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Abstract

Like the Coxeter graph became reattached into the Klein graph in
{3], the Levi graphs of the 93 and 103 self-dual configurations, known
as the Pappus and Desargues (k-transitive) graphs P and D (where
k = 3), also admit reattachments of the distance-(k — 1) graphs of
half of their oriented shortest cycles via orientation assignments on
their common (k — 1)-arcs, concurrent for P and opposite for D, now
into 2 disjoint copies of their corresponding Menger graphs. Here,
P is the unique cubic distance-transitive (or CDT) graph with the
concurrent-reattachment behavior while D is one of 7 CDT graphs
with the opposite-reattachment behavior, that include the Coxeter
graph. Thus, P and D confront each other in these respects, ob-
tained via C-ultrahomogeneous graph techniques [4, 5] that allow to
characterize the obtained reattachment Menger graphs in the same
terms.

1 Preliminaries

Given a collection C of (di)graphs closed under isomorphisms, a (di)graph
G is said to be C-ultrahomogeneous (or C-UH) [4, 5] if every isomorphism
between 2 induced members of C in G extends to an automorphism of G.
If C = {H} is the isomorphism class of a (di)graph H, we say that such a
G is {H}-UH (or H-UH). In [5], C-UH graphs are studied when C is the
collection of either (a) the complete graphs, or (b) the disjoint unions of
complete graphs, or (c) the complements of those unions.

We consider any undirected graph G as a digraph by taking each edge e
of G as a pair of oppositely oriented (or 0-O) arcs € and (€)~!. Then
cohering) (or fastening, or zipping) € and (€)~! (meaning that we take the
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union of & and (€)~!) allows to obtain precisely e, a simple technique to be
used below. In other words, G is a graph taken as a digraph, that is, for
any 2 adjacent vertices u,v € V(G), the arcs € = (u,v) and (&)~! = (v,u)
are both present in the set A(G) of arcs of G, with the union & U (&)~!
interpreted as the edge e € E(G) of G. If we write f = (€)~1, then clearly
(fyy'=¢€and f =e.

1.1 Coherent C-(ultra)homogeneous graphs

Let M be an induced subgraph of a graph H and let G be both an M-UH
and an H-UH graph. We say that G is an { H} - UH graph if, for each copy
Hj of H induced in G and containing a copy My of M, there exists exactly
one copy Hy # Hp of H induced in G such that V(Hp) N V(H;) = V(M)
and E(Hp) N E(H;) = E(Mp). These vertex and edge conditions can be
condensed as Ho N H, = My. We say that such a G is coherent. This is
generalized by saying that an {H}uy-UH graph G is an £-coherent {H} m-
UH graph if, given a copy Ho of H induced in G and containing a copy My
of M, there exist exactly £ copies H; # Hp of H induced in G such that
H;NnHy D My, foreachi=1,2,...,¢, with H; N Hy = Mp.

If G is coherent {H}-UH and K is both subgraph of H and supergraph
of M, we say that G is {K ¢ H}um-UH if every isomorphism between 2
induced copies of K in G not contained in any copy of H in G extends to
an automorphism of G. If, under these conditions, each copy of M induced
in G coincides with the intersection of exactly one copy of H and exactly
one copy of K ¢ H, then we say that G is coherent {H, K}y-UH. This
concept is used in Theorem 3 below for the Desargues graph G = D.

Let G be an M-UH graph but not H-UH and assume the isomorphism
class H of H in G decomposes as H = Hy U H; so that every isomorphism
between 2 members of H; induced in G extends to an automorphism of G,
(i =0,1). If H; is a representative of H;, for i = 0,1, then we say that G
is an {Ho, H1}M-homogeneous graph if, for each copy H; induced in G and
containing a copy My of M, there exists exactly one copy H; induced in G,
(i,5 € {0,1},4 # j), with H; N H; = Mo. This concept is likewise extended
to a decomposition H = H; UHs UH3 in Theorem 5, where G = P is the
Pappus graph. )
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1.2 Coherent C-(ultra)homogeneous digraphs

Let M be an induced subdigraph of a digraph A and let G be both an M-UH
and an H-UH digraph. We say that G is an {H} ;- UH digraph (resp. an
{H }M UH dlgraph), if for each copy Ho of H induced in G and containing
a copy Mo of M, there exists exactly one copy H1 £ Hy of B induced
in G such that V(Ho) N V(Hl) = V(Mo) and A(Ho) n A(H1) = (Mu)
(resp. A(Ho) N A(H,) = A(My)), where A(H,) is formed by those arcs
(&)~! whose orientations are reversed with respect to the orientations of
the arcs € of A(H}). In either case, we may say that such a G is coherent.

Let G be an M-UH graph but not H -UH and assume that the isomorphism
class Hof Hin G decomposes as H = Ho UH, so that every isomorphisms
between 2 members of H; induced in G extends to an automorphism of G,
(¢=0, 1) If H is a representative of H;, for i = 0, 1, then we say that G
is an {Ho, H 1} -homogeneous graph if, for each copy H; induced in G and
containing a copy My of M, there exists exactly one induced copy H', in G,

(4,7 € {0,1},% # j), with H; n H; = M.

1.3 Strongly coherent C-ultrahomogeneous graphs

Given a finite graph H and a subgraph M of H with |V(H)| > 3, we
say that a graph G is strongly coherent (or SC) {H}y-UH if there is a
descending sequence of connected subgraphs M = My, M,...,M; = K,
such that: (a) M;y, is obtained from M; by the deletion of a vertex, for
i=1,...,t —1 and (b) G is a (2° — 1)-coherent {H},-UH graph, for
i=1,...,t

Some parameters of P and D (see for example [1]) can be displayed as

follows:
G|ln |dlglk a b{h

Di120|5[6[3120(240 |11

where n,d, g,k,n and a are respectively: order, diameter, girth, largest ¢
such that G is ¢-arc transitive, number of g-cycles and number of automor-
phisms, with b (resp. k) =1 if G is bipartite (resp. hamiltonian) and =0
otherwise. Theorem 1 below asserts that both the Pappus graph P and the
Desargues graph D are SC {Cg}p,-UH graphs, (which is also the case of
the other 10 CDT graphs, see (3, 4]).
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1.4 Plan of the subsequent sections

Given a (di)graph T, the distance-(k—1) (di)graph T*~! of I has V(I'*~1) =
V(T) and an arc (u, v) for each shortest (k—1)-arcinI' from u tov # u. If T’
is a cycle, then I'? is said to be a square. Theorem 2 below establishes that
Disa {C"g} p.-UH digraph and that P isa {C-"g}P *-UH digraph; it deals with
just a pair of the 12 cubic distance-transitive (or CDT) graphs treated in
Theorem 3 of [4) and is given, together with its proof, in part for the needs
of the constructions in Sections 3-6. However, we stress here that P is the
only CDT graph that is a {C‘;}P =.UH digraph, while D is the second most
interesting of 7 CDT graphs G that are {ég} p.-UH digraphs [4] after the
Coxeter graph, where g is the girth of k-transitive G. (Petersen, Heawood,
Foster and Biggs-Smith graphs excluded here. K4, K3 3, the 3-cube and the
dodecahedral graphs and Tutte 8-cage have either g = 2(k — 1) or k = 2,
so the equivalent of the composed operation (2) in Section 3 below or in
Section 3 of (3] for the Coxeter graph is less interesting).

In Sections 3-4, the squares of oriented cycles of D yield a coherent

{K4, K3} k,-UH graph by means of the O-O 2-arcs shared (as 2-paths) by
the 6-cycle square pairs. In Theorem 3, this is shown to be the disjoint union
of 2 copies of L(K5), the Menger graph of the self-dual (103)-configuration
[2], (whose Levi graph is D, [2]. Compare with (3], yielding the Klein graph
from the Coxeter graph. Recall that the Menger graph M of a self-dual
configuration S has as vertices its points, with any 2 determining an edge of
M if and only if their representative points in S are colinear [2]. We note
that 2 different configurations may have the same Menger graph, unless
each line of S determines a maximal clique in M, which is the case of
the coherent C-UH graphs in this paper.) We finish Section 4 noting that
Theorem 3 yields an infinite nested sequence of geometric realizations of
L(K3) (or of its complement, the Petersen graph) via taking barycenters of
participating tetrahedra as vertices of subsequent tetrahedra. Generalizing,
Theorem 4 in Section 5 asserts that for n > 4 the line graph L(K,) is a
coherent {K,_,, K3}x,-UH graph containing n copies of K,_; and (3)
copies of K3. An adaptation of the previous considerations to P makes it
yield, in Theorem 5 of Section 6, P in 2 complementary ways as the Menger
graph of the self-dual (93)-configuration (whose Levi graph is P, [2]) and
as the object of application of the concepts of C-homogeneous graphs and
digraphs given above.
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2 (Cs, P5)-UH properties of P and D
Theorem 1 Let G be either P or D. Then G is an SC {Cg}p,-UH graph.

Proof. We must see that each of G = P and G = D is a (2i+! — 1)-
coherent {Cs}p,_,-UH graph, for i = 0,1. Taking into account details in
the proof of Theorem 2 below, each (2 — i)-path P = P3_; of G is seen to
be shared by exactly 2¢+! 6-cycles of G, for i = 0, 1. It follows that G is an

SC {Cg} p,-UH graph. O

In both P and D, there are just 2 6-cycles shared by each 2-path. If G is a
{C-"s} I-,vs-UH digraph, then there is an assignment of an orientation to each
6-cycle of G so that the 2 6-cycles shared by each 2-path receive opposite
orientations. We say that such an assignment is a {C-"e} ﬁs-O-O assignment
(or {Cs} p,~OOA). The collection of 7) oriented 6-cycles corresponding to the
n 6-cycles of G, for a particular {Cs} p,-O0A, is called an {nCs} p,-00C.
Each such cycle is written with their successive vertices between parentheses
but without separating commas, where as usual the vertex that succeeds the
last vertex of the cycle is the first vertex. Arcs are written (u,v) and 2-arcs
(u,v,w). Figure 1 contains representations of P and D using the vertex
notation in the proof of Theorem 2 (plus extra-features for D related to
Figure 2 and the treatment of D in Section 4 below).

Theorem 2 D is a {Cg} 5,-UH digraph but P is o {Cs}7s-UH digraph.

h
g
S
e
Figure 1: Representations of P and D
Proof. For each positive integer n, let I, stand for the n-cycle (0,1,...,n—

1). P can be obtained from I;s by adding the edges (1 + 6z,6 + 6z), (2 +
6z,9 + 6z), (4 + 6z,11 + 6z), for z € {0, 1,2}, where operations are taken
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mod 18. Then G admits the following collection of 6-cycles: Ag = (123456),
Bo = (3210de), Co = (34bcde), Do = (165gh0), Eq = (329abd), (where oc-
todecimal notation is used, up to h = 17), as well as A, Bz, Cz, Dz, E; ob-
tained by uniformly adding 6z mod 18 to the vertices of Ao, By, Co, Do, Eo,
where z € Z3 \ {0}, in addition to Fo = (3298fe), F1 = (hg54ba), F2 =
(167cd0). These 6-cycles cannot be oriented into a (18 Cs) 5,-00C, for
the following sequence of alternating 6-cycles and 2-paths (with orientation
reversed between each 6-cycle and its corresponding succeeding 6-cycle)
reverses orientation from its initial 6-cycle to its terminal one:

D7 '654 Ao123 Bo210 C1h01 Dy ' g56 C7 1765 Dy
=(654bcT) 654 (123456) 123 (3210de) 210 (0129ah) h01 (10hg56) g56 (59 f876) 765(cb4567).

Another way to see this is via an auxiliary table for P, where z = 0,1,2
(mod 3), presenting the form in which the 6-cycles above share the 2-arcs,
which are not always O-O for P, indicated by a minus sign in front of the
heading of each line of the table to distinguish it from the situation in D,
shown below. Each 7; in the table has subindex j indicating the equality
of initial vertices n; = ;42 of those 2-arcs, for 1 = 0,...,5:

—Az:(Bz,Ez ,Ez42,Dz41,Dz ,Bz4+1) | —Fo:(E9,By,E1,B2,E2,Bp)
—Bz:§A=.C,+1,F2 VAz42,Cz JFo ) | —F1:(Do,E2,Dy,E0,D2,E )

-Cgz: Ez,D=+lyDz+2sB:+Zsz yE:=+2) —Fz:(BhD;,Bz,Dz,Bo,Do) (1)
—Dz:(Az,Cz42.F1  ,Az4+2,Czq1 ,f2

=Ez:(Fo ,Cz41 Az41, 1 ,Cz ,As

This proves that P is a {Cg}?-UH digraph.

D can be obtained from I3g, with vertices 4z, 4z+1, 4z +2, 4z + 3 redenoted
alternatively zo,z1,T9,z3 respectively, for £ € Zs by adding the edges
(z3,(z + 2)o) and (z1, (z + 2)2), with operations taken mod 5. Then G
admits a {20 C’s} ﬁs—OOC formed by the oriented 6-cycles A;, B;,Cz, Dy,
for ¢ € {0,...,4}, where

Az=(zoz12273(x+1)0(x+4)3) B:=(z1z0(z+4)a(z+4)2(z+2)1(z+2)2)
Cz=(z2z120(2+3)3(z+3)2(z+3)1) | Dz=(zo(z+4)3(z+1)o(z+1)1(z+3)3(z+3)3)

The successive copies of B here, when reversed, in each case, must belong
to the following remaining oriented 6-cycles:

B:i(Az,Az+4,D241,Cx+4,Cx 42, D 44)

Az’(cz WCrt2 vB-'c-l-l sz-H Dz »B:)
Dg:(A;p,C:+l,Bm+l yB=+4 ,C; yA=+4)

Cr(Az\Dz44/Dz,A243,Bz41,Bz43)

showing that they constitute effectively an {n@s} p,-00C. m)
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3 Cohering the distance-2 graphs of 6-cycles

We use the construction and notation of D and its associated {nCs} B

0O0C, as in the proof of Theorem 2. Consider the collection (Cg)2(D) of
squares of oriented 6-cycles in the {7Cs} £,-00C of D in that proof. Each
arc € of a member C? of (C4)%(D) can be indicated by the middle vertex
of the 2-arc E in C for which & stands, while the tail and head of € are
indicated by the tail and head of E, respectively. We cohere such C2s along
their O-O arc pairs in order to obtain a corresponding graph Y (D) with the
{K4, K3} k,-UH property claimed in Subsection 1.4. For such a setting, the
following composed operation is performed, where ¢ assigns to each 6-cycle
in {nCs} p,-OOC its corresponding square:

D — {nCs}p5-00C(D) & (Ce)XD) — Y(D). (2)

We will explain in Section 4 how this operation D — Y (D) is performed.

As mentioned in the table (1), in any oriented 6-cycle £ of P, each par-
ticipating copy of P;, when reversed in each case, must belong to a cor-
responding oriented 6-cycle 7. In particular, each 6-cycle following such a
copy of P; has its orientation reversed with respect to the one of the preced-
ing 6-cycle. This results in the second alternate 6-cycles being considered
with their orientation reversed with respect to the first alternate 6-cycles.
Because of this, we say that there are 2 alternate O-O {-;-1)6-"6} 7,-00Cs,
in the absence of just one {nCs} p,-00C for P. This allows 2 correspond-
ing alternate half-operations similar in nature to (2), above. See Section 6
below.

The 2 versions of 6'2(19) here and the only one of Y(D) = B:(D) are
formed by oriented triangles that determine 2 corresponding graphs Y; (P)
and Y>2(P) and a single graph Y (D) with 2 components Y; (D) and Y2(D).

4 Desargues reattachment Menger graph

For i = 1,2, it is a matter of checking that Y;(D) is an isomorphic coherent
{K4, K3} k,-UH graph formed by 5 copies of K4 and 10 of K3 ¢ K, with
each such copy of K3 having its edges indicated by a constant symbol, as
shown in Figure 2. Each of the 5 copies 7 of K, in Y¥;(D) has any one of its
six edges as a pair of O-O arcs, say € and (€)~!, arising from corresponding
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Figure 2: Representations of Y1(D) and Y2(D)

0-O 2-arcs separating 2 oriented 6-cycles of the {20Cs} 5 -0O0C(D), as
obtained in the proof of Theorem 2. Moreover, these 2 oriented 6-cycles
have images in (Cg)?(G) via the map ¢ displayed in (2) that are the 2
oriented triangles that share e in 7', or in other words, having € and (€)~!
as 0-O arcs.

For example, each of the 2 ‘central’ copies of K4 with black vertices in either
side of Figure 2 has the 4 composing vertex triples, namely (0o, 02, 10),
(02’ 10’ 32)’ (10, 32a 00) and (32’ 00’ 02)? for }fl(D)’ (resp (037 lla 13):

(11,13, 331), (1s,31,03) and (3,,03,1,), for Yz(D)) as alternate vertices of 4
corresponding 6-cycles in D, as can be checked on the right side of Figure
1, where the corresponding vertices in D are also black and those corre-
sponding to vertices of Y2(D) underlined for distinction. Now, the edge
{00,02) in Y;(D), corresponding to the 2-path (0g,0;,02) in D, has its
2 composing arcs separating the oriented triangles ¢(Ag) = (0o, 02, 10)
and ¢(Co) = (0p,02,32), corresponding to the oriented 6-cycles 4¢ =
(06,04, 02,03, 10,43) and Co = (02,01, 0o, 33, 32, 31).

We notice that the 10 vertices and 10 copies of K3 ¢ K, in either Y;(D),
( = 1,2), may be considered as the points and lines of the Desargues self-
dual (103) configuration, and that the Menger graph of this coincides with
Y:(D) [2]. Each vertex of Y;(D) is the meeting vertex of 2 copies of K4 and
3 copies of K3 not forming part of a copy of Kj.

Theorem 3 Y (D) and Y2(D) are coherent {Ka4,K3}k,-UH graphs com-
posed by 5 copies of K4 and 10 copies of K3 ¢ K4 each. Moreover, the 10
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vertices and 10 copies of K3 ¢ K4 in either graph constitute the Desargues
self-dual (103) configuration whose Levi graph is D and whose Menger graph
is equal to both Y1(D) and Y2(D). Furthermore, both graphs are isomorphic
to L(Ks), whose complement is the Petersen graph. O

Deleting a copy H of K, from such Y;(D) (i = 1,2) yields a copy J of
K>2,2, 4 of whose composing copies of K3, with no common edges, are faces
of corresponding copies of K4 # H. The other 4 copies of K3 are among the
10 mentioned copies of K3 in G. A realization of Y;(D) in 3-space can be
obtained from a regular octahedron O3 with 1-skeleton J via the midpoints,
say T, Tz, T3, T4, of the 4 segments joining the barycenters of 4 edge-disjoint
alternate triangles, say 11,75, 73,7y, in O3 to the barycenter of Os: just
construct the tetrahedron A; determined by each T} and corresponding z;,
as well as the tetrahedron Ag determined by the 4 z;s.

A realization « of K5 in 3-space is obtained whose vertices are the barycen-
ters of Ao, Ay, A2, Az, A4 and whose edges are the segments that join those
barycenters. By taking the midpoints of the segments realizing the edges
of k and joining each two of them, say midpoints P and @Q of respective
segments p and g, by a new segment whenever p and ¢ have an end in com-
mon in &, a realization L(x) of L(Ks) is obtained. This L(k) is a smaller
realization of L(K3s) than that of Y;(D) in the previous paragraph and leads
to an octahedron O3 C O3 by the deletion of its central copy of Ky4. This
procedure may be repeated indefinitely, generating a nested sequence of
realizations of Y;(D) in 3-space. Since Y}(D) and Y;(D) are isomorphic
to L(Ks), whose complement is the Petersen graph, this sequence yields
a corresponding infinite sequence of realizations of the Petersen graph in
3-space.

5 Generalization of Theorem 3

Theorem 3 can be partly generalized by replacing L(K3) by L(K,) (n > 4).
This produces a coherent {K,,_1, K3} x,-UH graph.

Theorem 4 The line graph L(K,), with n > 4, is a coherent {K,_1,
K3} k,-UH graph with n copies of Kn—1 and (3) copies of K3 ¢ Kn_;.

Proof. Each vertex v of K, is taken as a color of edges of L(K;) under the
following rule: color all the edges between vertices of L(K,,) representing
edges incident to v with color v. Then, each triple of edge colors of L(K},)
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corresponds to the edges of a well determined copy of K3 ¢ K, in L(K,).
Thus, there are exactly (3) copies of K3 ¢ Kn—; intervening in L(K,)
looked upon as a coherent {Kn,_1, K3}x,-UH graph. O

6 Pappus reattachment Menger graph

b i 3 T3 ] b € 34 L) 3 e
E} El D} for ] A2 F?
c a0 2 N2 g Nt e f L) N1 N° s
Al F} cl B? D? B?
7 " R g T 8 a—  a— 7 8
Bl El Bl A2 F2 C?
¢ a2 NG N e ! N b 29 N2 | f
F} c{ A} Ef D3 D}
d 71 R () d 9 R N 3 g
Bl 1 Dl F2 cz A2
c e, S Dg g N c f NI g NG 2 f
ci A} F} E2 E? B3
b T3 T8 3 b e—5—3 T3 3 e

Figure 3: Toroidal cutouts of Y;(P) and Y2(P)

Both Y3(P) and Y3(P) are embeddable into a closed orientable surface
T; of genus 1, or 1-torus. Toroidal cutouts of Y;(P) and Y,(P) are as in
Figure 3, which we consider composed by oriented triangles taken with their
orientations derived from those of the 6-cycles of P in the proof of Theorem
2, according to the 2 alternate operations for P mentioned at the end of
Section 3 similar to (2). These oriented copies of K3 are contractible in 7.
They form 2 collections H;, Ha of oriented copies y! of K3 closed under
parallel translation, where y = A, B, C’ D,E,F; i =0,1,2and j = 1,2,
namely: the 9 oriented triangles of H; (resp. Hz) each with horizontal
arc below (resp. above) its opposite vertex. There is also a collection
Ho of 9 non-contractible oriented triangles in G traceable linearly in 3
different parallel directions, 3 such triangles per direction, with: (a) the
orientation of each participating arc € equal to the orientation of the arc of
an oriented triangle in H; having the same end-vertices as & (b) the arcs of
each such oriented triangle indicated by the (common) middle vertex of the
corresponding 2-arcs in P, as in Section 3. There are embeddings of Y;(P)
and Y2(P) in T; for which Ho (resp. ’RJ 1y and H; (resp. Hz) provide the
composing faces. In addition, each of Hi, Hz and Ho (or ’Ffo_ 1) is formed
by 3 classes of parallel oriented triangles, such that any 2 triangles in a
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class are disjoint. The self-dual (93)-configuration in the following theorem
is the Pappus 93 [2]. Let H; be an undirected version of ﬁ., fori=0,1,2.
Let H and H; be respective representatlves of H; and 'H,, fori=0,1,2,
and H be a representative of Hy '.

Theorem 5 Y1(P) and Yo(P) are isomorphic tightly coherent {Ho,H U
H}P2-homogeneous graphs, as well as {ﬁl,ﬁg}Pz-, {Hy, Ho}P- and

(H, Hy 1}1'5 2-homogeneous digraphs. Moreover, each of Y1(P) and Y2(P)
can be taken as the Menger graph of the Pappus self-dual (93)-configuration,
in 12 different fashions, by selecting the point set P and the line set L # P
so that {P,L} C {V(P), Ho, H1, Ha} and the point-line incidence relation
either as the inclusion of a vertex in a triangle or as the containment by a
triangle of a vertex or as the sharing of an edge by 2 triangles.

Proof. The claimed 12 different forms correspond to the arcs of the com-
plete graph on vertex set {V(P), Ho, H1, Ha}. O
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