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Abstract

This paper develops the polyhedral approach to integer parti-
tions. We consider the set of partitions of an integer n as a polytope
P, C R™. Vertices of P, form the class of partitions that provide the
first basis for the whole set of partitions of n. Moreover, we show that
there exists a subclass of vertices, from which all others can be gen-
erated with the use of two combinatorial operations. The calculation
demonstrates considerable decrease in the cardinality of these classes
of basic partitions as n grows. We focus on the vertex enumeration
problem for P,. We prove that vertices of all partition polytopes
form a partition ideal of the Andrews partition lattice. This allows
us to construct vertices of P, by a lifting method, which requires ex-
amining only certain partitions of n. A criterion of whether a given
partition is a convex combination of two others connects vertices with
knapsack partitions, sum-free sets, Sidon sets, and Sidon multisets
introduced in the paper. All but a few non-vertices for small n’s
were recognized with its help. We also prove several easy-to-check
necessary conditions for a partition to be a vertex.

1 Introduction

We develop the polyhedral approach to integer partitions proposed in [6].
A partition of a positive integer n is any finite non-decreasing sequence of
positive integers ny,ng,...,n, such that

(1) an =n.
j=1
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Informally, a partition of n is any its representation of the form (1). The
integers n1,ng,...,n, are called the parts of a partition [1].

The polyhedral approach is based on the n-dimensional geometrical in-
terpretation of integer partitions [14] that is common in Diophantine anal-
ysis but seldom used in the partition theory. A partition of n is referred
to as a non-negative integer point z = (z1,Z2,...,2%,) € R® whose compo-
nents z;, ¢ = 1,...,n, indicate the numbers of times the parts 7 enter the
partition. So, z is a solution to the equation z; + 2z2 + ... + nz, = n.
We keep on writing z - n to indicate that z € R” is a partition of n. For
example, the partition 8 = 4+ 2 + 1 + 1 with three distinct parts 1, 2, 4 is
considered as the point z = (2,1,0,1,0,0,0,0) € R%.

The polytope P, C R™ of partitions of n is defined as the convex hull
of the set T,, of all partitions of n :

P, =convT, = conv {z = (21,%2,...,Z,) € R" | z F n}.

The conversion from set to polytope brings geometry into arithmetic of
partitions and raises new problems concerned with the geometrical struc-
ture of integer partition polytopes. The well-known 2-dimensional interpre-
tation of partitions as Young tables, which proved to be extremely useful for
studying connections between individual partitions, hardly provides tools
to treat the set of partitions of an integer as a whole.

There are two ways to describe any polytope: 1) to indicate its facets,
i.e. faces of the maximal dimension, and 2) to enumerate its vertices. Facets
of P,, were described in [6] as all but one coordinate hyperplanes and certain
solutions of a system of subadditive inequalities and equalities. This was
done with the use of a representation of P, as a polytope on a partial
algebra and a technique borrowed from the group theoretic approach to
the integer linear programming problem and generalized for the case.

This article focuses on vertices of partition polytopes. As for any poly-
tope, a point z € P, is its vertex if it cannot be expressed as a convex
cqmbination z = }:;;l PYITR Z;?:l Aj =1, A; > 0, of some other points
¥ € P,,j =1,...,k. Vertices of P, are of importance because they form a
kind of basis for T}, as each z I n is a convex combination of some vertices.

The first partition that is not a vertex appears for n = 4. There are
five partitions of 4: =; = (4,0,0,0), z» = (2,1,0,0), z3 = (1,0,1,0),
zq4 = (0,2,0,0), and z5 = (4,0,0,0). P, is a tetrahedron with vertices
T1,T3,Z4,Ts5 Since Tp = %(1:1 + z4) is not a vertex. For larger n’s, the ver-
tex recognition problem for P, "Is a given partition z I n a vertex of P,?”
cannot be solved the same easily. However, the calculation shows that the
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gap between the number of vertices and the number of partitions rapidly
increases as n grows.

Another motif to study vertices of P, is linked to optimization problems
on partitions: these are vertices who provide their optimal solutions in the
linear case. Anyways, we believe that any result on the topic is of interest
for its own sake.

The paper is organized as follows. Section 2 contains notation and
a few quotes of previous results. In section 3, we prove that vertices of
partition polytopes form a partition ideal of the partition lattice introduced
by Andrews [1]. This property is crucial for constructing vertices of P, by
a lifting method: they should be selected from only those partitions of
n that are induced by certain vertices of some polytopes P;, j < n. The
main result of section 4 is a criterion of whether a given partition can be
expressed as a convex combination of two others. It generalizes all known
necessary conditions for vertices and provides some new ones, in particular
the exact bound on the number of distinct parts of vertices. A great part
of partitions that are not vertices can be recognized and rejected with the
help of this criterion, however, for some n > 15, there exist non-vertices
that need three partitions for their convex representations.

In Section 5, we show that integer partition polytopes possess an in-
triguing feature: there exists a subset of support vertices, from which all
others can be generated by two operations of merging parts. Numerical
data testify that the subset of support vertices is small by comparison with
the set of all vertices. Some results of Sections 4 and 5 were announced in
rapid publications (7], [8].

In Section 6, we discuss relations of vertices of P, to knapsack parti-
tions, sum-free sets, Sidon sets, and Sidon multisets. In conclusion, we
sketch the most promising directions for the future study. In particular, we
suggest that the number of vertices of P, inversely depends on the number
of divisors of n.

2 Preliminaries

Throughout the paper, Z, denotes the set of nonnegative integers, [1,m]
denotes the set of integers {1,2,...,m},0 <m € Z.Fora € R, || and [«]
denote the greatest (respectively, the least) integer not greater (respectively,
not less) than a. We denote by S(z) the set {i € [1,n] | z; > 0} of distinct
parts of x, write vert P for the set of vertices of a polytope P and 0* for
the sequence of k zeroes. Symbol |# denotes the union of disjoint sets.
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Recall some results from [6]. We study the polytope P, in R™, though,
in fact, it is (n — 1)-dimensional since it belongs to the hyperplane

T+ 229+ ...+ 0Ty =7
It is not hard to see that P, is a pyramid with the point (0"~1,1) as the
apex and the base lying in the hyperplane z,, = 0.

Define transformations ¢; : R**—R"*, i=1,2,...,n—1, as

Soi(ylv Y2,--. yn—l') = (yly Y2501 Yi-1,Yi + 1’ Yit1s- 2y Yn—is Oi)'

Each ¢; is the composition of the translation by 1 along the i-axis and
the embedding of R™®~* into R". It is easy to see that if y - n — i then
qa,(y) + n. Conversely, for z l- n with some z; > 0, i < n, the preimage
@7 !(z) is well-defined and ¢; }(z) F n — 1.

Some necessary and some sufficient conditions for z € vert P, were
obtained in [6]. One of those is as follows.

Theorem 1 ([6]) Let 1 =14; <2< ...< iy <7 be an increasing sequence

of integers. Define ny =n, i, = |35 ; nk—1=nk— i bk, Tip_, = |F2=2];
M =n2— xt212; T =2 —I_ J_nli and:z:,—Oforz;ézl,zg, cy bk
Then z=(21,%2,...,Z4) 5 @ vertez of P,. O

One can see that the theorem holds for the case i, >1 and 7 integer.

Partitions of n with parts in a given subset M C [1,n] are often studied.
They form the polytope P,(M)=conv {ztn | S(z) C M}.

Theorem 2 ([6]) A vertex = of P, is a vertez of P,(M) if and only if
z; =0 for alli ¢ M. O

3 Vertex ideals and generating vertices

In this section, we show how one can construct all vertices of P, provided
certain vertices of some polytopes P;, j < mn, are known. This method is
based on a lattice property of vertices.

It is shown in [1] that the set of all partitions of all numbers forms a
lattice P relative to the partial order that can be defined as follows. Let
z Fn and y - m, where n,m € N, n > m. Consider y < z if y; < z; for
all i € [1,m]. Then the lower bound u A v of two partitions u,v € P is the
partition with parts in S(u)NS(v) that contains each part ¢ min(u;, v;) times
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(we consider u;,v; = 0 for all i larger than the partitioned numbers). The
upper bound u V v is the partition with parts in S(u) U S(v) that contains
each part ¢ max(u;,v;) times. One can check that these operations satisfy
the lattice identities.

Remind that for any lattice £ with the partial order <z, a subset M C £
is called an ideal of £ if M contains the lower bound of any its two elements
and satisfies the condition: m € M, l € £, < m imply |l € M [2].
Sometimes the terms "the order ideal” and ”semi-ideal” are used [12] but
we follow Andrews [1] and, in the case £ = P we deal with, call such M a

partition ideal.

For any integer k > 2, denote by V. (respectively, V<) the set of par-
titions z - n of all n € N that cannot be expressed as convex combinations
of exactly k (respectively, at most k) partitions of n.

Proposition 1 V. and V<i are partition ideals of P for k > 2.

Proof. Prove the assertion for the case of Vi. Let £ € Vi, y € P, and
y X z. It is sufficient to show that z without any its part ¢ belongs to V.
Then one can apply this claim consequently for all parts i € S(z) that are
extra relative to ¥ and conclude that y € V.

Deleting a part ¢ from z results in the partition z = p; !(z) of n—i. As-

sume z ¢ Vi. Then z is a convex combination z = E:—- )\,z , Zt_ A =1,
)\g > 0, of some k partitions 2! Fn—4i, 1<t <k Deﬁne integer points
z! € R", 1 < t < k, with the components: z! = zl+1; :c = z 1<j<n—i,
J#4 :v =0,n—-i<j<n Itlsclearthata.llxtl—nandwe have the

convex representation r = Zt=1 Azt since

DMz =) M(d 1) =14 Mzf=14z=uz,

t t t

Daxi=) Met=zi=z; for 1<j<n—i, j#i,
t t

Z/\tx;=0 for n—i<j<n.
t

This contradicts z € Vi, yields z € Vi, and ends the proof of the first
claim. The case of V<i can be considered similarly, the difference is that
the number of partitions of n — ¢ is some k;, 2<k; <k. O

Denote by V the set of vertices of all integer partition polytopes,

V= U vert P,.
neN

117



Theorem 3 The following statements are true:

(i) 'V is a partition ideal of P,

(ii) V= nk22 Vi;

(iii) V = limg00 V5k~

Proof. (ii) follows from the definition of vertices of P, : these are those
partitions x - n that cannot be expressed as convex combinations of any
k > 2 partitions of n. Inclusion V<r41 © V<k, k = 2, implies (iii). State-
ment (i) can be proved directly but it follows from (ii) and the fact that

the intersection of any two ideals is an ideal. a

We will see in Section 4 that Vo \ Vg # 9, so that V C V<3 C V.
However, it is not known yet whether V<i \ V<i41 # @ for any & > 2.

Corollary 1 V is a lower sublattice of P but not its sublattice.

Proof. The statement (i) implies u Av € V for all u,v € V. The instance
u = (1,1,0) F 3 and v = (2,0) 2 shows that V is not a lattice since
uVv = (2,1,0,0) - 4 is the half-sum of two partitions of 4, (2,1,0,0) =
3((0,2,0,0) + (4,0,0,0)), whence u Vv ¢ V. 0O

The next corollary extends Theorem 2 [6].

Corollary 2 For any z € vert P, with a part i < n, the inclusion ; 1(.7:) €
vert Pp_; holds. O

Now we show that the most complicated case of the vertex recognition
problem for P, is that when all parts of the partition are small.

Proposition 2 The following assertions are true:

(i) e partition z b n with some x; > 0, | 5] < i < n, is a vertex of P, if
and only if y = p; () is a vertez of Pn_s;

(ii) for any even n, the partition n = % + % is the unique vertez of P,

with T3 > 0.

Proof. In view of Corollary 2, to prove (i), it remains to prove only one
implication: if z+n, z; > 0, |§] < ¢ < n, and y € vert P,_;, then
z € vert P,. First, note that in this case ; =1. Assume z ¢ vert P,. Then z

is a convex combination of some z!,...,z*Fn with zt =1 and z% = 0 for all
i 3
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J>n—i, j#4,t=1,...,k, since z; > 0 would imply z%j+z!i>n. Therefore,
y! = o7 Nzl),...,¥* = ;7 1(z*) are well-defined and are partitions of
n — i. One can check that y is a convex combination of ¢, ...,y*, whence
y & vert P,_;, as in the proof of Proposition 1. The contradiction completes
the proof of (i).

Prove (ii). Notice that (03~1,zz = 2,08) € vertP,.
Further, if ¢ = (z1,%2,...,73 = 1,...,2,) € vert P, then 234, = ... =
zn = 0 and z is the half-sum of partitions (2z,, 2z3,..., 223 _1,z3 = 0,0%)

and (02!, 22 =2,0%). Thus any z € vert P, withzs > Osatisfieszg = 2.
O

For m € N, denote Trn[2> 4] = {zF m | z; = 0,7 < i} and consider the
polytope Pp,[> i] = conv T[> i] of partitions of m with all parts > 1.

Theorem 4 The set T,, of partitions of n and the set of vertices of P,
satisfy the following recurrence relations:

L2)
2) Th= ( L“j ‘Pi(Tn—i[Z ’l])) U (On-l, 1),
i=1
(2]
3) vert P, C ( H-J pi(vert Pp_;[> z])) U (o™1,1).
i=1

Proof. Note that (0"~1,1) € vert P,. Let z # (0", 1) be a partition of n,
and let i be its least part. Then ¢ < %] and = = ¢;(y) for some y -n —i.
This implies inclusion C in (2). The opposite inclusion is obvious, as well
as disjointness, so (2) is proved.

The proof of (3) is similar. For any (0"~1,1) # z € vert P, with the
least part ¢ < |3, Theorem 3 (i) implies z = ¢;(y) for some y € vert P,_;
with y; =0, 7 =1,...,i — 1. By Theorem 2, y is a vertex of P,_;[>1]. O

(3) can be used as the base for the lifting method to construct vertices
of P,. It states that the set of partitions, for which the vertex recognition
problem should be solved, can be reduced to the set of ¢;-images of all ver-
tices of the polytopes P,—;, i =1,2,..., %], with parts > i. In subsequent
sections we consider how to treat this problem.
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4 Convex combination of two partitions

In this section, we characterize partitions that are convex combinations of
two partitions of the same number and deduce new easy-to-check necessary
conditions for a partition to be a vertex.

Theorem 5 ([7]) A partition z - n is a convex combination of two par-
titions of n (whence z ¢ vert P,) if and only if there exist two disjoint
subsets S1, Sy of parts of z and two tuples of integers u = (u; € N; j € §y),
v = (ux € N;k € Sy) satisfying relations

(4) Zuﬂ': z'ukk, u; < T, Uk < Tg.
Jj€S, kES2

Proof. Given the subsets S;,S2 C S(z) and the tuples u and v, one can
build partitions y, z - n, of which z is the half-sum, by setting

Yi=z;+u, =%, JES
Yi = Ty, zi = T, i¢ S US,;
Yk = Tk —Vk, 2k=Tk+Vk, KkESs

Conversely, if z - n is a convex combination z = z+AMy—2),0 < A < 1, of
two partitions y, z - n then X is rational and we can consider that A = s,
with p and ¢ coprime. Then ¢ divides all components of y — z and z is the
half-sum of partitions z + %l(y —z)and z + 2";'—l(y — z) of n. So we can
consider that z = (y + z). Define subsets $) = {j € S(z) | z; < y;} and
Sy = {k € S(z) | zx > yx}- It is easy to see that S, S C S(z), S1NS2 =0,
Sy = {j € S(z) | z; > z;}, S2 = {k € S(z) | zx < z}. The tuples u and
v can be constructed by setting u; = y; — z;, j € 51, and v = Tk — Yk,
k € S;. The equality z = —21-(y + 2) and nonnegativity of z, y, z imply
u; < zj and v < Zk, and z,y F n implies equality (4). 0

Corollary 3 For a given x € vert P,, no integer k < n of the form k =
Zies(z) git, ¢ € Z,, g; < z;, except for the trivial case k =11, is a part

of x. 0

Corollary 4 Replacing requirement Sy NSz = @ by S; # S, transforms
Theorem 5 to an equivalent form.

Proof. Disjoint sets are nonequal, so the new version of the statement
follows from the original one. To prove the opposite implication, note that
if some Sy, S2, Sy # Sa, satisfy (4) and ¢ € S; N Sz, u; < v; then ¢ can be
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excluded from S; and either (a) left in S, while v; replaced by v; — u; if
ui < v;, or (b) excluded from S; as well if u; = v;. O

Theorem 5 has a simple interpretation. Given some zn, consider that
for every i € S(z), one has z; weights of { grams each. Then (4) means
that there exists some weight that can be weighed in two different ways
with the use of the given weights.

The criterion (4) successfully determines all partitions of n < 20 that
are not vertices of P,, except one for n = 15. The deviant partition 15 =
2-3+4+4+5 with parts 3, 4, 5 is the convex combination of three partitions,
3(3-5)+1(3+3-4) + }(5-3), but not of any two. For n = 21, there are
three partitions of this kind: 1+4+7+9,3+4+5+6+7,and 3-3+5+7.
The next proposition shows that these partitions are not exclusions.

Proposition 3 For any integer k > 0, partitions 1 + (4 + k) + (7 + 2k) +
(94 3k) and 3+ (5+k) + (6 + k) + (7+ k) of the numbers n = 21 + 6k and
n = 21 + 3k, respectively, are convex combinations of three partitions of n

but not of any two ones.

Proof. Each partition of the two series above can be expressed as a convex
combination of three partitions: 3 - (7 + 2k), 3- (4 + k) +1- (9 + 3k),
3-1+2-(9+3k) for the first, and 3-(7+k), 1-3+3-(6+k), 2-3+3-(5+k),
for the second. Not harder is it to see that these partitions do not satisfy
condition (4), whence not any two partitions are sufficient for their convex

representations. a
Theorem 6 V; # V3 and V C V.

Proof follows from Proposition 3 and Theorem 3. O

Theorem 5 induces new necessary conditions for vertices of P,.

Theorem 7 ([7]) Every z € vertP, satisfies conditions:

(@) II (m+1)<n+1,
i€S(z)

(ii) the number of distinct parts of T is not greater than |log(n+1)] and
this bound is sharp.

Proof. Let z € vertP,. Then = does not satisfy (4) and all sums

() > wi, 0<w <y,
i€S(z)
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are pairwise different. The number of such sums is ], s(z)(Zi+1), all of
them are less than or equal to n, where the least sum is zero. By the
Pigeonhole principle, this implies (i).

Denote the number of distinct parts of = € vert P,, by d. The inequality
[Mics((zi+1) 2 24 obviously holds, so the estimate in (ii) follows from (i).
By Theorem 1, the partition 1 +2+22 4 ... +2" =n =2"t1 _1isa
vertex of P,, thus the bound is sharp. O

5 Merging parts and support vertices

We show in this section that all vertices of each P, can be generated from
some subset of support vertices using two combinatorial operations of merg-
ing parts of partitions. This means that support vertices of P, constitute
an even smaller basis of the set of all partitions of n. At the end, we compare
the numbers of vertices and support vertices of some partition polytopes
with the total numbers of partitions of the corresponding integers. Define
these operations.

Operation p, .. Let z - n and let u,v € S(z), v # v, be two distinct
parts of z; assume that z, < z,. Build the point y = u, ,(z) € Z} with
the components ¥y, = 0, Yy = Ty — Tu, Yutv = Tupv + Ty, and y; = z; for
1<j<n, j#uv,utv.

Operation u,. Let - n and a part v € S(z) enter £ more than once,
i.e. z, > 1. Build the point y = pu,(z) € Z} with the components y, =0,
Yzuu =ZTz,u+1,and y; =z for 1 < j <n, j #u,zyu.

Theorem 8 Let a vertexr x of the polytope P, have distinct parts u,v €
S(z) and z, < z,,. Then y = py o(x) is a vertez of Py.

Proof. At first, we show that y - n. Indeed,

n n
Zyii = ; YiJ + (Tv = Tu)V + (Tugo + Tu)(u +v) =
i=1 j;éu,;,h+v
n
Zi + TV + Zu(U+ v —0) + Tugo(u+v) =
j#u,?},i‘-}-v

n
E ;i =n.
i=1
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Now prove that y € vert P,. By Corollary 3, z,4, = 0. Assume y ¢
vert P,. Then y is a convex combination y = z:;l)\ty‘, Z:‘___l A =1,
At > 0, of some partitions ¥* F n, 1 < t < k. It follows from y, = 0
that y¢ = 0 for all ¢. Define integer points z* € R™, 1 < t < k, with the
components

t _ .t . t . ot t. t — 0 t __ .t
Ty = Yygvs Ty = Yupov T Y01 Tuto =0; zj—yj:.77éu:v’u+v~

One can check that all z' are partitions of n. Since >, Azl = zu;
oAzt =z Do, Al = Tugus D Ag.’l:;- =z; for j # u,v,u+v, we
have the convex representation = E:;l Aczt, which contradicts = being
a vertex of P,. Therefore, y € vert P,. O

The next theorem for y, can be proved similarly.

Theorem 9 Let a part u enter a vertex x of the polytope P, more than
once. Then y = py(z) is a vertez of Py. O

Theorems 8, 9 provide new sufficient conditions for = € vert P,.

Let us illustrate application of operations of merging parts using poly-
tope Pg as an example. There are 7 vertices of Pg [6]: z! = (6,0,0,0,0,0),
2 = (2,0,0,1,0,0), z* = (1,0,0,0,1,0), z¢ = (0,3,0,0,0,0),
2% = (0,1,0,1,0,0), 28 = (0,0,2,0,0,0), and 27 = (0,0,0,0,0,1). We
have pq,1(2?) = 2% and p; 5(2%) = p2,4(2®) = z7. Further, py(z?) = o8
and pa(z?) = pua(z®) =2". On the other hand, none of the vertices !, z2,
z3, 78 can be obtained from any other with the use of these operations.
Therefore, all vertices of Ps can be obtained from four vertices z*, z2, z3,
z8 and this is a minimal set of this kind, relative to inclusion. The next

definition is natural.

Definition 1 A vertex of a partition polytope is called support vertez if it
does not result from any other verter of the same polytope with the use of
operations fy, 4 OT L.

The inequality > 7. yi < Y1, Zi, provided y = py () or s = py(z),
implies existence of support vertices of any P,.

We have seen that !, z2, 23, 28 are support vertices of P;. Denote
the numbers of partitions, vertices, and support vertices of P, by p(n),
v(n), and s(n) respectively. The values of these functions for 6 < n < 23
are presented in Table 1. One can observe that while the part of support
vertices for n = 6 constitutes 36% of p(n), it decreases to 19% for n = 10 and
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falls down to 5% for n = 20. The ratio s(n)/v(n) also definitely decreases
as n grows.

n [p(n) v(n) s(@) [ n [p(n) v(n) sn)[[ = | p(n) wvin) s(n)
6 | 11 7 4 |[12] 77 25 9 [[18| 385 75 19
7] 15 11 5 J13[100 41 13 [[ 19| 490 117 28
82 12 5 |l14(13 4 12 |20 627 99 27
913 17 8 |15[176 57 15 (21| 792 146 42
0| 42 19 8 |[f16] 231 5 17 ) 22| 1002 140 36
11) 56 20 8 |17 ] 297 84 20 [[23]1255 211 42

Table 1. Numbers of partitions, vertices and support vertices.

The values of u(n) and s(n) calculated for all n < 100 can be found in
The On-Line Encyclopedia of Integer Sequences [9, 10].

6 Additive structures related to vertices

Theorem 5 reveals relations of vertices and the vertex recognition problem
for integer partition polytopes with several structures of additive combina-
torics. Ehrenborg and Readdy [4] independently came to a class of knapsack
partitions. These are partitions, all collections of parts of which give dif-
ferent sums. Theorem 5 states that knapsack partitions are just those that
cannot be expressed as convex combinations of two other partitions of the
same number. Therefore, knapsack partitions form the class V; and we can
refer to the problem ”Does a given partition belong to the V5 class?” as the
decision problem Knapsack Partition, "Is a given partition knapsack par-
tition?” Ehrenborg displayed the numbers k(n) of knapsack partitions for
n < 50 in The On-Line Encyclopedia of Integer Sequences [3]. Comparison
of v(n) with k(n) shows that v(n) = k(n) for all n < 24, n # 15,21, and
v(15) = k(15) — 1, v(21) = k(21) — 3, where the differences are caused by
existence of partitions that need three partitions for their convex represen-
tations.

The well-known structures of additive combinatorics related to vertices
are Sidon and sum-free sets [13]. We will define Sidon sets in the way that
looks most accepted now, though the original Sidon’s definition [11] was
slightly different and the term B,-sequence could be more appropriate [5].
So, let a Sidon set be a set A C N such that

(6) a; +as #az+aq

for all a; € A unless {a1,a2} = {a3,a4}. Some authors, see [5, 13] for
references, consider Sidon sets of order h > 2 (or Bp-sequences). In their
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definition, instead of pairs, both sums in (6) engage all possible h-tuples,
h fixed. Considering inequalities a1 + a2 # a3 instead of (6) brings us to
sum-free sets A C N, see [13]. Note that repetitions of numbers are allowed
in all cases.

Theorem 5 states that = € V, (respectively, if z € vert P,) if and only if
(respectively, then) no two h- and k-tuples of elements of S(z), with each
element ¢ engaged at most z; times, have equal sums; here i and k are
arbitrary integers < ) ,c4 Za. So, knapsack partitions differ from Sidon

sets in that

(a) the lengths h and k of the tuples can be different and

(b) repetitions of any a € A in every tuple are restricted by z,.

We introduce the notion of Sidon multiset. Recall that a multiset is
a pair {A,z) of a set A and a positive integer-valued multiplicity function
z: A — N, whose values z,,a € A, can be considered as the numbers of
copies of @ in the multiset.

Definition 2 We call a multiset (A,z), A C N, Sidon multiset if all its
submultisets (B,y), where B C A and yp < zp for all b € B, have distinct
sums ), p Yob of their elements.

Note that all types of Sidon sets and sum-free sets can be represented as
multisets with restrictions similar to those for Sidon multisets (e.g. z4 > 2,
a € A, and ), pYe =2 for Sidon sets). Sidon multisets satisfy conditions
(2) and (b) a priori. Moreover, every knapsack partition corresponds to a
Sidon multiset and vice versa: a knapsack partition = F n automatically
determines a multiset (S(z), z), while the subsets S;, S, C S(z) and the tu-
ples u, v from Theorem 5 correspond to its submultisets (S}, u) and (S, v),
so that (4) does not hold for Sidon multisets by definition.

Let us summarize what we know about vertices and the additive struc-
tures considered. First, V C V,. Further, V, is a subclass of the classes
of Sidon sets of all orders and sum-free sets. 'V, coincides with the class
of knapsack partitions and is in one-to-one correspondence with the class
of Sidon multisets. The problem Knapsack Partition is equivalent to the
decision problem "Is a given multiset Sidon multiset?”

7 Concluding remarks

One of the goals of the polyhedral approach to integer partitions is to
avoid enumeration of the enormous amount of partitions by exploring the
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geometrical structure of the polytope they form up. Should one know all
vertices of P,, the whole set of partitions of n could be built as their integer-
valued convex combinations. Moreover, one can concentrate on the subset
of support vertices since all vertices can be built from these with the use of
recursive application of two special operations of merging parts. The cri-
terion of Theorem 5 and more easy-to-check necessary conditions allowed
us to reject almost all non-vertices of P, for small n’s. The data demon-
strate that the gaps between the numbers of support vertices, vertices, and
partitions are considerable. Theorem 5 reveals connections of vertices with
several other additive structures. T'wo new notions introduced in the paper,
support vertex and Sidon multiset, deserve in our opinion further attention.

This work draws forth new questions. The first group includes the
problems of characterizing vertices, support vertices, knapsack partitions
(Sidon multisets), as well as those of obtaining necessary and/or sufficient
conditions for a partition to belong to these classes. Exploring connections
between vertices and facets would be also valuable.

The targets of the second group include asymptotic behaviour of the
functions k(n), v(n), s(n), estimates on their values, and dependence on
the properties of n. Similar functions can be considered for some special
classes of partitions, e.g. knapsack partitions with distinct parts and so
forth. These problems are most likely to be hard — we cannot refer to any
beneficial results, only a few close in subject can be found in [13] for Sidon
sets. Yet, the known values of v(n) and k(n) demonstrate their definite
dependence on the evenness of n : for all odd n's, except a few very small,
the intriguing inequalities k(n) > k(n+1) and v(n) > v(n+1) hold. Lots of
by hand and computer calculations, as well as some more formal arguments,
impel us to suggest a stronger hypothesis: the values of v(n) and k(n) are
inversely dependent on the number of divisors of n. If true this facts might
have divergent consequences.
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