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Abstract. In 1975, Erdés proposed the problem of determining
the maximal number of edges in a graph on n vertices that contains
no triangles or squares. In this paper we consider a generalized
version of the problem, i.e. what is the maximum size, ex(n;t), of
a graph of order n and girth at least ¢t + 1 (containing no cycles of
length less than ¢ + 1). The set of those extremal C:-free graphs is
denoted by EX(n;t). We consider the problem on special types of
graphs, such as pseudotrees, cacti, graphs lying in a square grid,
Halin, generalized Halin and planar graphs. We give the extremal
cases, some constructions and we use these results to obtain general
lower bounds for the problem in the general case.

Introduction

Graphs arise in many areas of mathematics and computer science having
applications in many other fields as well. Extremal graph theory problems
usually ask for the max/min size of a graph having certain characteristics.
Such questions are often quite natural in the construction of networks or
circuits.

We consider the EX-problem which simply asks given a graph of order
n what is the maximal number of edges, denoted by ex(n;t), that can exist
in the graph such that it contains no cycle Ci, where 3 < k < t. The
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set of those extremal Ci-free graphs is denoted by EX(n;t). Erdés [12]
initially posed the problem with t = 4. Since then a lot of research has been
done trying to obtain exact solutions for the problem on general graphs, or
obtaining good lower and upper bounds [1,2,3,4,5,7,10,11,15,16,17,19,20].
Research has also concentrated around special types of graphs, such as
bipartite graphs [14,6). For n < ¢, it is easy to show that all trees including
stars K1 n—; and paths P, are extremal graphs and ez(n;t) =n—1. For t+
1 < n < |3t/2] the cycles C, are extremal graphs and ez(n;t) = n. These
values are included in the tables as folklore. The problem of finding the
extremal number ez(n;3) is solved by Mantel’s theorem [18] which states
that the maximum size of a triangle free graph of order n is |[n?/4]. The
extremal graphs EX(n;3) are the complete bipartite graphs K|, 2|[n/2-
For t > 4 no exact general formula is known for ex(n;t). There are however
general lower and upper bounds for ¢ = 4. Currently the best lower bound
is ’2‘73/%, given by Garnick and Neuwejaar [16] and the best upper bound is

iny/n=T, given by Garnick, Kwong and Lazebnik [15].

A relevant problem is whether or not a given graph contains cycles
of all lengths [8]. Such graphs are called pancyclic and much research has
been concentrated around them as well. There are also obvious connections
with the cage problem {13], also known as the degree/girth problem, which
simply asks for the minimum order of a regular graph of degree d and girth
g.

In this paper we consider the EX-problem for planar graphs and special
types of planar graphs such as pseudotrees, cacti, Halin, generalized Halin
graphs and graphs lying in an infinite square grid, giving the extremal
numbers and some constructions.

The rest of the paper is structured as follows. In Section 1 we present
the basic definitions used throughout the paper and we define the problems.
In Sections 2-5 we consider the C;-free problem for special types of graphs.
Finally, we give some future proposals and a brief conclusion in Section 6.

1 Definitions and Problems

Throughout this paper we consider an undirected graph G(V, E), where V/
is the set of vertices, also called nodes, and E is the set of edges. The comple-
ment graph G(V, E) of G has the same vertices as G but edges that appear
in G do not appear in G and edges that do not appear in G appear in G.
The order of a graph is the number of its vertices. The size of a graph is the
number of its edges. A path P,(V,E) is a graph with V = {z,,z3,...,z,}
and E = {z1%2, 2223, ..., Tn-1Zn}. Its end vertices are ,, z, and its length
£ is equal to n — 1. A cycle Cr(V,E), where n > 3, is a graph with
V = {z1,%2,...,za} and E = {2122, 2273, ..., Tn—1%n, TnT1}. Its length ¢
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is equal to n. A cycle is called odd/even if its length is odd/even. The girth
g of a graph G is the length of its shortest cycle. A graph containing no
cycles is called an acyclic graph. The degree of a vertex v € G is denoted
by d(v) and is equal to the number of vertices to which v is connected. A
regular graph is a graph in which all its vertices have the same degree. A
graph is planar if it can be drawn in a plane without its edges crossing. A
face is a region surrounded by a cycle in a planar embedding of a graph
without any path crossing the cycle. A tree T, is a maximal acyclic graph
on n vertices. A forest is a disconnected acyclic graph. A rooted tree has
a node which is called the root. In such a tree, each of the nodes that is
one graph edge further away from a given node (parent) and its distance
to the root is one more than its parent is called a child. Nodes having the
same parent node are called siblings. The height of a tree T),, denoted by
Height(T, ), is defined as the maximum length of a path from the root of
T, to a leaf of T;,.

A pseudotree is a connected graph with exactly one cycle. A cactus
graph, sometimes also called a cactus tree, is a connected graph in which
any two cycles have no edge in common. Equivalently, it is a connected
graph in which any two (simple) cycles have at most one vertex in common.
A Halin graph is a graph constructed from a plane drawing of a tree having
four or more vertices, no vertices of degree two, by connecting all leaves of
the tree by a cycle (see Figure 1). It is important to mention that leaves
are connected in the order they are found in a post order traversal of the
ancestor tree of the Halin graph. The first leaf is then connected to the
last one (Figure 2 illustrates that different orderings of the nodes of a tree
may produce different Halin graphs). A generalized Halin graph is a Halin
graph where we allow vertices to have degree two. Obviously in the case
that only one leaf is present at the ancestor tree of the Halin graph there
is no cycle joining its leafs.

AN AP,

Fig. 1: A Halin graph with its ancestor tree at its right

131



Fig. 2: A different ordering of the tree of Figure 1 produces a different Halin
graph

A graph G is an eztremal C;-free graph if G has maximum size and
girth g at least ¢ + 1. The set of extremal C;-free graphs is denoted by
EX(n;t) = EX(n;Cs,Cy,...,Ct) and the size of the graph is the extremal
number ez(n;t) = ezx(n; C3,Cy, ..., Ct). The largest known lower bound for
ex(n;t) is denoted by ezi(n;t) and the smallest upper bound known by
ex,(n;t).

We consider the following problem:

Problem 1. Given natural numbers n,t find ez(n, t) for the following classes
of graphs: pseudotrees, cacti, generalized Halin graphs, rectangular grid
graphs and planar graphs.

2 Pseudotrees and Cacti

For a pseudotree the situation is easy to handle as the removal of one edge
from the cycle of the pseudotree leaves a tree.

Theorem 1. An extremal pseudotree of size n and girth at least t + 1 has
ex(n,t) =n, where3<t<n-1.

Proof. The only limitation is that the cycle of the pseudotree must have
length at least ¢ + 1. It is then clear that |E| = n as removal of an edge
from the cycle of the pseudotree leaves a tree which has n — 1 edges, no
matter the arrangement of the vertices lying on the hanging subtrees of the
cycle. m]

Cacti graphs are more complex than pseudotrees as they are allowed to
have more than one cycle.

Theorem 2. An extremal cactus graph of size n and girth at least t + 1
has:

|2=t=1|4+n, 3<t<n-—1

n—1, tzn

ex(n,t) = {
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Proof. The number of edges of the cactus graph is:
|E| = (number of cycles in the graph) +n — 1,

as removal of an edge from each cycle of the cactus graph leaves a tree which
has n — 1 edges (or consider Euler’s formula with n vertices and number of
faces equal to the number of cycles in the graph plus the unbounded face).
Maximizing E is then equivalent to maximizing the number of cycles in the
cactus graph.

Cycles of the cactus graph must have length at least ¢ + 1.

Therefore we can have at most | 2=$=1] +1 cycles (¢ + 1 vertices make the
first cycle, then the remaining cycles are made by using ¢ vertices).

So ex(n,t) = ["—'(:—+9J +n. m]

3 Generalized Halin graphs

Halin graphs are another tree-like structure. The limitation for the mini-
mum degree of their vertices to be more than 2 forces the existence of a
Cs. Actually it has been proved that Halin graphs are almost pancyclic,
i.e. they contain cycles of all lengths 3 <! < n except possibly for one even
value m of | [9]. Following is an elementary proof of this result.

Theorem 3. There are no extremal Cy-free Halin graphs for any t > 3.

Proof. Every vertex in a Halin graph has degree at least 3.

That means every non leaf node in its ancestor tree has at least 2 children,
i.e. every node in its ancestor tree except the root has at least one sibling.
Consider a leaf at depth equal to the height of the tree.

By the above arguments that must have at least one sibling.

Those two siblings are connected in the Halin graph giving a cycle of length
3, C3, together with their parent.

Therefore any Halin graph contains a Cj. O

As the restriction for the minimum degree of a Halin graph to be more
than 2 leaves no space for our problem we consider the generalized Halin
graph, where we allow vertices of the graph to have degree 2. We relate the
number of edges of the graph to the number of leaves of the ancestor tree
of the Halin graph thus being able to derive conclusions.

Lemma 1. A generalized Halin graph of order n and girth at least t + 1
has at most |22=2] +n—1 edges if 3<t < [22=2| — 1.
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Proof. The number of edges of a generalized Halin graph is |E| =length
of cycle joining the leaves of the Halin graph + number of edges in the
ancestor tree = number of leaves in the ancestor tree + n — 1,

as the generalized Halin graph is made from an ancestor tree which has
n — 1 edges and one edge per leaf which join the tree leaves in a cycle.
Maximizing E is then equivalent to maximizing the number of leaves in the
ancestor tree.

The number of leaves of the generalized Halin graph is the number of cycles
found at the bottom of the Halin graph, which are created by connecting
the leaves of the tree plus the outer cycle joining the leftmost leaf with the
rightmost leaf. Maximizing F is then equivalent to maximizing the number
of those cycles.

One can observe that every generalized Halin graph has all its nodes at-
tached to the cycles mentioned above except maybe its root and a path
hanging from it.

That path gives no contribution to the number of cycles, therefore we can
consider only cases without that path, i.e. generalized Halin graphs that all
their nodes are attached on those cycles.

Let us denote the cycle based on the ¢th and i + 1th leaf as CY; (leaves are
ordered in the way they are found in a post order traversal of the ancestor
tree of the Halin graph).

By counting the number of nodes of each cycle we observe that each node
is counted twice except maybe their roots.

The root is counted as many times as is the number of cycles hanging from
it.

Inner roots are counted as many times as is the number of cycles hanging
from them plus 2 (for their neighbour cycles).

Let the number of the cycles mentioned above be c¢. Then Y ;_, |CY;| =
2(nodes that are counted twice) + number of roots= 2(n—1)+c = 2n+c—2
Cycles of the generalized Halin graph must have length at least t + 1.
Therefore 2n+c¢—2 > ¢t + 1)

and ¢ < |_-2—"—t‘—gj a

Lemma 2. A generalized Halin graph of size n and girth at least t +1 can
have |22=2| + n — 1 edges if 3 <t < 22| —1.

Proof. 1t is easy to see that the bound introduced in the theorem above is
achieved by the following construction:

Consider the root connected to paths of length [£], |£], [£], (],

Any remaining vertices are added to the last path.(see also Figure 3)
Then c=2|222| +I((n—1) mod t > [£]) = |22-2)

So ex(n,t) = [2272] 4+ n - 1.

(We remind the reader that I((n — 1) mod ¢t > [£])) is the indicator
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function returning 1 if the condition in the brackets is true or 0 otherwise)
0

Theorem 4. A generalized Halin graph of size n and girth at least t + 1

has
n-2 -1, 3t |21
e:v(n,t)= I. t J+TL - 2—_L2 t J
n-1, t> |22

Proof. As of Lemmas 1 and 2 we get the above result for 3 < ¢ < | 2872 | 1.
However if ¢t > [2"’2 £n=2| the only valid construction is P,, a path starting
from the root ending at a single leaf, as it has no connected leaves which
would result to a cycle of length at least | 222, m]

Fig.3: An extremal generalized Halin graph of order 14 and girth at least
5

4 Rectangular grid graphs

It appears that to maximize the number of edges of a graph of order n in
the grid we need to minimize the perimeter of a closed shape containing
all n vertices. Thus the situation becomes easier to handle and we are able
to draw conclusions for extremal numbers and give some constructions. We
note that we consider only cases for odd ¢, as due to the fact that no odd
cycles can exist in the grid ez(n,2k) = ex(n,2k + 1) for k > 2.

Theorem 5. A graph of order n and girth at least t + 1 that lies in an
infinite square grid can have at most:

—n—1edges,ifl<n<t
l'Zn —t— 3J+n_] edges, ift+1<n < I'_“L'Il_—'i'—_l

_ LG+2 2/RI-AVAL | -1 edges, if [H1]| 5] +1 < n < [VA] VA
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— | 2228l | 4 —1 edges, if [42][ 452 ] +1 < n and [VA][v/R] +1 <
n < [vn][v/n]

Proof. For 1 < n <t our graph must be acyclic and any maximal acyclic
is by definition a tree with n — 1 edges. If £ + 1 < n there must be cycles
present in our graph.
Let us denote the number of simple cycles of the graph by c.
Using Euler's formula for planar graphs we get |E|=c+n — 1.
By summing the edges of each cycle we get:

i=1|Cyi| = 2z +y, where z is the number of edges of the graph that are
counted twice, y is the number of edges of the graph that are counted once
and {Cy1,Cys,...,Cyc} is the set of simple cycles present in our graph.
As|E| =z +y, i, |Cyil = 2|E| - v.
By Euler’s formula we get: Y ;_; |Cyi| =2c+2n—-2 -y
As cycles must have length at least ¢ + 1:
ct+1) <3 |Cyil=2¢c+2n—-2—y
le.c< |22y
Obviously to maximize |E| our graph must be connected.
Then y is the perimeter of a two dimensional shape in the grid.
It is easy to see that any such shape can be expanded to a rectangle which
touches its leftmost, rightmost, top and bottom edges. This rectangle has
same or smaller perimeter than the original shape and maybe some more
area.
It is crucial that the shape contains at least n vertices.
Minimizing y means that we choose a rectangle with sides [\/n] -1, [/n] -1
and if we can not fit all n vertices in it we choose a square with sides of

length [\/n] — 1. O

The following theorem suggests that the above upper bounds can be
achieved if we somehow avoid no non-simple cycles of length less than ¢t +1
in our constructions.

Theorem 6. The upper bounds of Theorem 5 can be achieved if no non-
simple cycles of length less than t + 1 are present in our constructions.

Proof. To achieve the upper bounds of Theorem 5 we need to tessellate
the rectangle mentioned in Theorem 5 with as many cycles of length ¢t + 1
as possible. That is considering as many cycles of area ‘—;—1- Then we get

c< [m%?:%“v%aﬁlsj and hence the above upper bounds. (as long as no

non-simple cycles of length less than t + 1 are present in our constructions)
D

Below we show that the upper bounds that we have introduced can be
achieved in certain cases.
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Theorem 7. The above upper bound can be achieved for n > (‘—’21'—1)2.
Therefore for n > (41)2%:

ea(nit) = | LA 41, 0 < [VR]LVA
’ | 228240 4~ 1, [VA]|VA) +1 < < [VAl[VA]

Proof. To achieve the upper bound introduced in the above theorem we
need to tessellate the rectangle mentioned above with as many cycles of
length ¢t + 1 as possible as Theorem 6 suggests. This can be obtained by
tiling the central (42 — 1)x(4* — 1) square with 4! —1 cycles in the form
of a column of thickness 1. We then spiral the rest of the cycles around
it until all vertices are exhausted as shown in Figure 4. It is easy to see
that no cycle of length less than ‘—'2'i is formed due to cycles touching each

other. o

O O 0O 0O 0O O O
O O 0 O 0O OO
O O o O
o O O O
o O O O
O O 0O 0O O OO

S 8piral around the central square ___xp

Fig. 4: Construction of an extremal graph for n = 42 and girth at least 6

5 Planar graphs

Using similar arguments we are now able to give the extremal numbers and
some extremal graphs for the problem on any planar graph.

Lemma 3. A planar graph of order n and girth at least t + 1 can have at
most:
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-n-1 edges: Zfl <n<t
- [ZL;%__SJ-i-n—‘l edges, ift +1<n

Proof. For 1 < n <t our graph must be acyclic and any maximal acyclic
is by definition a tree with n — 1 edges. If £ + 1 < n there must be cycles
present in our graph.

Let us denote the number of simple cycles of the graph by c.

Using Euler‘s formula for planar graphs we get |E|=c+n —1.

By summing the edges of each cycle we get:

Y-iz1 1Cui| = 2z +y, where z is the number of edges of the graph that are
counted twice and y the number of edges of the graph that are counted
once.

As Bl =z +y, X5y [Oul = 21E| - v.

By Euler’s formula we get: Y ;_, |Cyi| =2¢c+2n -2 -y

As cycles must have length at least ¢ + 1:

ct+1) <Y ICyil=2c+2n-2-y

Obviously to maximize |E| our graph must be connected.

Then y is the perimeter of a two dimensional shape.

Following the restriction for the girth we get y > t+1 and hence the above
upper bound. 0

Theorem 8. The above upper bound can be achieved for anyn > 1. There-
fore:

ex(n;t) = n-—1, 1<n<t

e {2=t=2 | tn—1, n>t+1
Proof. For 1 < n <t our graph must be acyclic and any maximal acyclic
is by definition a tree with n — 1 edges, so any tree on n vertices gives a
lower bound construction.
For n > t + 1 we consider the following cases:

— If t is odd the following construction gives the upper bound. Connect
the first ¢t + 1 vertices to make a C;;1. Number those vertices from
1 to t + 1. Keep connecting paths of length fract — 12 on vertices 1
and 2 + -‘;—1 Insert any remaining vertices in the latest added path,

obtaining ["%%‘:'2] = | 22==3 | cycles(see also Figure 5).

— If t is even the following construction gives the upper bound (actually
it works also for odd ¢t but the above construction is much simpler).
Connect the first t + 1 vertices to make a Cyy;. Number those vertices
from 1 to ¢ + 1. Connect a path of length £ on vertices 1 and 1+ £
meeting the outer face. Connect a path of length £ —1 starting from the
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second vertex of the latest added path (count from the start of the path
not from the vertex 1+ £ or 2+ which is its end) ending at vertex 2+ %
if latest added path was ending at vertex 1 + £ 2 or otherwnse at vertex
1+ £, meeting the outer face. Connect a path of length £ on the same
vertices as the previous path, meeting the outer face. Repeat until no
vertices are left to make such paths Insert any remammg vertices in the
latest added path, obtaining 2|_—-I_'—2 1+I(n- —2modt—-12
£ —1) cycles.

The number of cycles can be at most |22=t=3| = | 2n=t=d
,__glﬁj;J +](";?F__ > 1)

2222 | 4 I(n—t5L —2mod ¢t — 1> £ —1)
(see also Figure 6).

It is easy to see that no cycle of length less than ﬁzi is formed due to cycles
touching each other. (]

0000

Fig. 5: Step by step construction of an extremal planar graph of order 11
and girth at least 6

OO0

Fig. 6: Step by step construction of an extremal planar graph of order 11
and girth at least 5
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By considering planar graphs we are now able to give a lower bound for
the problem on its general case.

Theorem 9. A graph of order n and girth at least t + 1 has exz(n,t) at
least:

-n-1,ifl<n<t
Mot=3) 41, ift+1<n

Proof. Consider the planar graph constructions of Theorem 8. O

6 Conclusion and Future Work

In this paper we have given the ez(n;t) numbers for pseudotrees, cacti
graphs, graphs lying in a square grid, Halin, generalized Halin graphs and
planar graphs, together with some constructions for the extremal cases.
Future research might concentrate on finding the extremal values for other
special types of graphs and on obtaining better bounds for the problem on

general graphs.
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