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Abstract. A balanced incomplete Block design B[ k, a; v] is said tobe a nested design

if one can add a point to each block in the design and so obtain a block design B[k +
1, B: v]. Stinson(1985) and Colboum and Colbourn (1983) proved that the necessary
condition for the existence of a nested B[3, a; v] is also sufficient. In this paper, we
investigate the case k£ = 4 and show that the necessary condition for the existence of
anested B(4,a; v], namely a = 3\, AM(v—1) = 0 (mod 4) and v > 5, is also
sufficient. To do this, we need the concept of a doubly nested design. A B[k, «; v]
is said to be doubly nested if the above B[k + 1, §; v] is also a nested design. When
k = 3, such adesign is called a doubly nested triple system. We prove that the necessary
condition for the existence of a doubly nested triple system B[ 3, o; v],namely e = 3,
AMv—1) =0 (mod 2) and v > 5, is also sufficient with the four possible exceptions
v=39 andx = 3,9,15,21.

1. Introduction.

A pairwise balanced design (or,PBD) B[ K, ); v] is a pair (X, B), where X is a
finite set of points, B is a set of subsets of X, v and ) are positive integers and K
is some set of positive integers, if [X| = v, |B| € K for every B € B and every
unordered pair of points is contained in exactly A blocks of B.

If K = {k}, the B[ K, ); v] is called a balanced incomplete block design and
denoted by (v, k, \)-BIBD. When k = 3, a B[3, ); v] is called a triple system.
Itis well known [3] that a necessary condition for the existence of a B[k, \; v] is
that \(v—1) =0 (mod k—1) and dv(v—1) =0 (mod k(k - 1)).

Let D = (X,B) be a B[k,a;v]. A nesting of the design D is a mapping
f:B — X such that (X,B;), where B = {BU f(B) | B € B},isa B[k +
1,8;v]. Sucha D is called a nested B[k, «; v]. A double nesting of the design
D is a pair of mappings (f,g), f:B — X, g:B; — X, such that (X,B;) and
(X,B,),where By = {BU f(B) | B€ B},B, = {BUg(B) | B € B1},are
respectively a B[k + 1,8;v] and a B[k + 2,; v]. Such a D is called a doubly
nested B[ k, a; v]. When k = 3, the design is called a doubly nested triple system.

In fact, the above definition is a generalization of a nested triple system. Stin-
son [10] and Colbourn and Colbourn [2] proved that the necessary and sufficient
condition for the existence of a nested B[ 3, o; v] isthat a(v—1) =0 (mod 6)
and v > 4. In this paper we shall investigate the existence of nested B[4, «; v]
and doubly nested B[ 3, a; v]. By some simple counting, we have the following
necessary conditions.
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Lemma 1.1. A necessary condition for the existence of a nested B{4,a; v] is
a=3)MMv—-1)=0 (mod 4) andv > 3.

Lemma 1.2. A necessary condition for the existence of adoubly nested B[ 3, a3 v]
isa=3\Mv-1)=0 (mod 2) andv > 5.

In Section 2, we use perpendicular arrays (PA), orthogonal idempotent Latin
squares, PBD closure and some direct constructions to show that the above nec-
essary condition for the existence of a doubly nested B[3, o; v] is also sufficient
with the four possible exceptions v = 39 and a = 3,9,15,21. In Section 3, we
use almost resolvable designs and self-orthogonal Latin squares with symmetric
orthogonal mates to show that the above necessary condition for the existence of
anested B[4, a; v] is also sufficient.

2. Doubly nested B[3,3; v].

2.1 A construction from FA

A perpendicular array (PA(v,k)) is an (3) x k array, such that each cell is
occupied with one of the points in X, |X| = v, and such that any two columns
of the array contain each 2-subset of X exactly once. The number v is called the
order and the number k the depth of the array. It is clear that if we delete any 3
(0 < k' < k) columns of a PA(v, k), we obtain a PA(v, k — k'). If we denote
rows of a PA(v, k) by

v
2

-1
(6i1,8:2,--- ,8ik) 13‘3( )a“dB={{0n,ﬂiz,--- ,aik}IISva(v )},

2

then(X,B) isa B [k, KD, v] . We employ this to show

Theorem 2.1. If there exists a PA(v, k + 2), then there exists a doubly nested
k(k=1) .

B [k, -(-2—)-, v] .

Proof: We denote the rows of a PA(v, k + 2) by (ain,0:2,... ,6ik+2), 1 <

i < Y=l Then the two arrays which consist of rows (i1, 8i2,- -+ 1 Bike1)

and (ai1,0i2,...,0ik), 1 < i < %41, are respectively a PA(v,k + 1) and

a PA(v, k). Let

-1
B; = {{au,aa,... ,a.-,m,'} [1<i<L -u(vT)_} , j=0,1,2.

Then(X,B;) isaB [k + 7, L'212%'21'—'11;1:] forj = 0,1,2. Now define a pair of
mappings { f, g) as follows:

f:Bo — X, f(B) = a;x+1 wWhere B = {ai1,0i2,.-- ,0i}
g:B1 = X, g(B) = aiz+2 Where B = {ai1,812,... ,8ikn1 },
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Therefore, {BU f(B) | B € Bo} = Byand {BUg(B) | B € B1} =
B,. Then ( f,g) is a double nesting of (X,By) and (X,By) is a doubly nested
Blk, 250 4). |

Corollary 2.2. There exists a doubly nested B[3,3);v] forall oddv > 5,
v # 39 and all positive integers .

Proof. From [6,9], there exists a PA(v,5) foralloddv > 5 and v # 39, so we
have a doubly nested B[3, 3; v] from Theorem 2.1. Taking each block ) times
we obtain the required doubly nested design.

‘We will discuss the case of even v in the following sections and the case v = 39
in Section 2.4,
2.2 A construction from idempotent MOLS A Latin square of order v based on a
v-set X is an v x v array such that each row and each column contains each element
in X exactly once. Two Latin squares, A = (a;;) and B = (b;;), on X, are said to
be orthogonal if {(aij, b;;) | 1 < 1,7 < v} = X x X. Without loss of generality
welet X = {1,2,...,v}. A Latin square on X is idempotent if the (4,1) entry
isifor1 < ¢ < v. k idempotent Latin squares A;, A3, ... , A of order v are said
to be £ mutually orthogonal idempotent Latin squares if A; and A; are orthogonal
forall1 < 1 < j < k, and are denoted by k idempotent MOLS(v). Suppose

1= (ofP), 42 = (a ff’) s A = (aff?) are k idempotent MOLS(v) on

X;then (X,B) isa B[k + 2, \; v], where

B={{ij,a,... aPHi#j, 1<i,j<v} and A= 2(k+2)=(k+2)(k+1).

‘We employ this to show

Theorem 2.3. If there exist k(> 3) idempotent MOLS(v), then there exists a
doubly nested B[ k, k(k — 1); v].

Proof: Let A, = (a€€’), 1 <t < k, be k idempotent MOLS(v) on X, and let

B {{' ]1 S]l)’ ~"at('){‘_2+')}li#j’ lgi,]Sv}, 7‘=0,l,2.

Then(X,B,) isaBlk+ r,(k+r)(k+7r—1);v] forr=0,1,2. Now define a
pair of mappings ( f, g) as follows:

f:Bo = X, f(B) = o{¥™" where B = {i,,af0, .. ,a¥},

9B - X, g(B) = a“‘) where B = {i, 7, a,(}’,.. (k-1)}

Obviously, {BU f(B) | B € Bo} = Biand {BUg(B) | B € B1} = B,,
so (f,g) is a double nesting of the (X,Bo), and (X,By) is a doubly nested
Blk, k(k —1);v]. |

Let E = {2,3,4,6,10,18,22,26,28}. The following lemma is taken from
[1, Theorem 4.5].
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Lemma 2.4. There exists a setof 3 idempotent MOLS(v) forany positive integer
vg E.

Corollary 2.5. There exists a doubly nested B(3, 3 )\: v] for any positive integer
v ¢ E and any positive even integer X.

Proof: From Lemma 2.4 and Theorem 2.3 there exists a doubly nested B[3,6;v]
foranyv ¢ E. Takingeachblock A /2 times, we obtain a doubly nested B(3,3);v].

2.3 A direct construction
Anincomplete BIBD[ k, \; v,v1] (or, IBLk, A} v,vi])isatriple (X,Y,B), where
X is a v-set of points, ¥ C X, [Y'| = v1 and B is a set of blocks which satisfies
the following properties:

1) forany B€B,|B|=kand|[BNY|< 15

2) any two points z, y, not both in Y, occur in exactly X blocks of B.

Suppose (X,Y,B) is an IB[k, X;v,v1] and (Y,B,) is a B[k, ; v1]. Then
(X,BUB,) isa Blk,); v].

LetG = Zy—n = {0,1,... ,u —n— 1} be the cyclic group of integers modulo
v — n. Y consists of n infinite elements 001,002, ... ,00a. We extend the group
G by adding all elements in Y, with the property thatg+y=y+g=yforall
geGandy €Y.

Direct Construction Theorem. LetB; (1 <i<v—1)andD;(v—n< i<
v — 1) be 3-subsets of X = GUY which satisly the following conditions:
(1) Bi,B2,...,Bu-1, Dyn,--. ; Dy are base blocks of an IB[3,6; v,n]
(X,Y,B'), where B' consists of all B;;, as follows:

5=4 Bj+i, ifi€eGadv-ngj<v-1;

D+, ifv—n<i<v—1,and j€G.

(2) every element in G\{0} occurs exactly 3 times in the blocks By, Ba, ... ,
B,_1,andevery element in Y occurs exactly 3 times in the blocks By, B,
cee y Bu-n—l M

(3) everyelementinY occurs exactly 3 times in the blocks Dy, D2, ... , Dy_n-1,
and for every i € G\{0}, if i occurs T times in the blocks Dy,D,, ...,
D,_, then —i occurs exactly 6 — T times in them, where D; = B; — 3,
i€ G\{0};

(4) there exists a doubly nested B3, 6;n].

Then there exists a doubly nested B[3,6; v].

Proof: Suppose (Y, B") is a doubly nested B(3, 6; n]. Then there exists a double
nesting ( f", g"). such that (¥, B}) and (Y, B}), where By = {Buf(B)|BE€

{3,._,.”, ifi#j,andi,j€G;
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B'} and B; = {BUg"(B) | B € B}} are respectively a B[4,12;n) and a
B[5,20;7]. Let B= B’ UB"; then (X, B) is a B[3,6; v]. We will prove that
(X, B) is a doubly nested design.

If we put the block B;; in the cell (4, 5) of a v x v square T, then the diagonal
cells in T are empty and the n x n sub-square in the lower right corner is empty.
Further, we know that T is cyclically generated modulo v — n. This is because

Bivije1=Bij+1, ifi#;jand i,j€G;
{B.‘+1J= i+ 1, fieGand v—n<j<v-1;
Bijs1 =Bij+1, ifv—-n<i<v—-1and j€qG.
It is obvious that the ith row (column) of T is indexed by i for i € G. When
v—n< i< v— 1, the ithrow (column) is indexed by 0o;_y+n+1. By the cyclic
property of T" and conditions (2) and (3), T has the following two properties:

(i) every element in (G U Y')\{s} occurs exactly 3 times in the ith row, for
i € G, and every element in G occurs exactly 3 times in the ith row, for
v—n<i<v-—1;

(i) fori € G, every element in Y occurs exactly 3 times in the ith column and
any j € G\{s} occurs exactly T times in the ith column if j — { occurs
exactly 7 times in the Oth column. Every element in G occurs exactly 3
times in the sthcolumnforv—n<i<v-1.

Now define a mapping f: B — X as follows:

0i_psmi, If B=DBj,v—-n<i<v—1andjeG;
F(B), if BeB"

It can be shown that (X, B, ) isa B[4,12; v] where B, = {BU f(B) | B € B}.
In fact, f maps B;; to its row index. Let z and y be any two distinct elements in
X. If {z,y} C Y, then {z,y} is contained in exactly 12 blocks of BY. If z and
y are not both in Y, then by property (i), y occurs 3 times in the row indexed by
z while z does not occur in that row. Therefore, {z, y} is contained in exactly 3
of the corresponding blocks of B,. For y, we have a same result. Since {z, y} is
contained in exactly 6 blocks of the other rows of T, it is contained in exactly 6
of the comresponding blocks of B;. Therefore, {z, y} is contained in exactly 12
blocks of By . This guarantees that (X, B;) is a B[4,12; v].

Analogously, we use the column index to define a mapping g:B; — X as
follows:

s if B=B;;Uf(Byj),i#/,0<i<v—1andj€EG;
Q(B)={

i, if B=Byj,i#j,i€ecGand 0<j<v—1;
f(B)={

00j—vsnt1, If B=B;;Uf(B;),i€G,andv—n<j<v—1;
¢"(B), if BEB.
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We shall show that (X, B;) isa B[5, 20; v] where B, = {BUg(B) | B € B1}.
Let {z, y} beany 2-subsetof X. If {z,y} C Y, then {z, y} is contained in exactly
20 blocks of B}. If z € G and y € Y, then by property (ii), y occurs exactly 3
times in the column indexed by z while z does not occur in that column. Then y
occurs in exactly 4 of the corresponding blocks of By . Hence {z, y} is contained
in 4 of the corresponding blocks of B,. For y we have the same result. Since
{z, y} is contained in exactly 12 of the other blocks of By, {z,y} is contained in
exactly 12 of the corresponding blocks of B . Therefore, {z, y} is contained in
exactly 20 blocks of By. Now let {z,y} C G. If y — z occurs 7 times in the
0th column, then, by condition (3), z — y occurs 6 — 7 times in the 0th column,
By property (ii), y occurs T times in the zth column while z does not. Hence y
occurs in 7 + 1 of the corresponding blocks of By but z does not. Analogously,
z occurs exactly (6 — T+ 1) times in the yth column while y does not occur in
that column. So {z, y} is contained in exacdy (7 + 1) +(6 — 7+ 1) =8 of the
corresponding blocks of By . Since {z, y} is contained in exactly 12 blocks of By,
{z,y} is contained in 12 of the corresponding blocks of B, . Therefore, {z,y} is
contained in exactly 20 blocks of B; . This shows that (X,B,) isa BI[5,20; v].

As above, ( f,g) is a double nesting of (X, B), so (X,B) isa doubly nested
BI3, 6; v]. This completes the proof. 1
Remark: If n= 1, the conditions needed in the Theorem are only (1), (2) and (3).
In this case, condition (1) says that By, Bz, ... ,By—_1, Dy_n,... , Dy—1 are base
blocks of a B[3,6; v].

Lemma 2.6. There exists a doubly nested B(3,6; v] forv =6,10,18,22.

Proof: Applying the Direct Construction Theorem, we get the required designs
with base blocks shown as follows.

(1) v=6, X =25 U {oo}

B1 ={2,3,00} Dy ={1,2,00}

By ={1,4,00} D; ={4,2,00}
B3 = {1,4,00} D; = {3,1,00}
Bs={1,2,3,} D4 ={2,3,4}
Bs ={2,3,4} Ds ={1,3,4}
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@) v=10, X = Zy U {oco}

By ={2,7,00} D, ={1,6,00}
B, = {4,6,8} D, ={2,4,6}
By ={4,6,7} D; ={1,3,4}
B4 = {2,3,00} D4y ={7,8,00}
Bs ={1,8,00} Ds ={5,3,00}
Bs = {2,5,8} D¢ ={5,8,2}
B;={1,5,6} D; ={3,7,8}
Bg ={3,4,5} Ds ={4,5,6}
By ={1,3,7} Dy ={1,2,7}

(3) v=18,X = Z3; U {0}

B, ={4,7,12} D, ={3,6,11}
B, ={10,12,15} D, ={8,10,13}
B3 ={1,2,4} D; ={1,15,16}
Bs = {8,9,16} Dy ={4,5,12}
Bs = {7,13,14} Ds ={2,8,9}
Bs = {3,13, 00} D¢ ={7,14,00}
B, ={8,14,00} D7 ={1,7,00}
Bg = {3,5,6} Dg ={12,14,15}
By = {2,15,00} Dy ={6,10,00}
By = {11,12,16} Dy ={1,2,6}
Bj ={6,8,14} Dy ={3,12,14}
B2 = {4,9,16} Dy = {4,9,14}

By ={1,5,11} Dys = {5,9,15}
B = {9,10,13} Dy = {12,13,16}
Bjs = {2,5,11} Dis = {4,7,13}
Bis = {6,10,15} Dy = {7,11,16}
Bi7 ={1,3,7} Dy ={2,9,11}
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Bi ={3,13,001}
B; = {9,13,001}
Bs = {11,12,00:}
Bs={3,5,6}

Bs = {lv3:°°2}
B¢ = {10,12,002}
By = {4,15,002}
Bs = {13,14,003}
By ={1,2,003}
Bio = {8,14,003}
B ={4,7,004}
B, = {9,16,004}
B3 = {7,10,004}
Bis = {8,16,00s5}
Bis = {6,7,005}
Bis = {2,15,005}
By = {10,12,15}
Bis ={6,8,14}
B ={2,5,11}
B ={1,5,11}
By = {4,9,16}

@) v=22, X =Z17U{oo; |1 L i< 5}

D, ={2,12,001}
Dy ={7,11,00:}
D3 ={8,9,001}
D, ={16,1,2}
Ds ={13,15,002}
D¢ ={4,6,002}
D7 ={14,8,002}
Dg ={5,6,003}
Dy ={9,10,003}

Do = {15,4,003}
Dn ={10,13,004}
Dz = {14,4,004}
Dy3 = {11,14,004}
Dya = {11,2,005}
Diys = {8,9,005}
Dy = {3,16,00s}
Dy ={1,5,12}
Dys = {11,15,16}
Dy ={13,10,5}
Dy ={3,7,12}
Dy ={1,3,10}

2.4 The PBD construction

Lemma 2.7. Ifthere exists a BLK', )\ ;v) and a B[ K,);; k] forevery k € K,
then there exists a BL K, 1 )2;v].

Proof: The conclusion follows from [3, Lemma 2.5].
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Theorem 2.8. If there exists a B[ K, \; v] and a doubly nested B[3,3)2; k)
forevery k € K, then there exists a doubly nested B[3,3 1 )2; v].

Proof: Let(X,A)beaB[ K, ;v]andlet(A,By) be a doubly nested B[3,3X2;
|A]] for every A € A. Let (fa,94) be a double nesting of (A,B4). Then
(A,BD) and (4,BP), where B’ = {BUf(B) | B € B4} and B = {BU
ga(B) | B € BV} are respectively a B[4,6)2; |A[] and a B[5,10)2; |A[].
From Lemma 2.7, (X,B), (X,B:) and (X,B2), where B = UgeaBa, B1 =
UseaB'Y andB; = UscaBY , arerespectivelya B[3,3)1 225 v] aB[4,6A12; 0]
and a B[5, 10 X2;v]. Now we define a pair of mappings ( f, ) as follows:

f:B— X, f(B)= fa(B), ifand only if B € Ba;
g:B) — X, g(B) = ga(B), ifandonlyif B € BY’.

Obviously, {BU f(B) | B € B} = By and {B U g(B) | B € B} =
B,. Then (f,g) is a double nesting of (X,B) and (X, B) is a doubly nested
BI[3,3x1)2;v]. 1

We assume that the reader is familiar with the terminology of group divisible
designs (GDDs) and transveral designs (TDs) (see, for example, [3]).

Lemma 2.9. There exist doubly nested B(3,6;26] and B[3,6; 28].

Proof: Deleting five points in a block from a TD[6,1,5], we obtain a GDD
[{5,6},1,{4,5}:25] of type 455'. Adding a new point co to each group, we
obtaina B[{5,6}, 1;26]. By Corollary 2.2 and Lemma 2.6, there exists a doubly
nested B[3, 6; 5] and a doubly nested B[3, 6; 6]. We apply Theorem 2.8 to geta
doubly nested B[3,6; 26]. From [3], we know that a B[7,2;28] exists, and by
Corollary 2.2, we have a doubly nested B[ 3, 3; 7]. We apply Theorem 2.8 to get
a doubly nested B[ 3, 6; 28]. |

Lemma 2.10. There exists a doubly nested B3 ,3 ); 39] for any positive integer
A>09.

Proof: Since there exists a B[19,9; 39] (see {7]), by Corollary 2.2 there ex-
ists a doubly nested B[3,3;19]. Apply Theorem 2.8 to get a doubly nested
BI[3,27;39]. On the other hand, there exists a doubly nested B[3,3X;39] for
any positive even integer ) from Corollary 2.5. If we combine all blocks of the
two designs, we obtain the required doubly nested design.

Combining all results in this section, we obtain the main result of this section.

Theorem 2.11. The necessary condition for the existence of a doubly nested
B[3,a;v], namelya = 3\, M(v —1) = 0 (mod 2) andv > 5, is also suf-
ficient with the 4 possible exceptions ofv = 39 anda = 3,9,15,21.

Proof: If ) is odd, then we use Corollary 2.2 and Lemma 2.10. If X is even, then
we use Corollary 2.5, Lemma 2.6 and Lemma 2.9. B

137



3. Nested B[4,3); v].
3.1 A construction from almost resolvable designs
An almost resolvable design ARB[ k,k—1; vl isatriple(X,B, {D,D,,... ,D,})
which satisfies:
(i) (-X)B) iS aB[knk - l;v]’
(i) D,,D,,...,D, is a partition of B, and
(iii) for every D; (1 < i < v), there exists a point z € X, such that D; is a
partition of X \{z}, where Dj is called an almost parallel class and z the
singleton of D;.

From [4, 8] we have the following lemmas.

Lemma 3.1. There exists an ARB[4,3;v] for every positive integerv = 1
(mod 4).

Lemma 3.2. Suppose (X,A) is an ARBlk,k — 1;v]. Thenanyz € X has a
unique almost parallel class such that z is its singleton.

Theorem 3.3. If there exists an ARB[k,k — 1; v], then there exists a nested
Blk,k—-1;v].

Proof: Let (X,A) be an ARB(k, k — 1; v]. From Lemma 3.2, we can label the
parallel class by D, such that z is the singleton of D;. Now define a mapping
f:A— X as follows:

f(A) =z ifandonly if A € D;.

Then (X,A;), where A; = {AU f(A) | A€ A} isaB[k+ 1,k+ 1;v]. Hence,
f is a nesting of (X,A), and (X, A) is anested Bk, k — 1;v]. ]

Corollary 3.4. There exists a nested B[4,3 ); v for all positive integers \ and
v, wherev =1 (mod 4).

Proof: From Lemma 3.1 and Theorem 3.3, we obtain a nested B[4, 3; v]. Taking
each block ) times, we obtain a nested B[4,3); v]. |

We will discuss the cases v = 3 (mod 4) and v = 0 (mod 2), in the next
section.

3.2 A construction from SOLSSOMs

A Latin square of order v is said to be self-orthogonal , and is denoted by SOLS(v),
if the square and its transpose are orthogonal. If a self-orthogonal Latin square A
of order v and a symmetric Latin square B are orthogonal, then A is called a
self-orthogonal Latin square with a symmetric orthogonal mate, and denoted by
SOLSSOM(v).

From [5, 11, 12], we have the following lemma.
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Lemma 3.5. There exists a SOLSSOM(v) forany oddv > 5.
Theorem 3.6. Ifthere exists aSOLSSOM v), then there exists anested B[4, 6; v].

Proof: Let A = (ay;) be a SOLS(v) based on X = {1,2,...,v}andlet B =
(bi;) be a symmetric orthogonal mate of A. Without loss of generality, we assume
that A is idempotent. Let

A= {{ijoyax} [i # 3,1 <ij < v} and
A= {{i,j,aij,aji,bij} I i #J’l <ij< U}.

Then (X, A) and (X,A;) are respectively a B[4,12;v] and a B[5,20;v]. So
if the B[4, 12; v] (X, A) contains a block {1, , a;, a;;} then it also contains the
block {7, , a3, aij}. Suppose B = {{i, ], aij,05} |1 <4< j<v}ithen(X,B)
is a B[4, 6; v]. Let B) = {{i, 7, aij, aji, bij) |1 <i<j< v} Since bj; = by,
we know that (X,B;) is a B[5,10;v]. Now define a mapping fiB— Xas
follows:

f(B) = b;; if and only if B = {i,},aij,0ji} € B.

Hence, {BU f(B) | B € B} = By, f is a nesting of (X,B), and (X,B) is a
nested B[4, 6; v]. 1

Corollary 3.7. There exists a nested B[4,3); v] for any oddv > S and any
positive even integer \.

Proof: By Lemma 3.5 and Theorem 3.6, we have a nested B(4,6; v]. Taking
each block /2 times, we obtain a nested B[4,3); v]. 1

Lemma 3.8. There exists a nested B[4 ,3);v] for any evenv > 5 and any
positive integer A = 0 (mod 4).

Proof: Suppose A = 21, where \; =0 (mod 2). By Theorem 2.11, we have
anested B{4,6 \1; v]. This is the required nested design B[4 L3050, [}

Combining Corollaries 3.4, 3.7 and Lemma 3.8, we obtain the main theorem of
this section.

Theorem 3.9. The necessary condition for the existence of a nested Bl(4,a;v],
namely o= 3\, \(v—1) =0 (mod 4) andv 2> 5, is also sufficient.
Proof: The necessary condition can be divided into the following three cases:

(1) v=1 (mod 4)and X > 1;
(2) v=3 (mod 4) and ) even;
(3) v=0 (mod 2) and X =0 (mod 4).

The conclusion follows from Corollaries 3.4, 3.7 and Lemma 3.8. 1
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