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Abstract. We describe an algorithm which combines a discrete optimization heuristic
with the construction due to Ringel and Sachs (independently) for self-complementary
graphs. The algorithm is applied to some problems from Generalized Remsey Theory.

1. Introduction

In general our notation will follow Harary [6]. We use »(G),...,Gx) to de-
note the k-color Ramsey number of graphs G\, ..., Gy, which is defined to be
the smallest integer, n, such that in any k-coloring of the edge of K, there is a
moenochromatic copy of G; in color 1, for some ¢, 1 < ¢ < k. If the G} are all the
same graph, we write (G; k). In discussing a given Ramsey problem, such as
that of finding a lower bound for r(G; k), we shall refer to k-colorings of some
K, and (o their bad subgraphs, by which we mean monochromatic subgraphs iso-
morphic to G. An isomorphic factorization of a graph [7] is a partition of its edge
set into isomorphic graphs. We call it a factorization by k if there are k sets in the
partition.

An algorithm, well known to Graph Theorists, is the one used to construct self-
complementary graphs, discovered (independently) by Ringel [11] and Sachs [12].
We will use an easy generalization of their idea to construct factorizations of K,
into any number of isomorphic graphs. The algorithm requires only that the obvi-
ous divisibility condition be satisfied. To construct an isomorphic factorization of
K, into k parts, assuming that (3) is divisible by k, proceed as follows. Prepare
a list of the edge of K, arranged in any order. Then choose a permutation, o, of
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the n vertices such that the length of every cycle of o is a multiple of k, except
for (perhaps) one fixed point. (When k is even each nontrivial cycle must have a
length that is a multiple of 2 k.) The following algorithm can then be used.

Mark all edge uncolored.
While there are uncolored edges:

pick an uncolored edge z = uv;

pick a random starting color i;

letc=1;

while z is uncolored;

color z with color c;
letu = o(u),v=o(v),and z = uv;
letc=c+ 1 (mod k).

When this procedure terminates and all edges are colored, the three color graphs
will be isomorphic, in fact o is an isomorphism. Some of the constructions de-
scribed in this paper were produced by combining this procedure with the Metropo-
lis algorithm. That algorithm was first presented in {10] and was used ina combi-
natorial setting in [8].

2. Ramsey Numbers

The problem of determining the Ramsey numbers of complete bipartite graphs
was studied in some detail in [2], where it was determined that

KB —k+2 <r(Cask) <k +k+2 1)

held whenever k — 1 is a prime power (the upper bound holds for all k). It is
known that 7(Cs;2) = 6 [31 and 7(Cs;3) = 11 [1]. In both cases the lower
bound can be established by an isomorphic factorization. (This fact is noted in (1]
where Clapham is credited with the 3-color isomorphic coloring.) In [4] we noted
that r(Cs;4) > 18.

Theorem 1.
(C4;2) =6
r(Cs:3) =11
r(Cs;4) > 18
r(Cs;5) > 26

Proof: Only the final case is new, and this follows from the coloring given by the
following adjacency matrix.



04454 11413 53312 54325 15223
40551 52252 41442 31543 12133
45011 21331 35255 34215 42324
55102 23244 24131 14532 15343
41120 33435 53524 22514 32145

15223 04454 11413 53312 54325
12133 40551 52252 41442 31543
42324 45011 21331 35255 34215
15343 55102 23244 24131 14532
32145 41120 33435 53524 22514

54325 15223 04454 11413 53312
31543 12133 40551 52252 41442
34215 42324 45011 21331 35255
14532 15343 55102 23244 24131
22514 32145 41120 33435 53524

53312 54325 15223 04454 11413
41442 31543 12133 40551 52252
35255 34215 42324 45011 21331
24131 14532 15343 55102 23244
53524 22514 32145 41120 33435

11413 53312 54325 15223 04454
52252 41442 31543 12133 40551
21331 35255 34215 42324 45011
23244 24131 14532 15343 55102
33435 53524 22514 32145 41120

To make it easier to understand the graph, we also give the adjacency list for
color 1. Note that the vertices are labeled from O to 24,



0: 5 6 8
1: 4 11 16
2: 3 4 6
3: 2 12 14
4: 1 2 18
5: 0 10 1
6: 0 2 9
7: 8 9 11
g8: 0 7 17
9: 2 6 17
10: 5 15 16
1: 1§ 7
12: 3 13 14
13: 0 5 12
14: 3 7 1
15: 3 10 20
6: 1 6 10
17: 8 18 19
18: 2 4 5
19: 8 12 16
20: 0 1 3
21: 6 11 15
2: 1 4 13
23: 7 9 10
24: 13 17 21

In this example the isomorphisms are given by the permutation (0 1...24).

The problem of determining two-color Ramsey numbers for cycles in graphs
was completely settled by Faudree and Schelp [5]. However, no exact values or
7(Ch; k) are known for n > 4 and k > 2. Our best efforts for Cs and Cg are
recorded in the following theorem. The value for r(Cs; 3) is not from an isomor-
phic factorization, but rather by the techniques described in [4]. An isomorphic
factorization by 3 of Ko, free of monochromatic Ce’s, was found. Of course,

such a factorization of K, does not exist.

Theorem 2.
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Proof: The coloring for 7(Cs; 3) is given by the following matrix.

—= WD WWOo
NN =N =W=WwOoWw
NWNWSMW=WOoWwWWw
WWEN=WNDNO WN
—— W= NONWN
W= WONNWMN
NN WNOWMWMEN
NN = ON e e W W
N = O W= NN =N
NOm NN WMSWWN -
ONNONDNDWMWNDN =

The coloring for r(Cs; 3) follows. A drawing of the graph is provided in Fig-
ure 1. The isomorphism is derived from the permutation (0 1 2)(3 4 5)(6 7 8)(9
10 11)(12 13 14). Note that in the drawing vertex 3 is not shown. The neighbors
of vertex 3 are those vertices represented as circles, The vertices represented as
squares are not adjacent to vertex 3.

NN =NDWWENWNDWW-=O
LWL WWIE NN WMWMSEMENO -
e N W e = NWNNNY = O NDW
Pt et et et DN bt bt et D D e O et e W
NENBNWLNDNND=EDNDNO-=ND=N
WWLWLWLWWENWWLONWNDWLWW
NN = NDWWmOWNWWMN
WWWWLMER NN O = W= W
bt et DW= O N WD = =N W
= et DN WO e W e N e W
NN = OWW=NWNNW~=N
WWWO = NNWEWWE N W
Wt O WIN = et W WN == WN
DO it WM = = WNWN = —=WN
O WWN m = WNWN m—-WN

Finally we give the color for r(Cs; 4) . Figure 2 shows the graph. The comple-
menting permutationis (0123456 7)(89 10 11 12 13 14 15)(16).



NN WLWWLWNNWEHEBRANNDNEB~=O
WWHAHEBWRNMMSWWWWE =NO -
Do D= WA DELUNDNWONSD
— 0 m D D e N e BB O W
NNWm AEANNDNWW=E=ORNDNON
WA N WWHHERREWENOMWWWN
PULWUNERE A =LONRERALWLN
—) s e NN =D O W~k WM
WNWNWMEWORARRSWWLWNPWLPE
AP WLWANNIEOWNDEWFED ==
—B e WD W s O Dt BN =N W
NV BERARNORSN=ESNERHWNDNWWLRN
Wit = WONWNWNREAWDRE R =WW
POV ARCOCWLRARAWLWARANMAPAR=NDRLERAW
— e OO D et Do W NN W BN
NO =R N=NAEPRNWWRNDN=WN
ON= BWLNEEW=DBWON=PON

Next we show a construction that gives a lower bound for the Ramsey number
of the octahedral graph, K22 2.

Theorem 3.
r(K222) > 26.

Proof: The theorem follows from the construction given below. We show one of
the color graphs, presented as an adjacency list. The isomorphism that shows the
graph to be self complementary is the permutation

(01234567)(89 101112 13 14 15)(16 17 18 19 20 21 22 23)(24).

Note that the graph is regular of degree 12,



12 14 15 16 17 19 24
1nm 13 15 17 19 21 23

0: 1.2 3 5 10 12 13 16 17 18 19 22
1: 0 5 7 8 9 10 12 15 16 21 22 24
2: 0 3 4 5 7 12 14 15 18 19 20 21
3: 02 7 9 10 11 12 14 17 18 23 24
4: 2 5 6 7 9 14 16 17 20 21 22 23
5: 01 2 4 9 11 13 14 16 19 20 24
6: 4 7 8 9 11 12 13 16 18 19 22 23
7: 1.2 3 4 6 11 15 16 18 21 22 24
8: 1. 6 9 10 11 12 13 14 15 18 20 21
9: 1 3 4 5 6 8 12 17 18 20 23 24
10: 0 1 3 8 11 14 15 16 17 20 22 23
11: 3 5 6 7 8 10 13 14 19 20 22 24
12: 0 1 2 3 6 8 9 14 19 21 22 23
13: 0 5§ 6 8 11 14 16 17 18 19 21 24
14: 2 3 4 5 8 10 11 12 13 16 21 23
15: 1 2 7 8 10 16 18 19 20 21 23 24
6: 0 1 4 5 6 7 10 13 14 15 18 23
17: 0 3 4 9 10 13 18 20 21 22 23 24
18: 0 2 3 6 7 8 9 13 15 16 17 20
19: 0 2 5 6 11 12 13 15 20 22 23 24
20: 2 4 5 8 9 10 11 15 17 18 19 22
21: ' 1 2 4 7 8 12 13 14 15 17 22 24
2: 0 1 4 6 7 10 11 12 17 19 20 21
34 6 9 10
1 3 5 7 9
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