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Abstract. Lee conjectures that for any k > 1, a (n,nk)-multigraph decompos-
able into k Hamiltonian cycles is edge-graceful if nis odd. We investigate the edge-
gracefulness of a special class of regular multigraphs and show that the conjecture is
true for this class of multigraphs.

1. Introduction.

The study of edge-graceful simple graphs was initiated in 1985 by Lo [13]. A
simple graph G = (V, E) is said to be edge-graceful if there exists a bijection f :
E — {1,2,...,|E|} such that the induced mapping f*:V — {0,1,... V=
1},defined by f*(v) = S {f(u,v): (u,v) € E(G)} (mod |V]),isabijection.

The concept of edge-graceful graphs can be viewed as the dual concept of grace-
ful graphs. A graph G = (V, E) is graceful if there exists an injection g: V(G) —
{0,1,...,|B|} such that the induced mapping ¢*: E — {1,2,... ,|E|}, defined
by g*(e,b) = |g(e) — g(b)| for all (a,b) in E is a bijection. Graceful graphs
were considered by Rosa [14] in the carly 60’s and popularized by Golomb [3].
For further details on graceful graphs and their applications, we refer the readers
to [1], (3], and [4].

In this paper, we extend the concept of edge-gracefulness for simple graphs to
multigraphs. All the multigraphs considered herein have no loops. A multigraph
G is said to be regular if for any u, v in V(G), we have dg(u) = de(v).

The second author has conjectured that forany k > 1, a (=, nk) -multigraph de-
composable into k¥ Hamiltonian cycles is edge-graceful if n is odd in 1988 South-
eastern International Conference on Combinatorics, Graph Theory, and Comput-
ing. The conjecture is true for several familics of (n, nk)-graphs, such as kth
power cycles [9], complete graphs [6], and regular complete k-partite graphs [10].
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For arbitrary (n, nk)-multigraphs decomposable into & Hamiltonian cycles, this
conjecture appears to be difficult.

We investigate the edge-gracefulness of a class of regular (n, nk)-multigraphs,
which are called step-multigraphs and which we denote by S(#; a1,02,... ,8k).
Here, nis odd, and a1, a3,...,a, are integers such that 1 < a; < a2 £ ... £
ax < (n—1)/2. The vertices of S(n; a1, a2, ... ,ax) are numbered by 0,1,...,
n— 1, and the edge-set is given by {(u,v):u,v € V(G),u # v,v—u = q;
(mod n) fori=1,2,... ,k}.

Note that every node 1 has nodes i+ ey, i%a3,...,itax (mod =) adjacent to
it. Thus the step-multigraph S(n; a1, a2, ... ,ax) is 2 k-regular. Note also that the
a;’s may notbedistinct. Ifay, a3 ... ,ax areall distinct, then S(n; a1, a2, ... ,ak)
is a simple graph (perhaps disconnected), which is referred to as a circulant in [2].
Itis well-known that a circulant is connected if and only if GCD(n, a1, a2, . .. ,ak)
= 1, Figure 1 depicts a disconnected circulant, 5(8;2,4).

Figure 1

The study of step-mutigraphs S(n; 1, a2, ... , ax) is motivated by the fact that
this family of graphs contains many other families of graphs as special cases.
For examples, S(m; 1) is a cycle on n vertices Cp,, and S(n;1,2,...,(n—1)
/2) is a complete graph K, when n is odd (sec also Section 4). Furthermore,
it is easy to see that if GCD(n,a;) = 1 for some 4, then the set of n edges,
{(u,v):u,v € V(G),u # v,v —u = a; (mod =)}, forms a Hamiltonian
cycle. Thus S(n; a1,a2,...,ak) is decomposable into k& Hamiltonian cycles if
GCD(m,a;) = 1 fori =1,2,...,k. Consequently, it would be interesting to
see if the conjecture holds here. In fact, the answer is in the affirmative, and we
have the following main result.
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Theorem 1. The step-multigraphS(m; e1,02,... ,ax) withnoddis edge-graceful.

We see immediately from Theorem 1 that the conjecture above is true for step-
multigraphs S(=; a1,a2,... ,ax) with nodd and decomposable into k Hamilto-
nian cycles.

2. Preliminaries.

Lo [13] shows thatif G is a simple (p, g) -graph withp = |[V(G)| and ¢ = | E(G)|
and G is edge-graceful, then p divides ¢> + ¢ — [p(p — 1)]/2. This result can be
extended to multigraphs.

Theorem 2. IfG is a(p, q) -multigraph withp = |V(G)| and ¢ = |E(G)| and
G is edge-graceful, thenp divides ¢* + ¢ — [p(p — 1)1/2.

The first author, Li-Min Lee and G. Murty [6] showed that any simple graph
G with p =2 (mod 4) is not edge-graceful. We also have the similar result for
multigraphs.

Theorem 3. A multigraph G withp =2 (mod 4) is not edge-gracefil.

For other results on edge-graceful graphs, we refer the readers to [S - 13].

It is easy to see that the step-multigraph S(n; a1, a2, ... ,ax) with nodd satis-
fies the necessary condition as stated in Theorem 2.

For an edge (u,v) in the step-multigraph S(n; ay,e2,...,ax) we define the
vertex difference of this edge to be (v — u) (mod =), which must be an element
of the set {a1, a2, ... ,ax}. For a given vertex u, the set of vertex differences for
all edges incident with u is a union of two identical copies of {a;,a2,... ,ax}.

We partition the edges of S(#; a1, ez, ... ,a%) into &k classes such that the edges
in the ith class, A;, has the same vertex difference a;, where¢ = 1,2,... , k. That
is,

Ai={(u,v):u,veV(@,u #v,v—u=gq; (mod n)}.
Note that each class has exactly n edges. Note also that if we have a; = a; for
i # 7, we still end up with two distinct classes A; and Aj, although the edges in
the two classes are the same. It is not difficult to see that the edges in each of these
classes form cither a Hamiltonian cycle, a union of disjoint cycles, or a union of
disjoint edges.

Since the vertex labels are calculated by using modulo = arithmetic, we may
replace the set of edge lablels {1,2,...,nk} by the set {1 mod n, 2 mod n,
... ,nk mod n}. That is, we can use k copies of B = {0,1,...,n— 1} as the
edge labels.

3. Labeling techniques.

In this section, we introduce two labeling techniques, which we use to label the
edges of S(n; a;,@e3,... ,a8,). The edges in a class A; will be labeled by one of
the techniques.
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Technique 1:

For a class A;, we label edge (u, u+ g;) by label u, wherew = 0,1,... ,n—1.
Notice that the collection of the edge labels form the set B = {0,1, ... ,n—1}.
Now consider any vertex u. It has two incident edges (u, u + ¢;) and (u — a5, u),
and thus the sum of the two edge labels is ¢ + (u — ¢;) (mod n),0or2u — q;
(mod 7).

Technique 2:

For a class A;, we label edge (u, u + a;) by label (n— u — 1), whereu = 0,

1,...

,n— 1. Note again that the collection of the edge labels form the set B. A

vertex u has two incident edges (u, u + ;) and (v — a;, u), and thus the sum of
the two edge labelsis [n—u — 1] + [n— (v —0;) — 1],0r2n—2u+a;— 2
(mod n),or—2u+a;—2 (mod n).

Observe that if we label two classes A; and A;(i # j) by Technique 1 and

Technique 2, respectively, the sum of edge labels for all vertices are identical and
equal to a constant, —g; + a; — 2 (mod 7).

4. Edge labelings for S(=; a1,a2,...,ax).

To prove Theorem 1, we label the edges of S(n; a1,a2,...,at) using the two
Techniques discussed in the previous section. There are two cases, depending on
whether & is odd or even.

6))

2

When k is odd:

We label each of the first (k + 1)/2 classes (A, Az,...,A+1)/2) bY
Technique 1, and each of the remaining (k — 1)/2 classes (Ack+1)/2+1,
..., Ag) by Technique 2. Consider any vertex u. The vertex label of u is
given by [((k+ 1)/2)(2u)1 + [((k—1)/2)(-2u)] — fi (mod =), or
2u— f; (mod m), where f; is some integer independent of u. It is easy to
see that the vertex labels are distinct. (An alternative way of obtaining the
vertex labels is to make use of the observation in the previous section. We
can form exactly (k — 1) /2 pairs of classes such that each pair is labeled
by both Technique 1 and Technique 2. The edge labels of these (k — 1) /2
pairs result in identical vertex labels. We are then left with one class labeled
by Technique 1. Thus for a vertex u, its veriex label must necessarily be of
the form 2u — fi (mod n).)

When k is even:

We label each of the first k/2 + 1 classes (A1, Az,..., Agj2+1) by Tech-
nique 1, and each of the remaining k/2 — 1 classes (Ag/242, ..., Ax) by
Technique 2. Again, the vertex label of u is given by [(k/2+ 1)(2u)] +
[(k/2 — 1)(-2u)] — fo (mod n),ordu— fo (mod n), where f is

some integer independent of . We sce immediately that the vertex labels
arc again distinct.
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We have thus proved Theorem 1.
We illustrate this result by the following examples.

Example 1: n=15,a; = a3 = a3 = a4 = 1 (see Figure 2).
Example 2: n=9,a; = 1,a3 = 1,a3 = 3 (see Figure 3).
We note the following corollaries, most of which have been proven elsewhere.

Corollary 4. The complete graph, K.(= S(m 1,2,...,(n— 1) /2)), is edge-
graceful whenn is odd [6]).

Corollary 5. The kth power cycle, C¥(= S(m1,2,... ,k)), where1 < k <
(n—1)/2, is edge-graceful when k < nf2 (see (9, 11, 13]).

Corollary 6. The multicycle kC,,, where there are k multiple edges for each pair
of adjacent vertices, is edge-graceful if n is odd.

Proof: We note that kC, is S(n; a1,0az2,...,0;), where a; = a3 = ... = a4

=1. |

Corollary 7. The regular complete k-partite graphs, K, .. » , Is edge-graceful if
both n and k are odd [10].

Proof: Itisnotdifficulttoscethat K, ... canbeexpressed as the step-multigraph
S(nk;1,2,...,k—=1,k+1,...,2k=1,2k+1,...,jk—1,7k+1,... ,(nk—
1) /2); see also [10]. 1
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Figure2. S(5;1,1,1,1)
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Figure 3. S$(9:1,1,3)
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