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Abstract. It is shown that under certain conditions, the embeddings of chessboards
in square boards, yield non-isomorphic associated graphs which have the same chro-
matic polynomials. In some cases, sets of non-isomorphic graphs with this property are
formed.

1. Introduction.

The graphs considered here are finite, undirected, and contain no loops and no
multiple edges. Let G be such a graph with p nodes. A matching in G is a spanning
subgraph of G, whose components are nodes and edges only. A k-matching is a
matching with k edges. The matching polynomial of G is

lp/2)
MG w = Z ak'w’,’_k'wf,

k=0

wherc a; is the number of k-matchings in G and w; and wy are weights (or in-
determinates) associated with each node and edge, respectively, in G. If we put
wy = wy = w, then the resulting polynomial in w is called the simple maitching
polynomial of G. We refer the reader to Farrell [1] for the basic properties of
malching polynomials.

A chessboard (also called a board ) is an array of cells in rows and columns —
the rows and columns being determined by the cells. The rook polynomial of a
chessboard B, is the polynomial

R(B;z) = Y mzt,

k=0

where 7 is the number of ways of placing & non-taking rooks on B. Let N denote
the positive integers. The board B can also be regarded as a finite subsetof N x N,
in which case we refcr to B as an embedded board. An introduction to rook
polynomials can be found in Riordan [7].
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The chromatic polynomial of a graph G, is the polynomial P(G; ) which
represents the number of ways of coloring the nodes of G with X colors, in such a
way that adjacent nodes receive different colors. Throughout this paper, we will
assume that P(G; \) is expressed in the falling factorial basis, that is,

1
P(G:X) = ), ck(Npet,
k=0

where ¢, is the number of color partitions of the nodes of G into n— k non-empty
indistinguishable classes and forr > 0, (M) = A(A=1)(A =2) ...(A -7+ 1).
We refer the reader to Read [6] for the basic properties of P(G; A).

For the three polynomials defined above, we refer to the vectors of non-zero
coefficients as the matching vector (denoted by m(G)), the rook vector (denoted
by #( B)), and the chromatic vector (denoted by c(G)), respectively. Let G and H
be graphs. We call G and H matching equivalent if and only if m(G) = m(H).
We call G and H chromatically vector equivalent (cv-equivalent) if and only if
c(G) = c(H). If in addition, G and H have the same number of nodes, then we
call them co-matching or co-chromatic , respectively. Two chessboards A and B
are called rook equivalent if and only if r(4) = r(B). (In Korfhage [S], define
the o-polynomial of a graph G, denoted o(G). Tt is easy to show that two graphs
G and H are cv-equivalent if and only if a(G) = o(H).)

In this paper, we show that various graphs associated with the different em-
beddings of a chessboard arc chromatically vector equivalent, and in some cases,
co-chromatic. We also extend some of the results given in Goldman, Joichi and
White [4]. This paper is central to our investigation. The main thrust of our paper
has been mentioned in [4] as a topic “worthy of further study”.

We denote the node and edge sets of G by V(G) and E(G), respectively. The
complete graph with p nodes is denoted by K. The complement of G is denoted
by G. If G and H are chromatically vector equivalent, then we write G ~ H.
When denoting the position of a cell in a chessboard, the column index precedes
the row index. Thus, cell (¢, 7) is the cell in column 1 and row j.

2. Some relevant definitions and results.

In this paper, we essentially bring together some of the main ideas developed in
the articles: Farrell [2], Farrell and Whitehead [3), and Goldman et al [4]. We will
therefore try, as far as possible, to maintain consistency of definitions. We will also
quote, without proofs, the relevant results that can be found in these articles.

The foHowing definition is given in [2].

Definition: Let B be a chessboard with m rows and ncolumns. (Throughout this
paper, when we say that a chessboard has m rows and » columns, we mean that
cach of these rows and cach of these columns contain at least onc cell.) With B,
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we can associate a graph G g, constructed as follows. The node set of Gp is the
union of the two disjoint sets {r,,72,... ,7m} and {c1,¢c2,... ,Ca} TEprEsenting
the row and column labels, respectively. Nodes c; and r; are joined by an edge if
and only if cell (c;, ;) belongs to B. G'p is called the associated graph.

1t is clear from the definition that G'p is bipartite. Dually, given any bipartite
graph G, we can find a chessboard Bg such that G is the graph associated with
Bg.

The following result is proven in [2].

Theorem 1. R(B;z) = M(Gpg;(1,x)); that is, the rook polynomial of the
board B can be obtained from the matching polynomial of G g, by replacing un
andw, with1 and z, respectively.

Hence, we have the following corollary.
Corollary 1.1. For any chessboard B, v( B) = m(Gg).

The following definitions arc taken from [4].

Definitions: Anembedded board B is called an n-board if B C [n] x [n] where
[n] = {1,2,...,n}. A n-board B is called proper if and only if (i) (i,7) € B
implies ¢ > ; and (i) (4,7) € B and (j, k) € B implies that (i,k) € B.
Associated with a proper n-board B is a graph I',,( B) defined as follows: The
node set of T, (B) is V(I.(B)) = {1,2,... ,n} and nodes i and j (i > j) are
adjacent if and only if (4,7) & B.

Let G be a graph with n nodes. G is called a board-graph if and only if there
is aboard B C [n] x'[n] such that 7(B) = ¢(G). Also, G is called a I"-graph
if and only if there is a proper n-board B such that G = I',( B).

The following result is established in [4].
Theorem 2, i.et—B be a propern-board. Thenr(B) = c(Tx(B)).
The following result is taken from [3].

Theorem 3. m(G) = ¢(G) if and only if G is A -free (triangle free), that is, G
does not contain a subgraph isomorphic (o K.

From Theorem 1, we sce that every rook vector is a matching vector of a bipar-
tite graph. Since every bipartitc graph is A -free, we have (from Theorem 3) the
following result.

Corollary 3.1. Every rook vector is a chromatic vector.

It is clear that Corollary 3.1 is also immediate from Theorem 2; in [4], Corollary
3.1 is given as a corollary of this theorem. Therefore, we have given an indepen-
dent derivation of this intcresting result.
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3. Chromatically vector equivalent graphs associated with a chessboard.

The following theorem yields a technique for constructing chromatically equiva-
lent graphs.

Theorem 4. For any proper chessboard B, the graphs I'n(B) and Gg are chro-
matically vector equivalent. that is, I'n(B) ~ Gp.

Proof: From Corollary 1.1,7(B) = m(Gg). From Theorem 2,7(B) = ¢(I'»(B)).
Therefore,

m(Gp) = «(I'a(B)). )

But, G'p is a bipartite graph and is therefore A -free. It follows from Theorem 3,
that m(Gg) = c(Gs). Hence, Equation (1) yields ¢(Gp) = c(T'w(B)). There-
fore, [(B) ~ Ga. ]

We illustrate Theorem 4 using the board B of Figure 1 in {4]. The board, to-
gether with the associated graphs are shown in Figure 1.

8 [
$
4 X B = {(3.2),(4.2),(5.1).(5.2),(5,3),(5.4).(6,1)}
HEmaRb

123458

1
rg(B): 2 4 Gg:
8 S

Figure 1
The following polynomials can be easily verfied.

R(B:z)=1+7z+ 112% + 42>
M(Ggiw) = 'wf + Tw 6wy + ll'w‘,'w% + 4w,2w3
P(T6(B):X) = (M)s + T(N)s + 11(XA)s + 4(N)3.

The graph G g is shown in Figure 2. The chromatic polynomial of G is

P(GgiX) = (Mg + 7(\)7 + 11(N)6 + 4(N)s.
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Hence, we have _
c(Gp) = c(Te(B)) =(1,7,11,4).

Figure 2

Note that in this case, Gg ~ I's(B). However, they are not co-chromatic.
Trivially, we can obtain a co-chromatic pair by adding a complete graph on two
nodes ( K2) to the graph I'¢( B) and joining the nodes of K, to all the nodes of
T's (B). The resulting graph can be denoted by I's ( B) ® K2, where © denotes the
Zykov product (also known as the join) of two graphs. Trivially, G © Ko = G.

It is clear that the number of cells below the main diagonal of a n x n square
array of cells (;‘) . This square array defines thc complete graph K, with nnodes,
when we define the edges 1o be (i,;) if and only if ¢ > j. The graph [';(B)
is a subgraph of this graph. The following lemmas give information about the
parameters of the graphs defined so far. They are easy to derive.

Lemma 1. Let B be a board with r rows, ¢ columns, and k cells. Then
@ |[V(GB)|=r+c,
(i) |[E(Gp)| =k,
(i) |B(Gp)| = (3°) — k-
Lemma 2. Let B be a proper n-board with k cells. Then
O [V(Iu(B))|=m
(i) |BE(Ta(B))| =k,
@iii) |B(Ta(B))|= (3) — k.

Definition: Let G and H be chromatically vector equivalent graphs. G and H
are called trivially (vector) equivalent (written as G..pH) if and only if either
G HO K, or H= G0 K,, for some non-negative integer m or s. Otherwise,
G and H are non-trivially (vector) equivalent (written as Gy H).

We note that when the chromatic polynomials of G and H are written in the
usual form (as powers of )\) the analogous definition of trivially equivalent is that
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either G ¥ HUK,, or H ¥ G U K,, for some non-negative integer m or s.
In this case, the definition exactly parallels the definitions of trivially equivalent
given in [2] for matching and rook polynomials.

Theorem 5. Lt B be a proper n-board with r rows and ¢ columns. Ifn< r+ c,
thenGg.n7l'n(B).

Proof: We have already shown (in Theorem 4) that GpTu(B). Sincen< r+c,
from the above lemmas, Gg has more nodes than I,( B). Let us assume that
Gg = I'h(B) © Ky, for some non-negative integer m. Sincen < r+c¢, m =
r+c—n> 0. It follows that G contains a node of valency 7 + ¢ — 1, which
implies that G contains an isolated node. This is impossible by the construction
of Gg. Our assumption is false. Hence, G pnr2(B). ]

Theorem 5 assures us that the technique implied by Theorem 4 always yields
non-trivially equivalent graphs, provided that n < r + ¢. We notc that there are
chessboards for which there are no proper embeddings in square arrays of side
less than r + c. An example of such a board is the square chessboard containing
r2 (= ¢?) cells.

4. Vector equivalent graphs associated with translated boards.

We now consider the effects of embedding a given board properly in square boards
of different sizes. These embeddings can be obtained by translations of B to the
right. The translations can be partitioned into three classes, according to the sizes
of the resulting square boards. We consider the cases: (i) » < 7+¢, (i) n=r+c,
and (iii) n>r+c.
Case (i, n<r+ec

Theorem 5 settles the relationship between Gg and I',(B) whenn< r+ c.
Definitions: Let m be the side of the smallest square board in which the board B
can be properly embedded. Then the proper m-board is called the minimum board
for B; the graph I',,,( B) is called the minimum graph for B.

The following lemma is immediate from thesc definitions.

Lemma 3. Let B be a board withr rows and ¢ columns. Let m be the size of the
minimum board for B, Then, m > max(r,c) + 1.

Suppose that we start with the minimum m-board and that m < 7 + ¢. Then
we can translate B one cell at a time to the right, thercby obtainings=r+c—m
embeddings in n-boards for which n < r + ¢. By Theorem 5, each of the graphs
Ti(B), m < i < r + c, are non-rivially equivalent to G. Hence, we obtain the
following result.

Theorem 6. Letm be the size of the minimum board for a board B with r rows
and c columns. Then the graphs T (B), Tie1 (B), ... and Trpc1(B) are all
chromatically vector equivalent. Furthermore, the equivalence is non-trivial.
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Proof: The first part of the theorem is clear from the discussion preceeding it. For
some integers 1 and j where j > 1, assume that I';( B) and I';( B) are trivially
equivalent, that is, T;(B) % TI'(B) © Ky, where m = j —i. Thus, T;(B) has
m(> 0) isolated nodes which implies that there is an integer t(1 < ¢ < 7) such
that no cell of B is in row ¢ and column ¢. Since no cell of B isinrowt,t > .
Also, all the columns containing cells of B must occur after column ¢. This implies
that j > ¢ + ¢ which implies that j > r + c. This is a contradiction. Therefore,
our assumption is false. The equivalence is non-trivial. [ |

The above theorem yields another method for constructing non-trivially chro-
matically vector equivalent graphs. This method depends on the condition that
m < 7+ c. Itis possible that for a given board, the only proper embeddings are
those for which n > r + ¢. We now consider these cases.
Case (ii): n=r+c.

The following theorem settles the case whenn=r + c.

Theorem 7. I',(B) & Gp ifandonly ifn= 1+ c.

Proof: Suppose that I',( B) =~ Gp. Then from Lemma 1 and Lemma 2, n=7r + c.
Conversely, suppose that n = r + c. We definc a mapping 0: V(Gp) —
V(I'x(B)) as follows:

0(r)=r—(i-1),
0(cj))=r+7].
Under 0, the cells of B dcfine the edges of Gy and I',( B) in the same manner,

that is, 0 preserves adjacencies in Gg and I',(B). Thus, Gp = I'1(B). ]
The following corollary is immediate.

Corollary 7.1. T, (B) = Gp ifand only ifn=1+ c.

This corollary suggests that in a search for chromatically vector cquivalent
graphs, no new graphs can be obtained by translating the board to the point where
n= r+ c. We now investigatc translations beyond that point.

Theorcm 6 and Corollary 7.1 yield the following resullt.

Theorem 8. The graphs T;(B), where m < i < 7 + ¢, are all mutually non-
trivially equivalent.

Case (iii): n>r+c.
The following theorem settles the case whenn > 7+ c.

Theorem9. T',(B) & GO K, ifandonlyif n> r+c, where s = n—(r+¢)
> 0.

Proof: Suppose that T,(B) ¥ Gp © K, where s > 0. Then it follows from
Lemma 1 and Lemma2thatn > r+ c.
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Conversely, suppose that n > r + c. This situation is illustrated in Figure 3.

!
i
—
!

<~

Tl f s —be— ¢ —>!

Figure 3

In this case, no cell of B can be in a row and a column with index in the set

{r+1,7+2,...,7+ s}. It follows that I',( B) contains s isolated nodes. Fur-

thermore, the row and column indices of the cells in B are disjoint. By using a

mapping similar to @ in the proof of Theorem 7, it can be easily shown that the non-

trivial component of I', ( B) is isomorphic to Gg. Therefore, I',(B) = Gp UK,.

The result follows by taking complements. |
Theorem 7 and Theorem 9 yield the following important result.

Theorem 10. T',(B)..rGg ifand only if n> 7 + c.

The message conveyed by Theorem 10 is that when using the embedding tech-
nique, in order to construct chromatically vector equivalent graphs, nothing is
gained by considering embeddings in square boards of side greater thanr+ ¢ — 1.

The following theorem gives an interesting property of the graph I';( B).

Theorem 11. I',,( B) is bipartite ifand only ifn > v + c.

Proof: Suppose that n > r + ¢. Then it is clear from the proofs of Theorem 7 and
Theorem 9 that I',,( B) is bipartite.
Conversely, suppose that I',( B) is bipartite. Then its row and column indices

must be disjoint. Label the rows 1,2,3,...,r. Then the column labels will be
a,a+1,...,a+ c— 1 wherea > r. Thus, n > a + ¢ — 1 which implies that
n2r+c. 1

As an illustration, we tabulate (in Table 1) the graphs I',( B) associated with
the chessboard B given in Figure 1, forn = 6,7,8 and 9. We have already
determined the rook vector of B and the chromatic vector of I',( B). These vectors
are as follows:

r(B) = c(Ta(B)) = (1,7,11,4).
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According to Theorem 6, all the graphs formed by translations have the same
chromatic vector. Therefore, we give the graphs and their matching vectors. By
Lemma 3, m must be at least 5; in this case, m = 6.

Table 1

n TB) m((B))

8 2
6 ! 5| SZ I (1.7,9,2)
4 3

7@ 4 95
7 1 sNz (1,7,10,3)
3 4

8 6
8 L 2 (1,7,11,4)
3 4 5
9 7
9 18\ 2 (1,7,11,4)
5@ 3 4 8

Theorem 12. Let B be a chessboard. Let By and By be two proper n-boards
obtained by embedding B. Let R; and C; be the set of row labels and the set of
column labels of B;, respectively. ThenTn(By) and T'y(By) are co-chromatic.
Furthermore, if|[Ry NC| # |R2 NGy | thenTw(By) is not isomorphic tol's(Ba2) .

Proof: Fori € {1,2}, ['n(B)) is a board-graph because r(B;) = c(Tn(By)).
T.(B)) and [,(B2) are cv-equivalent because v( By) = r(B) = r(Bz). These
board-graphs are co-chromatic because they both have nnodes. Fori € {1,2},
T.( B;) has n—(|R;|+|C;| —| RiNC:]) nodes of valency n—1. Since | Ry | = | R,
|Ci] = |C2),and |R1 N Ci|#|R2 N Caz|, Tn(B)) is not isomorphic to I'h,(B2).
|

As an illustration of Theorem 12, we consider three embeddings of chessboard
B shown in Figure 4. These embeddings arc denoted as B, B>, and B3. For
proper board By, Ry = {1,2,3},and Cy = {4,5,6,7} wherc |Ry NCy| = 0.
For proper board B, , Ry = {1,2,3},and G, = {3,4,5,6} where | Ry NG| =
1. For proper board B3, R3 = {1,2,3},and C3 = {2,3,4,5} where |R3 N
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Cs| = 2. The graphs I';( B1), I'7(B2), and ['7( B3) are pairwise co-chromatic
and pairwise non-isomorphic.

X, v . ,
¢ 3
X X s s :
. . a4 . .
B: xxxx B ¢ . Bz.; - B, 3 z
2 Xjx 2 XX 2 xIX
! X{xjxjx 1 ARKE + LIXIXIx]x
12345¢1 1234567 1234567

Figure 4

5. Some extensions using results on matching and rook equivalence.

Suppose that the boards B; and B, are rook equivalent. Then clearly, the graphs
[n(B1) and I'y( By) will be cv-equivalent (chromatically vector equivalent) for
all values of n for which proper boards exist. Therefore, rook equivalent boards
provide a useful means of extending the number of cv-equivalent graphs asso-
ciated with a given chessboard B. All rook equivalent boards will yield graphs
which are cv-equivalent to the graphs I',( B). However, we note that there is no
guarantee that the graphs obtained by using rook equivalent boards will be non-
isomorphic to the graphs I',(B).

The following definition is taken from Farrell [2].

Definition: Let G be a (m, n) -bipartite graph with node bipartition sets {ry, 2,
..., Tm} and {c1,c2,... ,c,}. We can associate with G, a chessboard Bg, con-
structed as follows. Bg will have m rows and n columns. Cell (4, 7) € Bg if and
only if ¢;r; € E(G).

In the following lemma, ~ ) and ~5 denote matching equivalence and rook
equivalence, respectively. Complements of chessboards are taken relative to any
fixed rectangular chessboard that contains the boards as subboards. G? denotes
the complement of G in a complete bipartite graph in which G is a subgraph. A
proof of the lemma is given in [2).

Lemma 4. LetG and H be bipartite graphs. Then
G~y H ¢ Bg~p By © Bg ~p By #Baa ~pg Bﬁa PNyt ~M-ﬁB.
It is not difficult to deduce the following result.

Theorem 13. LetG and H be matching equivalent bipartite graphs. Let G* and
H* be the complements of GB and H®, respectively. Then, for suitable positive
integersi andj, and fork € {1,2}, the elements of S, are pairwise cv-equivalent
where

$1 = {T«(Bo),.T(Bw), G, T} and S, = {Tj(B) Ty(Bya), G*, H*}.
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Definitions:

(i) A graph is called a chromatic board graph if and only if there exists a
board B such that ¢(G) = r(B). ;

(ii) A graph G Is called a matching board graph if and only if there exists a
board B such that m(G) = »(B).

The following theorem gives a characterization for matching board graphs.

Theorom 14. A graph G is a matching board graph if and only if G is matching
equivalent to a bipartite graph.

Proof: Suppose that G is a matching board graph. Then there exists a board B
such that m(G) = r(B). Associated with the board B, there is a graph G'g such
that r(B) = m(Gpg). Therefore, m(G) = m(Gp). Since Gp is bipartite, G is
malching equivalent to a bipartite graph.

Conversely, suppose that G is matching equivalent to a bipartite graph H, that
is, m(G) = m(H). Since H is bipartite, we can construct a board By, such that
r(By) = m(H). Thus, m(G) = v(By). It follows that G is a matching board
graph. |

The following observations can be verified.

(1) If a graph G is matching equivalent to a A -free graph H and H is a chro-
matic board graph, with board B ,then G is a matching board graph with
board B.

(2) Triangle-free graphs whose complements are chromatic board graphs are
matching equivalent to bipartite graphs.

(3) If G is a A-free graph, then G is a chromatic board graph if and only if
G is matching equivalent to a bipartite graph. Alternatively, if GisaA-
free graph, then G is a chromatic board graph if and only if G is matching
equivalent to a bipartite graph.

(4) If G be a bipartite graph, then G is a chromatic board graph.
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