE if f(z}) = 1, and A(z;) =FALSE otherwise. For every
i€ {1’2’ e 1m}’ we have k < f(NG(c:]) = (k+2)+f(xi1)+f($i2)+f(xis)’
and thus at least one of f(z;,), f(zi,) and f(z;,) must be 1. Assume that at
least two of the three values are 1. Then f(Ng|c}]) > k + 3, and obviously
f(Ng[v]) = k + 2 for every other vertex v in the i-th clause block. This
indicates, however, that a vertex v # ¢} in the i-th clause block does not
have any neighbor (including itself) whose closed-neighborhood-sum is k
or k + 1, contradicting with the minimality of f. Accordingly, exactly one
of f(xi,), f(zi,) and f(zi,) is 1, and thus exactly one of A(z;,), A(z;,)
and A(z;,) is TRUE, for every i € {1,2,...,n}. Therefore, F is 1-in-3
satisfiable, finishing the proof of the “only if” part of the reduction.

The reduction is completed and the A"P-completeness of USKDP is thus
established. (]



3 Sharp Lower Bounds on 7x5(G) and 7i¢(G)

In this section we present sharp lower bounds on 4s(G) and 7}g(G) in
terms of the minimum and maximum degrees of G. Let k > 1 be a fixed
integer throughout this section. For each integer n, define I, =1 ifn=k
(mod 2), and I, = 0 otherwise; that is, I, is the indicator variable of
whether n and k have the same parity.

Theorem 4. For every graph G with 6(G) > k-1,

8(G) — A(G) + 2k + Iscy + In(c)
1s(G) 2 [V(G)| - 8(G)+ AG)+ 2+ Iy — Ine)

Proof. Let G be a graph of order n with §(G) > k& — 1. For notational
simplicity, we write § and A to denote §(G) and A(G) respectively. When
d = A, it is easy to verify that the theorem degenerates to Theorem 5 in
[16]. Thus, we assume in what follows that A > § + 1. Let f be a signed
k-dominating function of G of weight vxs(G). We need to introduce some
notations. Let P = {v € V(G) | f(v) =1} and Q = V(G)\P = {v €
V(G) | f(v) = —1}. Furthermore, denote Ps = {v € P | dg(v) = 6},
Ppr = {ve P|dg(v) =A}, and Py, = P\ (P; U Pp). Define Qs, Qa,
and @Q,, analogously. For each ¢ € {§,A,m}, let V. = P. U Q.. Notice
that V; N Va = 0 since A > 4. Let R = {v € V(G) | de(v) = k (mod 2)}.
Clearly Eye Nolz) (y) = k +1 for each z € R. Thus, we have

kn+lRIS D Y f@)= Y. (de@)+1)f(=)

z€V(G) yENg|[z) zeV(G)
= (0+1)|Ps|+(A+1)|Pal+ Y (de(z)+1) — (6 + 1)|Qsl
2EPm
—(A+1)|Qal— Y (de(=) +1)
TEQm
< (6+1)|Ps| + (A +1)|Pal + AlPm| - (6 +1)|Qs| — (A +1)|Qal
~(8 +2)|Qm|

(since 6 +1 < dg(z) < A—1foreach z € P, UQ,)

= (6+1)[Vs| + (A +1)[Va| + AlVm| = 2(6 +1)|Qs] — 2(A +1)|Qa|
—(A+6+2)|Qm|

= (A+1n—(A-8)|Vs|— V| — (A +5+2)|Q] + (A - 8)|Qs
—(A - 6)|Qal
(note that n = |Vs| + |Va| + |Vim| and |Q| = |Qs| + [Qa] + |@m])-
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Therefore,
(A+1-k)n
2 |R|+ V| + (& - 8)(|Vs| — |Qs] +|Qal) + (A + 6 +2){Q
= |R|+ [Vl + (& = 8)(IPs| +1Qal) + (A + 6 +2)|Q|.

Since R = {v € V(G) | d(v) = k (mod 2)}, it holds that V5 C Rif 6 = k
(mod 2), and that Vo C R if A = k (mod 2). Recalling that VA NV; =0,
we have |R| > Is - |V5| + Ia - [Va|. Thus,

(A+1-k)n

Is - |Vs| + Ia - [Val + [Vim| + (A = 8)(|1Ps| + |Qal) + (A + 6 + 2)|Q
Ia(Vin) + Vsl + [Val) + (1 = Ia) Vil + s = Ia)IVi]

+(A = 8)(|Ps] +1Qal) + (A + 6 +2)|Q|

In-n+ (1= Ia) V| + (Is — Ia)|Vis] + (A — 6)(1Ps| +|Qal)

+(A + 6+ 2)|Q|.

Observing that A —§ > 1 > max{Js — Ia,Ian — Is} and (1 —Ia)|Va| 2

(1= IA)IQml 2 (Is — 14)|@m|, we get
(A+1—-k—1Ip)n
2 (Is = In)|Qm| + (Is = In)IVs| + (Ia — Is)| Ps| + (Is — 1a)|Qal
+(A+6+2)|Q|
(Is = 1a)(1Qm| + |Vs| — | Ps| +1Qal) + (A + 6 + 2)|Q)
(Is = In)(1Qm| + Q5| +1Qal) + (A + 6 +2)|Q)
= (A+d+2+1;-1A)Q|

Hence, we deduce that

v

A—k+1-1Ia
<n.
Rlsn ST e - 1a
from which it follows that

§-A+2k+ I+ Ip
=n— >n.
Ws(G) =n - 2@l 2 oA T T

which is exactly the desired inequality in Theorem 4. O

A vertex of degree k — 1 or k in a graph G clearly has function value 1
under all signed k-dominating functions of G. Thus, it is natural to consider
graphs with minimum degree at least k+1 (as is done in (3] for establishing
sharp upper bounds for the upper signed k-domination number). We next
show that Theorem 4 is sharp for all A > é§ > k+1. This level of sharpness
is high as it applies not only to special values of minimum and maximum

degrees.
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Theorem 5. For any integers § and A such that A > § > k + 1, there
exists an infinite family F of graphs with minimum degree § and mazimum
degree A, such that for every graph G € F,

S—A+2%k+1I5+1
s(G) = V(G| - S+A +2+I:— I: :

Proof. Fix integers A and § such that A > § > k+1. Let Hy, Ha, ..., H; be
t disjoint copies of the complete bipartite graph K, ; with vertex partition
(A,B), where |Aj=a=(0+k+14+15)/2,|Bl=b=(A—k+1-1a)/2 (it
is easy to verify that a and b are both integers), and ¢ is an arbitrary even
integer larger than A. It is also easy to checkthat 1 <a<dand1<b< A
(just note that Is = 0 when § = k+1). For each 1 < i < ¢, let A; and
B; denote the vertex partition of H; with size a and b, respectively. Let
P= U:=1 A; and Q = U:=1 B;. Note that each vertex in P is connected
to exactly b vertices in @, and each vertex in Q is adjacent to exactly a
vertices in P.

Our desired graph G has vertex set PUQ, and contains | J;_; H; as a
subgraph. Furthermore, we add some edges between vertices in P to make
G|[P] become (A — b)-regular (no edges need to be added if A = b). This
can be done in the following way: Imagine that there is a complete graph
K whose vertex set is P. Since |P| = ta is even and every complete graph
of even order is 1-factorable (see e.g. Theorem 9.1 in [10]), the edges of K
can be partitioned into |P| — 1 > A perfect matchings of K. Taking A — b
of these matchings and adding them to G certainly makes G[P] become
(A — b)-regular. Similarly, we add some edges between vertices in Q to
make G[Q] (6 — a)-regular. This finishes the construction of G. Note that
all vertices in P have degree A and those in Q have degree §, and thus G is
of minimum degree § and maximum degree A. (Note also that by varying
t, we get an infinite family of graphs with the desired properties.)

Define a function f : PUQ = {~1,1} by letting f(v) = 1 for all
v € P and f(u) = —1 for all u € Q. Then, for each v € P, f(Ng[v]) =
A+1-2b=k+1Ip >k, and for each v € Q, f(Ng[u]) =2a— (6 +1) =
k + Is > k. Therefore, f is a signed k-dominating function of G. Since
[V(G)| = |P| +|Q| and |P|/|Q| = a/b = fHEHHa | we have

2
ws(G) £ w(f)=|P|-|QI=Q1- W)W(G)l

6—A+2k+1Is+1a

= v S+A+2+;—1In

By Theorem 4, we know that the equality holds in the above formula, which
completes the proof of Theorem 5. a
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We can also derive a sharp lower bound on the signed total k-domination
number of a graph as follows.

Theorem 6. For every graph G with §(G) > k,

§(G)—-AG)+2k+2 - Isc) — IA(G)
5(G)+ AG) + IA(G) - I;(G) '

Ys(G) 2 [V(G)|-

Theorem 7. For any integers § and A such that A > 6 > k + 2, there
ezists an infinite family F of graphs with minimum degree § and mazimum
degree A, such that for every graph G € F,

§—A+2k+2-Is—1Ix
t 3 .
7kS(G) - |V(G)| 5+A+IA —I5 .

The proofs of Theorems 6 and 7 are very similar to those of Theorems 4

and 5, and thus are put in the appendix.

Theorems 4 and 6 are generalizations of Theorem 5 in [16]. The fol-
lowing corollaries, which generalize some other known results regarding
signed domination number and signed total domination number, are also
immediate from the preceding theorems.

Corollary 1. For any nearly r-regular graph G of order n with r > k,
Ys(G) = kn/(r + I,_y) and v{g(G) 2 kn/(r — I—y).

Corollary 2. Let c be a real number for which —1 < ¢ < 1. Then v,s(G) >
cn for every graph G of order n with 6(G) > k — 1 and A(G) < ((1 -
c)6(G) + 2k — 2¢)/(1 + ¢), and v£5(G) > cn for every graph G of order n
with 6(G) 2 k and A(G) < ((1 - ¢)d(G) + 2k)/(1 +¢).

Corollary 3. Let G be a graph with 6(G) > k and A(G) < §(G) + 2k.
Then vks(G) 2 0 and vig(G) > 0.
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A

Proof of Theorem 6

Proof of Theorem 6. Let G be a graph of order n and f be a signed total k-
dominating function of G. Let 6, A, P,Q, Ps, Pa, Pm,Qs, R4, @m, Vs, Va, Vin
be defined in the same way as in the proof of Theorem 4. Let R = {v €
V(G) | d(v) £ k (mod 2)} (which is different from the definition of R in the
proof of Theorem 4). Assume A > §, otherwise the theorem just becomes
Theorem 5 in [16]. Since 3 ¢y (z) f(¥) 2 & +1 for all z € R, we have:

AN

VAN ]

kn + |R|

oY) W

z€V(G) yeNg(x)
> de(@)f(=)
zeV(G)

5|Ps| + AlPal+ Y do(z) - 81Qs| — AlQal — Y da(e)

2€Py, TEQm
8| Ps| + A|Pal + (A = 1)|Pm| - 6|Qs| — AlQa| — (6 + 1)IQm|
8|Vsl + AlVa| + (A — 1)|Vim| — 26Qs| — 2A]Qa] — (A + 6)|@m|
An — (A = 8)|Vs| = |[Via| — (A + 8)IQ| + (A& - 6)|Qs] — (A = §)|Qa]
(recall that n = [Vs| +|Va| + |Vm| and |Q| = Q5| + |Qa] + [Qm])-

By our definition, it holds that |R| > (1—15)|Vs| +(1—1a)|Val. Therefore,

(A —-Fk)n

|R| + [Vim| + (& = 8)(IVs| — 1Qs| + 1Qal) + (A + 9)|QI

|R| + [Vin| + (A = 8)(|Ps| +|Qal) + (A + 6)|Q)

(1 = Is)|Vs| + (1 = Ia)[Va| + |Vin| + (A = 8)(|1Ps| + 1Qal)

+A+ )|

(1 = Ia)([Vin| + V5| + |Val) + 1a|Vim| + (Ia — I5)| V3|

+(A = 8)(|1Ps| +1Qal) + (A +6)|Q

= (1—=Ia)n+ Ia|Vi| + (Ia — Is)|Vs| + (A = 6)(|1Ps| + |Qal)
+(A +9)|Q.

v I W
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Noting that Ja|Vin| 2 (Ia — Is}|@Qm| and A — 6 > ma.x{IA —I5,Is — Ipn},
we obtain

(A—k+Ia-1)n

IalVin| + (I — Is)[Vs| + (A = &)(I1Ps] + |Qal) + (A + 8)IQ)
(In = 15)|Qm| + (Ia — I5)|Vs| + (Is — In)|Ps| + (Ia — I5)|Qal|
+(A +6)|Q

(Ia = Is)(1Qm| + 1Vs| — |Ps| + 1Qal) + (A + 8)|Q

(Ia = IRl + (A +9)|QI

(A+d6+1Ia - I5)|Q|.

v v

Hence, we have
A-k+Ip-1
<p.—— T 4"
19l <n S+A+Ip-I5"
from which it follows that

6—A+2k+2~-I5-1Ix
=n- >n-.
Ws(G)=n-20Q/ 2n —

completing the proof of Theorem 6. O

B Proof of Theorem 7

Proof of Theorem 7. Fix integers A and & such that A > § > k+2. We
proceed with the same construction used in the proof of Theorem 5, except
for settinga = (0 +k — Is+1)/2 and b = (A — k + Ip — 1)/2 instead. (It
is easy to check that a and b are integers satisfying that 1 < a < § and
1 <b < A.) The obtained graph G has vertex set PUQ, where dg(v) = A
for all v € P and dg(u) = 6 for all u € Q. Furthermore, each vertex v € P
is adjacent to exactly b vertices in @ and A — b vertices in P, while every
vertex u € @ is adjacent to precisely a vertices in P and § — a vertices in
Q. Now define a function f which assigns 1 to all vertices in P and —1
to those in Q. It is easy to verify that f is a signed total k-dominating
function of G with weight {V(G)| - t%i'_’i—'ffff:’}:—“, completing the proof
of Theorem 7. O
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