On the Signed (Total) k-Domination Number of a Graph*

Hongyu Liang[†]

Abstract

Let k be a positive integer and G = (V, E) be a graph of minimum degree at least k-1. A function $f:V\to\{-1,1\}$ is called a signed k-dominating function of G if $\sum_{u \in N_G[v]} f(u) \ge k$ for all $v \in V$. The signed k-domination number of G is the minimum value of $\sum_{v \in V} f(v)$ taken over all signed k-dominating functions of G. The signed total k-dominating function and signed total k-domination number of G can be similarly defined by changing the closed neighborhood $N_G[v]$ to the open neighborhood $N_G(v)$ in the definition. The upper signed k-domination number is the maximum value of $\sum_{v \in V} f(v)$ taken over all minimal signed k-dominating functions of G. In this paper, we study these graph parameters from both algorithmic complexity and graph-theoretic perspectives. We prove that for every fixed $k \geq 1$, the problems of computing these three parameters are all \mathcal{NP} -hard. We also present sharp lower bounds on the signed k-domination number and signed total k-domination number for general graphs in terms of their minimum and maximum degrees, generalizing several known results about signed domination.

1 Introduction

All graphs considered in this paper are simple and undirected. We generally follow [4] for standard notation and terminology in graph theory. Let G be a graph with vertex set V(G) and edge set E(G). The order of G is |V(G)|. For each vertex $v \in V(G)$, let $N_G(v) = \{u \in V(G) \mid uv \in E(G)\}$ and $N_G[v] = N_G(v) \cup \{v\}$, which are called the open neighborhood and closed neighborhood of v (in G), respectively. The degree of v (in $v \in V(G)$) is $v \in V(G)$. The minimum degree of $v \in V(G)$ is $v \in V(G)$.

^{*}This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174.

[†]Institute for Interdisciplinary Information Sciences, Tsinghua University, lianghy08@mails.tsinghua.edu.cn

and the maximum degree of G is $\Delta(G) = \max_{v \in V(G)} \{d_G(v)\}$. For an integer r, G is called r-regular if $\Delta(G) = \delta(G) = r$, and is called nearly r-regular if $\Delta(G) = r$ and $\delta(G) = r - 1$. For $S \subseteq V(G)$, G[S] is the subgraph of G induced by S; that is, G[S] is a graph with vertex set S and edge set $\{uv \in E(G) \mid \{u,v\} \subseteq S\}$. For an integer $n \geq 1$, let K_n denote the complete graph of order n; i.e., K_n is an (n-1)-regular graph of order n. For any function $f: V(G) \to \mathbb{R}$, we write $f(S) = \sum_{v \in S} f(v)$ for all $S \subseteq V(G)$, and the weight of f is w(f) = f(V(G)).

Domination is an important subject in graph theory, and has numerous applications in other fields; see [11, 12] for comprehensive treatment and detailed surveys on (earlier) results in domination theory from both theoretical and applied perspectives. A set $S \subseteq V(G)$ is called a dominating set (resp. total dominating set) of G if $\bigcup_{v \in S} N_G[v] = V(G)$ (resp. $\bigcup_{v \in S} N_G(v) = V(G)$). The domination number (resp. total domination number) of G, denoted by $\gamma(G)$ (resp. $\gamma_t(G)$), is the minimum size of a dominating set (resp. total dominating set) of G.

Let $k \geq 1$ be a fixed integer and G be a graph of minimum degree at least k-1. A function $f:V(G)\to\{-1,1\}$ is called a signed k-dominating function of G if $f(N_G[v]) \geq k$ for all $v \in V(G)$. The signed k-domination number of G, denoted by $\gamma_{kS}(G)$, is the minimum weight of a signed kdominating function of G. When G is of minimum degree at least k, the signed total k-dominating function and signed total k-domination number of G (denoted by $\gamma_{kS}^t(G)$) can be analogously defined by changing the closed neighborhood $N_G[v]$ to the open neighborhood $N_G(v)$ in the definition. The concepts of signed k-domination number and signed total k-domination number are introduced in [16], where sharp lower bounds of these numbers are established for general graphs, bipartite graphs and r-regular graphs in terms of the order of the graphs. A related graph parameter called the upper signed k-domination number of G, denoted by $\Gamma_{kS}(G)$, is defined in [17] as the maximum weight of a minimal signed k-dominating function of G. (A signed k-dominating function f of G is called minimal if there exists no signed k-dominating function f' of G such that $f' \neq f$ and $f'(v) \leq f(v)$ for every $v \in V(G)$.) This parameter has also been studied in [3].

In the special case where k=1, the signed k-domination number and signed total k-domination number are exactly the signed domination number [5] and signed total domination number [18], respectively. These two parameters have been extensively studied in the literature; see e.g. [1, 2, 5, 6, 7, 9, 13, 14, 18, 19] and the references therein.

In this paper, we continue the investigation of the signed k-domination number and signed total k-domination number of graphs, from both algorithmic complexity and graph theoretic points of view. In Section 2 we show that, for every fixed $k \geq 1$, the problems of computing the signed k-domination number, the signed total k-domination number, and the upper

signed k-domination number of a graph are all \mathcal{NP} -hard. We then present, in Section 3, sharp lower bounds on the signed k-domination number and signed total k-domination number for general graphs in terms of their minimum and maximum degrees, from which several interesting results follow immediately.

2 Complexity of Signed (Total) k-Domination

In this section we first show the \mathcal{NP} -hardness of computing the signed k-domination number and signed total k-domination number of a graph for all $k \geq 1$. Since the proofs for the two parameters are very similar, we only detail the proof for the signed total k-domination number, and merely point out the changes that need to be made for establishing hardness for the signed k-domination number. We now formally define the two decision problems corresponding to the computation of these two graph parameters.

SIGNED k-DOMINATION PROBLEM (SkDP)

Instance: A graph G = (V, E) and an integer r.

Question: Is $\gamma_{kS}(G) \leq r$?

SIGNED TOTAL k-DOMINATION PROBLEM (STkDP)

Instance: A graph G = (V, E) and an integer r.

Question: Is $\gamma_{kS}^t(G) \leq r$?

Theorem 1. For every integer $k \geq 1$, the STkDP problem is \mathcal{NP} -complete.

Proof. Let $k \geq 1$ be a fixed integer. The STkDP problem is clearly in \mathcal{NP} . We now present a polynomial-time reduction from MINIMUM TOTAL DOMINATING SET (MTDS), which is a classical \mathcal{NP} -complete problem [8], to STkDP. The MTDS problem is defined as follows: Given a graph G and an integer r, decide whether G has a total dominating set of size at most r.

Let (G,r) be an instance of the MTDS problem. Construct another graph H as follows. First let H contain of a copy of G, which is denoted by G'. Also, for each vertex $v \in V(G)$, let v' denote its counterpart in G'. For each $v \in V(G)$, we add t(v) disjoint copies of K_{k+2} to H, where $t(v) = d_G(v) + k - 2$; call these copies $K_{k+2}^{v,1}, K_{k+2}^{v,2}, \dots, K_{k+2}^{v,t(v)}$. Then, for each $i \in \{1, 2, \dots, t(v)\}$, add an edge between v' and an (arbitrary) vertex from $K_{k+2}^{v,i}$. This finishes the construction of H. It is easy to verify that $d_H(v') = 2d_G(v) + k - 2$ for all $v \in V(G)$.

Let $T = (k+2) \sum_{v \in V(G)} t(v) = (k+2) \sum_{v \in V(G)} (k+d_G(v)-2)$ be the number of vertices in $V(H \setminus G')$. We will prove that $\gamma_t(G) \leq r$ if and only if $\gamma_{kS}^t(H) \leq 2r - |V(G)| + T$.

First consider the "if" direction. Assume that $\gamma_{kS}^t(H) \leq 2r - |V(G)| + T$, and $f:V(H) \to \{-1,1\}$ is a signed total k-dominating function of H of weight $\gamma_{kS}^t(H)$. Let $S' = \{v' \in V(G') \mid f(v') = 1\}$. It is easy to see that, for each $v \in V(G)$ and $1 \leq i \leq t(v)$, all vertices in $K_{k+2}^{v,i}$ must have function value "1" under f. It follows that $\gamma_{kS}^t(H) = w(f) = T + |S'| - (|V(G')| - |S'|) = 2|S'| - |V(G)| + T$. Since $\gamma_{kS}^t(H) \leq 2r - |V(G)| + T$, we have $|S'| \leq r$. Now define $S = \{v \in V(G) \mid v' \in S'\}$; i.e., S is the counterpart of S' in G. We show that S is a total dominating set of G. Assume to the contrary that S is not a total dominating set of G, and let $v \in V(G)$ be such that $N_G(v) \cap S = \emptyset$. By our definitions of S and S', f(u') = -1 for all $u \in N_G(v)$. Thus, $\sum_{x \in N_H(v')} f(x) \leq t(v) - d_G(v) = k - 2$, contradicting with the fact that f is a signed total k-dominating function of H. Therefore, S' is indeed a total dominating set of G, from which $\gamma_t(G) \leq |S'| \leq r$ follows. This completes the proof for the "if" direction.

Now comes the "only if" part of the reduction. Suppose $\gamma_t(G) \leq r$ and $S \subseteq V(G)$ is a total dominating set of G of size at most r. Define a function $f:V(H) \to \{-1,1\}$ as follows: f(x) = -1 if x = v' for some $v \in V(G) \setminus S$, and f(x) = 1 otherwise. The weight of f is $T + |S| - (|V(G)| - |S|) = 2|S| - |V(G)| + T \leq 2r - |V(G)| + T$. We now verify that f is a signed total k-dominating function of H. For each $x \in V(H \setminus G')$, $f(N_H(x)) \geq (k+1) - 1 = k$. For each $v' \in V(G')$ (with $v \in V(G)$), since S is a total dominating set of G, $f(N_H(v')) \geq t(v) + 1 - (d_G(v) - 1) = t(v) + 2 - d_G(v) = k$. Hence, f is a signed total k-dominating function of H of weight at most 2r - |V(G)| + T. This completes the "only if" part of the reduction.

Therefore, $\gamma_t(G) \leq r$ if and only if $\gamma_{kS}^t(H) \leq 2r - |V(G)| + T$. This finishes the whole reduction, and hence concludes the proof of Theorem 1.

Theorem 2. For every integer $k \ge 1$, the SkDP problem is \mathcal{NP} -complete.

Proof. The proof is very similar to that of Theorem 1, with two differences in the reduction. Therefore, we only describe the reduction. We reduce from the \mathcal{NP} -complete problem MINIMUM DOMINATING SET (which, given a graph G and an integer r, needs to decide whether G has a dominating set of size at most r) to SkDP. Let (G,r) be an instance of MINIMUM DOMINATING SET. Construct another graph H as follows. First let H contain of a copy of G, which is denoted by G'. For each vertex $v \in V(G)$, add s(v) disjoint copies of K_{k+1} to H, where $s(v) = d_G(v) + k - 1$; call these copies $K_{k+1}^{v,1}, K_{k+1}^{v,2}, \ldots, K_{k+1}^{v,s(v)}$. Then, for each $i \in \{1, 2, \ldots, s(v)\}$, add an edge between v' (the counterpart of v in G') and an arbitrary vertex from $K_{k+1}^{v,i}$. This finishes the construction of H. Using similar argument to that in Theorem 1, we can prove that $\gamma(G) \leq r$ if and only

if $\gamma_{kS}(H) \leq 2r - |V(G)| + T$, where $T = (k+1) \sum_{v \in V(G)} s(v)$. The \mathcal{NP} -completeness of SkDP is thus established.

We now define the problem corresponding to the computation of the upper signed k-domination number of graphs as follows.

Upper Signed k-Domination Problem (USkDP)

Instance: A graph G = (V, E) and an integer r.

Question: Is $\Gamma_{kS}(G) \geq r$?

Theorem 3. For every integer $k \geq 1$, the USkDP problem is \mathcal{NP} -complete.

Proof. The USkDP problem is in \mathcal{NP} because given a function $f:V(G) \to \{-1,1\}$, we can verify in polynomial time whether f is a minimal signed k-dominating function of G using Lemma 4 in [3]. We will describe a polynomial time reduction from the 1-in-3 SAT problem to it. The 1-in-3 SAT problem is defined as follows: Given a Boolean formula in conjunctive normal form, each clause of which contains exactly three positive literals (i.e., variables with no negations), decide whether the formula is 1-in-3 satisfiable, i.e., if there exists an assignment of the variables such that exactly one variable of each clause is assigned TRUE. This problem is known to be \mathcal{NP} -complete [15].

Let F be a Boolean formula with variables $\{x_1, x_2, \ldots, x_n\}$, which is an input of the 1-in-3 SAT problem. Assume $F = \bigwedge_{i=1}^m c_i$ where $c_i = (x_{i_1} \lor x_{i_2} \lor x_{i_3})$ for each $i \in \{1, 2, \ldots, m\}$. We construct a graph G as follows. Take m disjoint copies of K_{k+2} , each of which corresponds to a clause c_i with $i \in \{1, 2, \ldots, m\}$, and n disjoint copies of K_{k+3} (also disjoint from the copies of K_{k+2} 's) each of which corresponds to a variable x_j with $j \in \{1, 2, \ldots, n\}$. Delete one edge from each copy of K_{k+3} . We will call the copy of K_{k+2} corresponding to c_i the i-th clause block, and call the copy of K_{k+3} (with one edge missing) corresponding to x_j the j-th variable block. For each $i \in \{1, 2, \ldots, m\}$, let c_i' be an (arbitrary) vertex in the i-th clause block. For every $j \in \{1, 2, \ldots, n\}$, let x_j' and x_j'' be the two vertices in the j-th variable block for which the edge $x_j'x_j''$ is removed. For each clause $c_i = (x_{i_1} \lor x_{i_2} \lor x_{i_3})$, add three cross-block edges $c_i'x_{i_1}', c_i'x_{i_2}',$ and $c_i'x_{i_3}'$. This finishes the construction of G. Note that |V(G)| = (k+3)n + (k+2)m.

We claim that $\Gamma_{kS}(G) \geq (k+1)n + (k+2)m$ if and only if F is 1-in-3 satisfiable. First consider the "if" direction, and let $\mathcal{A}: \{x_1, x_2, \ldots, x_n\} \rightarrow \{\text{TRUE, FALSE}\}$ be an assignment that witnesses the 1-in-3 satisfiability of F. Define $f: V(G) \rightarrow \{-1, 1\}$ as follows: For each $j \in \{1, 2, \ldots, n\}$, let

$$f(x'_j) = \begin{cases} 1 & \text{if } \mathcal{A}(x_j) = \text{TRUE}; \\ -1 & \text{if } \mathcal{A}(x_j) = \text{FALSE} \end{cases}$$

and

$$f(x_j'') = \begin{cases} -1 & \text{if } \mathcal{A}(x_j) = \text{TRUE}; \\ 1 & \text{if } \mathcal{A}(x_j) = \text{FALSE}. \end{cases}$$

Let f(v) = 1 for all $v \in V(G) \setminus \bigcup_{j=1}^{n} \{x'_j, x''_j\}$.

Clearly, w(f) = (k+1)n + (k+2)m. Since exactly one of $\mathcal{A}(x_{i_1})$, $\mathcal{A}(x_{i_2})$ and $\mathcal{A}(x_{i_3})$ is TRUE for each $1 \leq i \leq m$, it is easy to verify that f is a signed k-dominating function of G. We next prove that f is minimal, that is, for every vertex $v \in V(G)$ with f(v) = 1 there exists $u \in N_G[v]$ for which $f(N_G[u]) \in \{k, k+1\}$ (see [3]). For every $j \in \{1, 2, \ldots, n\}$, there is (at least) one vertex u in the j-th variable block such that $u \notin \{x'_j, x''_j\}$. This vertex u is adjacent to all other vertices in the j-th variable block, and clearly $f(N_G[u]) = k+1$. For every $i \in \{1, 2, \ldots, m\}$, c'_i is adjacent to all other vertices in the i-th clause block, and $f(N_G[c'_i]) = (k+2) + (1-2) = k+1$ since exactly one of $f(x'_{i_1}), f(x'_{i_2})$ and $f(x'_{i_3})$ is 1. Therefore, f is indeed a minimal signed k-dominating function of G with weight (k+1)n + (k+2)m, and the correctness of the "if" direction follows.

We now turn to the "only if" part of the claim. Assume that f is a minimal signed k-dominating function of G of weight at least (k+1)n +(k+2)m. If for some $j \in \{1,2,\ldots,n\}$, the vertices in the j-th variable block all have value 1 under f, then $f(N_G[v]) \ge k+2$ for every $v \ne x_i'$ in the j-th variable block. Thus, there is no $u \in N_G[x_i'']$ such that $f(N_G[u]) \in$ $\{k, k+1\}$, which violates the minimality of f. Hence, at least one vertex from each variable block must have value -1 under f, implying that $w(f) \le$ (k+1)n+(k+2)m. We thus have w(f)=(k+1)n+(k+2)m, and therefore (1) f(v) = 1 for every vertex v in the clause blocks, and (2) for each $j \in \{1, 2, ..., n\}, f(v) = -1$ for exactly one vertex v in the j-th variable block. Now produce an assignment A as follows: For each $j \in \{1, 2, ..., n\}$, let $A(x_j)$ =TRUE if $f(x_j') = 1$, and $A(x_j)$ =FALSE otherwise. For every $i \in \{1, 2, ..., m\}$, we have $k \le f(N_G[c_i']) = (k+2) + f(x_{i_1}) + f(x_{i_2}) + f(x_{i_3})$, and thus at least one of $f(x_{i_1})$, $f(x_{i_2})$ and $f(x_{i_3})$ must be 1. Assume that at least two of the three values are 1. Then $f(N_G[c_i]) \geq k+3$, and obviously $f(N_G[v]) = k + 2$ for every other vertex v in the i-th clause block. This indicates, however, that a vertex $v \neq c'_i$ in the *i*-th clause block does not have any neighbor (including itself) whose closed-neighborhood-sum is kor k+1, contradicting with the minimality of f. Accordingly, exactly one of $f(x_{i_1}), f(x_{i_2})$ and $f(x_{i_3})$ is 1, and thus exactly one of $\mathcal{A}(x_{i_1}), \mathcal{A}(x_{i_2})$ and $\mathcal{A}(x_{i_3})$ is TRUE, for every $i \in \{1, 2, ..., n\}$. Therefore, F is 1-in-3 satisfiable, finishing the proof of the "only if" part of the reduction.

The reduction is completed and the \mathcal{NP} -completeness of USkDP is thus established.

3 Sharp Lower Bounds on $\gamma_{kS}(G)$ and $\gamma_{kS}^t(G)$

In this section we present sharp lower bounds on $\gamma_{kS}(G)$ and $\gamma_{kS}^t(G)$ in terms of the minimum and maximum degrees of G. Let $k \geq 1$ be a fixed integer throughout this section. For each integer n, define $I_n = 1$ if $n \equiv k \pmod{2}$, and $I_n = 0$ otherwise; that is, I_n is the indicator variable of whether n and k have the same parity.

Theorem 4. For every graph G with $\delta(G) \geq k-1$,

$$\gamma_{kS}(G) \ge |V(G)| \cdot \frac{\delta(G) - \Delta(G) + 2k + I_{\delta(G)} + I_{\Delta(G)}}{\delta(G) + \Delta(G) + 2 + I_{\delta(G)} - I_{\Delta(G)}}.$$

Proof. Let G be a graph of order n with $\delta(G) \geq k-1$. For notational simplicity, we write δ and Δ to denote $\delta(G)$ and $\Delta(G)$ respectively. When $\delta = \Delta$, it is easy to verify that the theorem degenerates to Theorem 5 in [16]. Thus, we assume in what follows that $\Delta \geq \delta + 1$. Let f be a signed k-dominating function of G of weight $\gamma_{kS}(G)$. We need to introduce some notations. Let $P = \{v \in V(G) \mid f(v) = 1\}$ and $Q = V(G) \setminus P = \{v \in V(G) \mid f(v) = -1\}$. Furthermore, denote $P_{\delta} = \{v \in P \mid d_G(v) = \delta\}$, $P_{\Delta} = \{v \in P \mid d_G(v) = \Delta\}$, and $P_m = P \setminus (P_{\delta} \cup P_{\Delta})$. Define Q_{δ} , Q_{Δ} , and Q_m analogously. For each $c \in \{\delta, \Delta, m\}$, let $V_c = P_c \cup Q_c$. Notice that $V_{\delta} \cap V_{\Delta} = \emptyset$ since $\Delta > \delta$. Let $R = \{v \in V(G) \mid d_G(v) \equiv k \pmod{2}\}$. Clearly $\sum_{y \in N_G[x]} f(y) \geq k + 1$ for each $x \in R$. Thus, we have

$$kn + |R| \le \sum_{x \in V(G)} \sum_{y \in N_G[x]} f(y) = \sum_{x \in V(G)} (d_G(x) + 1) f(x)$$

$$= (\delta + 1)|P_{\delta}| + (\Delta + 1)|P_{\Delta}| + \sum_{x \in P_m} (d_G(x) + 1) - (\delta + 1)|Q_{\delta}|$$

$$-(\Delta + 1)|Q_{\Delta}| - \sum_{x \in Q_m} (d_G(x) + 1)$$

$$\le (\delta + 1)|P_{\delta}| + (\Delta + 1)|P_{\Delta}| + \Delta|P_m| - (\delta + 1)|Q_{\delta}| - (\Delta + 1)|Q_{\Delta}|$$

$$-(\delta + 2)|Q_m|$$
(since $\delta + 1 \le d_G(x) \le \Delta - 1$ for each $x \in P_m \cup Q_m$)
$$= (\delta + 1)|V_{\delta}| + (\Delta + 1)|V_{\Delta}| + \Delta|V_m| - 2(\delta + 1)|Q_{\delta}| - 2(\Delta + 1)|Q_{\Delta}|$$

$$-(\Delta + \delta + 2)|Q_m|$$

$$= (\Delta + 1)n - (\Delta - \delta)|V_{\delta}| - |V_m| - (\Delta + \delta + 2)|Q| + (\Delta - \delta)|Q_{\delta}|$$

$$-(\Delta - \delta)|Q_{\Delta}|$$
(note that $n = |V_{\delta}| + |V_{\Delta}| + |V_m|$ and $|Q| = |Q_{\delta}| + |Q_{\Delta}| + |Q_m|$).

Therefore,

$$\begin{split} & (\Delta + 1 - k)n \\ & \geq |R| + |V_m| + (\Delta - \delta)(|V_{\delta}| - |Q_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta + 2)|Q| \\ & = |R| + |V_m| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta + 2)|Q|. \end{split}$$

Since $R = \{v \in V(G) \mid d(v) \equiv k \pmod{2}\}$, it holds that $V_{\delta} \subseteq R$ if $\delta \equiv k \pmod{2}$, and that $V_{\Delta} \subseteq R$ if $\Delta \equiv k \pmod{2}$. Recalling that $V_{\Delta} \cap V_{\delta} = \emptyset$, we have $|R| \geq I_{\delta} \cdot |V_{\delta}| + I_{\Delta} \cdot |V_{\Delta}|$. Thus,

$$\begin{aligned} &(\Delta + 1 - k)n \\ &\geq I_{\delta} \cdot |V_{\delta}| + I_{\Delta} \cdot |V_{\Delta}| + |V_{m}| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta + 2)|Q| \\ &= I_{\Delta}(|V_{m}| + |V_{\delta}| + |V_{\Delta}|) + (1 - I_{\Delta})|V_{m}| + (I_{\delta} - I_{\Delta})|V_{\delta}| \\ &+ (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta + 2)|Q| \\ &= I_{\Delta} \cdot n + (1 - I_{\Delta})|V_{m}| + (I_{\delta} - I_{\Delta})|V_{\delta}| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) \\ &+ (\Delta + \delta + 2)|Q|. \end{aligned}$$

Observing that $\Delta - \delta \ge 1 \ge \max\{I_{\delta} - I_{\Delta}, I_{\Delta} - I_{\delta}\}$ and $(1 - I_{\Delta})|V_m| \ge (1 - I_{\Delta})|Q_m| \ge (I_{\delta} - I_{\Delta})|Q_m|$, we get

$$\begin{split} &(\Delta + 1 - k - I_{\Delta})n \\ &\geq &(I_{\delta} - I_{\Delta})|Q_{m}| + (I_{\delta} - I_{\Delta})|V_{\delta}| + (I_{\Delta} - I_{\delta})|P_{\delta}| + (I_{\delta} - I_{\Delta})|Q_{\Delta}| \\ &+ (\Delta + \delta + 2)|Q| \\ &= &(I_{\delta} - I_{\Delta})(|Q_{m}| + |V_{\delta}| - |P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta + 2)|Q| \\ &= &(I_{\delta} - I_{\Delta})(|Q_{m}| + |Q_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta + 2)|Q| \\ &= &(\Delta + \delta + 2 + I_{\delta} - I_{\Delta})|Q|. \end{split}$$

Hence, we deduce that

$$|Q| \le n \cdot \frac{\Delta - k + 1 - I_{\Delta}}{\delta + \Delta + 2 + I_{\delta} - I_{\Delta}} ,$$

from which it follows that

$$\gamma_{kS}(G) = n - 2|Q| \ge n \cdot \frac{\delta - \Delta + 2k + I_{\delta} + I_{\Delta}}{\delta + \Delta + 2 + I_{\delta} - I_{\Delta}},$$

which is exactly the desired inequality in Theorem 4.

A vertex of degree k-1 or k in a graph G clearly has function value 1 under all signed k-dominating functions of G. Thus, it is natural to consider graphs with minimum degree at least k+1 (as is done in [3] for establishing sharp upper bounds for the upper signed k-domination number). We next show that Theorem 4 is sharp for all $\Delta \geq \delta \geq k+1$. This level of sharpness is high as it applies not only to special values of minimum and maximum degrees.

Theorem 5. For any integers δ and Δ such that $\Delta \geq \delta \geq k+1$, there exists an infinite family \mathcal{F} of graphs with minimum degree δ and maximum degree Δ , such that for every graph $G \in \mathcal{F}$,

$$\gamma_{kS}(G) = |V(G)| \cdot \frac{\delta - \Delta + 2k + I_{\delta} + I_{\Delta}}{\delta + \Delta + 2 + I_{\delta} - I_{\Delta}} \ .$$

Proof. Fix integers Δ and δ such that $\Delta \geq \delta \geq k+1$. Let H_1, H_2, \ldots, H_t be t disjoint copies of the complete bipartite graph $K_{a,b}$ with vertex partition (A,B), where $|A|=a=(\delta+k+1+I_{\delta})/2$, $|B|=b=(\Delta-k+1-I_{\Delta})/2$ (it is easy to verify that a and b are both integers), and t is an arbitrary even integer larger than Δ . It is also easy to check that $1\leq a\leq \delta$ and $1\leq b\leq \Delta$ (just note that $I_{\delta}=0$ when $\delta=k+1$). For each $1\leq i\leq t$, let A_i and B_i denote the vertex partition of H_i with size a and b, respectively. Let $P=\bigcup_{i=1}^t A_i$ and $Q=\bigcup_{i=1}^t B_i$. Note that each vertex in P is connected to exactly b vertices in Q, and each vertex in Q is adjacent to exactly a vertices in a.

Our desired graph G has vertex set $P \cup Q$, and contains $\bigcup_{i=1}^t H_i$ as a subgraph. Furthermore, we add some edges between vertices in P to make G[P] become $(\Delta - b)$ -regular (no edges need to be added if $\Delta = b$). This can be done in the following way: Imagine that there is a complete graph K whose vertex set is P. Since |P| = ta is even and every complete graph of even order is 1-factorable (see e.g. Theorem 9.1 in [10]), the edges of K can be partitioned into $|P| - 1 \ge \Delta$ perfect matchings of K. Taking $\Delta - b$ of these matchings and adding them to G certainly makes G[P] become $(\Delta - b)$ -regular. Similarly, we add some edges between vertices in G to make G[G] (G - G - G - G - G and those in G have degree G and thus G is of minimum degree G and maximum degree G. (Note also that by varying G to graphs with the desired properties.)

Define a function $f: P \cup Q \to \{-1,1\}$ by letting f(v) = 1 for all $v \in P$ and f(u) = -1 for all $u \in Q$. Then, for each $v \in P$, $f(N_G[v]) = \Delta + 1 - 2b = k + I_{\Delta} \ge k$, and for each $u \in Q$, $f(N_G[u]) = 2a - (\delta + 1) = k + I_{\delta} \ge k$. Therefore, f is a signed k-dominating function of G. Since |V(G)| = |P| + |Q| and $|P|/|Q| = a/b = \frac{\delta + k + 1 + I_{\delta}}{\Delta - k + 1 - I_{\delta}}$, we have

$$\gamma_{kS}(G) \leq w(f) = |P| - |Q| = \left(1 - \frac{2}{|P|/|Q| + 1}\right)|V(G)|$$

$$= |V(G)| \cdot \frac{\delta - \Delta + 2k + I_{\delta} + I_{\Delta}}{\delta + \Delta + 2 + I_{\delta} - I_{\Delta}}.$$

By Theorem 4, we know that the equality holds in the above formula, which completes the proof of Theorem 5. \Box

We can also derive a sharp lower bound on the signed total k-domination number of a graph as follows.

Theorem 6. For every graph G with $\delta(G) \geq k$,

$$\gamma_{kS}^{\mathbf{t}}(G) \ge |V(G)| \cdot \frac{\delta(G) - \Delta(G) + 2k + 2 - I_{\delta(G)} - I_{\Delta(G)}}{\delta(G) + \Delta(G) + I_{\Delta(G)} - I_{\delta(G)}}.$$

Theorem 7. For any integers δ and Δ such that $\Delta \geq \delta \geq k+2$, there exists an infinite family \mathcal{F} of graphs with minimum degree δ and maximum degree Δ , such that for every graph $G \in \mathcal{F}$,

$$\gamma_{kS}^t(G) = |V(G)| \cdot \frac{\delta - \Delta + 2k + 2 - I_{\delta} - I_{\Delta}}{\delta + \Delta + I_{\Delta} - I_{\delta}} .$$

The proofs of Theorems 6 and 7 are very similar to those of Theorems 4 and 5, and thus are put in the appendix.

Theorems 4 and 6 are generalizations of Theorem 5 in [16]. The following corollaries, which generalize some other known results regarding signed domination number and signed total domination number, are also immediate from the preceding theorems.

Corollary 1. For any nearly r-regular graph G of order n with $r \geq k$, $\gamma_{kS}(G) \geq kn/(r + I_{r-1})$ and $\gamma_{kS}^t(G) \geq kn/(r - I_{r-1})$.

Corollary 2. Let c be a real number for which $-1 < c \le 1$. Then $\gamma_{kS}(G) \ge cn$ for every graph G of order n with $\delta(G) \ge k - 1$ and $\Delta(G) \le ((1 - c)\delta(G) + 2k - 2c)/(1 + c)$, and $\gamma_{kS}^t(G) \ge cn$ for every graph G of order n with $\delta(G) \ge k$ and $\Delta(G) \le ((1 - c)\delta(G) + 2k)/(1 + c)$.

Corollary 3. Let G be a graph with $\delta(G) \geq k$ and $\Delta(G) \leq \delta(G) + 2k$. Then $\gamma_{kS}(G) \geq 0$ and $\gamma_{kS}^t(G) \geq 0$.

References

- [1] W. Chen and E. Song. Lower bounds on several versions of signed domination number. *Discrete Math.*, 308:1837-1846, 2008.
- [2] E.J. Cockayne and C.M. Mynhardt. On a generalization of signed dominating function of graphs. Ars Combin., 43:235-245, 1996.
- [3] D. Delić and C. Wang. Upper signed k-domination in a general graph. Inform. Process. Lett., 110:662-665, 2010.
- [4] R. Diestel. Graph Theory. Springer-Verlag, fourth edition, 2010.

- [5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater. Signed domination in graphs. Graph Theory, Combinatorics, and Applications, 1:311-322, 1995.
- [6] O. Favaron. Signed domination in regular graphs. Discrete Math., 158:287-293, 1996.
- [7] Z. Furedi and D. Mubayi. Signed domination in regular graphs and set-systems. J. Combin. Theory Ser. B, 76:223-239, 1999.
- [8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
- [9] R. Haas and T.B. Wexler. Bounds on the signed domination number of a graph. *Electron. Notes Discrete Math.*, 11:742-750, 2002.
- [10] F. Harary. Graph Theory. Addison-Wesley, 1969.
- [11] T.W. Haynes, S.T. Hedetniemi ST, and P.J. Slater. Domination in Graphs: Advanced Topics. Marcel Dekker, 1998.
- [12] T.W. Haynes, S.T. Hedetniemi ST, and P.J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, 1998.
- [13] M.A. Henning. Signed total domination in graphs. *Discrete Math.*, 278:109-125, 2004.
- [14] J. Matousek. On the signed domination in graphs. *Combinatorica*, 20:103-108, 2000.
- [15] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC), pages 216-226, 1978.
- [16] C. Wang. The signed k-domination numbers in graphs. Ars Combin., in press.
- [17] C. Wang. Upper signed k-domination in graphs. Manuscript.
- [18] B. Zelinka. Signed total domination number of a graph. Czechoslovak Math. J., 51:225-229, 2001.
- [19] Z. Zhang, B. Xu, Y. Li, and L. Liu. A note on the lower bounds of signed domination number of a graph. *Discrete Math.*, 195:295-298, 1999.

A Proof of Theorem 6

Proof of Theorem 6. Let G be a graph of order n and f be a signed total k-dominating function of G. Let $\delta, \Delta, P, Q, P_{\delta}, P_{\Delta}, P_m, Q_{\delta}, Q_{\Delta}, Q_m, V_{\delta}, V_{\Delta}, V_m$ be defined in the same way as in the proof of Theorem 4. Let $R = \{v \in V(G) \mid d(v) \not\equiv k \pmod{2}\}$ (which is different from the definition of R in the proof of Theorem 4). Assume $\Delta > \delta$, otherwise the theorem just becomes Theorem 5 in [16]. Since $\sum_{v \in N_G(x)} f(v) \geq k+1$ for all $x \in R$, we have:

$$kn + |R| \le \sum_{x \in V(G)} \sum_{y \in N_G(x)} f(y)$$

$$= \sum_{x \in V(G)} d_G(x) f(x)$$

$$= \delta |P_{\delta}| + \Delta |P_{\Delta}| + \sum_{x \in P_m} d_G(x) - \delta |Q_{\delta}| - \Delta |Q_{\Delta}| - \sum_{x \in Q_m} d_G(x)$$

$$\le \delta |P_{\delta}| + \Delta |P_{\Delta}| + (\Delta - 1)|P_m| - \delta |Q_{\delta}| - \Delta |Q_{\Delta}| - (\delta + 1)|Q_m|$$

$$= \delta |V_{\delta}| + \Delta |V_{\Delta}| + (\Delta - 1)|V_m| - 2\delta |Q_{\delta}| - 2\Delta |Q_{\Delta}| - (\Delta + \delta)|Q_m|$$

$$= \Delta n - (\Delta - \delta)|V_{\delta}| - |V_m| - (\Delta + \delta)|Q| + (\Delta - \delta)|Q_{\delta}| - (\Delta - \delta)|Q_{\Delta}|$$
(recall that $n = |V_{\delta}| + |V_{\Delta}| + |V_m|$ and $|Q| = |Q_{\delta}| + |Q_{\Delta}| + |Q_m|$).

By our definition, it holds that $|R| \ge (1 - I_{\delta})|V_{\delta}| + (1 - I_{\Delta})|V_{\Delta}|$. Therefore,

$$\begin{split} &(\Delta - k)n \\ &\geq |R| + |V_m| + (\Delta - \delta)(|V_{\delta}| - |Q_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta)|Q| \\ &= |R| + |V_m| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta)|Q| \\ &\geq (1 - I_{\delta})|V_{\delta}| + (1 - I_{\Delta})|V_{\Delta}| + |V_m| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) \\ &+ (\Delta + \delta)|Q| \\ &= (1 - I_{\Delta})(|V_m| + |V_{\delta}| + |V_{\Delta}|) + I_{\Delta}|V_m| + (I_{\Delta} - I_{\delta})|V_{\delta}| \\ &+ (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta)|Q| \\ &= (1 - I_{\Delta})n + I_{\Delta}|V_m| + (I_{\Delta} - I_{\delta})|V_{\delta}| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) \\ &+ (\Delta + \delta)|Q|. \end{split}$$

Noting that $I_{\Delta}|V_m| \geq (I_{\Delta} - I_{\delta})|Q_m|$ and $\Delta - \delta \geq \max\{I_{\Delta} - I_{\delta}, I_{\delta} - I_{\Delta}\}$, we obtain

$$\begin{split} &(\Delta - k + I_{\Delta} - 1)n \\ &\geq I_{\Delta}|V_{m}| + (I_{\Delta} - I_{\delta})|V_{\delta}| + (\Delta - \delta)(|P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta)|Q| \\ &\geq (I_{\Delta} - I_{\delta})|Q_{m}| + (I_{\Delta} - I_{\delta})|V_{\delta}| + (I_{\delta} - I_{\Delta})|P_{\delta}| + (I_{\Delta} - I_{\delta})|Q_{\Delta}| \\ &+ (\Delta + \delta)|Q| \\ &= (I_{\Delta} - I_{\delta})(|Q_{m}| + |V_{\delta}| - |P_{\delta}| + |Q_{\Delta}|) + (\Delta + \delta)|Q| \\ &= (I_{\Delta} - I_{\delta})|Q| + (\Delta + \delta)|Q| \\ &= (\Delta + \delta + I_{\Delta} - I_{\delta})|Q|. \end{split}$$

Hence, we have

$$|Q| \le n \cdot \frac{\Delta - k + I_{\Delta} - 1}{\delta + \Delta + I_{\Delta} - I_{\delta}}$$

from which it follows that

$$\gamma_{kS}(G) = n - 2|Q| \ge n \cdot \frac{\delta - \Delta + 2k + 2 - I_{\delta} - I_{\Delta}}{\delta + \Delta + I_{\Delta} - I_{\delta}},$$

completing the proof of Theorem 6.

B Proof of Theorem 7

Proof of Theorem 7. Fix integers Δ and δ such that $\Delta \geq \delta \geq k+2$. We proceed with the same construction used in the proof of Theorem 5, except for setting $a=(\delta+k-I_{\delta}+1)/2$ and $b=(\Delta-k+I_{\Delta}-1)/2$ instead. (It is easy to check that a and b are integers satisfying that $1\leq a\leq \delta$ and $1\leq b\leq \Delta$.) The obtained graph G has vertex set $P\cup Q$, where $d_G(v)=\Delta$ for all $v\in P$ and $d_G(u)=\delta$ for all $u\in Q$. Furthermore, each vertex $v\in P$ is adjacent to exactly b vertices in Q and $\Delta-b$ vertices in P, while every vertex $u\in Q$ is adjacent to precisely a vertices in P and a0. Now define a function a1 which assigns 1 to all vertices in a2 and a3 vertices in a4. The same in a5 is a signed total a6-dominating function of a6 with weight a6 vertices in a7. Completing the proof of Theorem 7.