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1. Introduction

For m < nan m x nlatin rectangle is an m x narray consisting of the elements of
Z,={0,1,...,n—1} with the property that each row is a permutation of Z, and
no element occurs twice in any column. If m = n we simply have a latin square
of order n. Two such rectangles are orthogonal if upon superposition no ordered
pair occurs twice, and a set of t > 2 such rectangles is said to be orthogonal if
any two distinct rectangles are orthogonal. Such a set is complete if ¢ = n— 1. It
is well known that sets of orthogonal latin squares and rectangles are useful in the
design of statistical experiments, see for example Dénes and Keedwell [2] where
the reader will find an excellent survey of the theory of latin squares and related
objects.

In this note we discuss a simple number theoretic construction for sets of mutu-
ally orthogonal latin rectangles (MOLRs). Our results extend and generalize those
of Quattrocchi [4] described in [2, p. 180] which are limited to p x pg rectangles
where p is prime and no prime factor of ¢ is less than p. While our construction
does not always yield complete sets of MOLRs, we do obtain nontrivial collections
of MOLRs. For m < n < 30 we indicate in Table 1 the maximum number of
MOLRs constructible by our algorithm. In section 3 we discuss the construction
of higher dimensional latin parallelepipeds.

In [1] Bose constructed a complete set of mutually orthogonal latin squares
(MOLS) of order ¢ whenever g is a prime power. This construction can be de-
scribed as follows. If 0 # a € F, the finite field of order g, place the element
az + y at the intersection of row z and column y of the a-th square. Hence for
g a prime power one can always construct a complete set of g—1 MOLRs of size
mxgqgforany2 <m<agq.
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2. The Construction

By relabeling the symbols of a set of MOLRs, we may assume that the first row
is in the standard order 0,1,...,n— 1. If 1 < k < nform an m x nrectangle
(ri;) where

r; = ki+ j(mod n), 0<i<m; 0<j<n 0))

If ki+ j1 = ki+ jz then ji = ja so the rectangle is latin by row and it is latin
by column provided m < n/(k,n) where (k,n) denotes the greatest common
divisor of k and n.

As one varies k how many distinct MOLRSs of size m x = does (1) generate?
Clearly if m = = is a prime, then we obtain n — 1 MOLS of order n and our
construction is the same as that of Bose [1].

As shown in Bose [1] the existence of n— 1 MOLS of order n is equivalent to
the existence of an affine plane of order n. Moreover a long standing conjecture
postulates that every affine plane of pime order is desarquesian, see [2,p. 276]. If
nis a prime the construction (1) leads to a desarguesian plane and so altemnatively
itis conjectured that all complete sets of MOLS of prime order are isomorphic, i.e.
can be obtained from the construction (1) by applying a fixed permutation to the
rows and a fixed (possibly different) permutation to the columns of each square in
the set.

Thus in spite of the simplicity of our construction, it is conjectured that all com-
plete sets of MOLS of prime order can be obtained from our construction. In gen-
eral for m < nlet N(m,n) denote the maximum number of MOLRs of size
m x nthat can be constructed by (1). The following algorithm provides a method
for the computation of N(m, n) forany m < n.

Step1: LetS(m,n) = {kln/m > (k,m),1 < k< n} = {k1,...,k} and note
that S(m;,n) C S(ma2,n) if m; > ma,
Step2: Leta = 3. Solve

(a—1)(ki — kj) =0 (modn) 2)

Step 3: For a solution {k;, k;} of (2), if (k;,n) > (k;j,n) eliminate k; from
S(m,mn). If (k;,n) = (k;,n) eliminate k; where k; > k;. Repeat for
all solutions of (2). Repeat steps 2 and 3 withe = 4,5,...,m.

Step4: Let §'(m,n) = {k},..., kt} where for i # j, {k{, k;} does not satisfy
(2). Foreach k' € 8'(m,n) use (1) to construct an m x n latin rectangle
so that N(m,n) = |S'(m,n)|.

Proof: If k' € S'(m,n), since (k,n) < n/m, the rectangle is latin and two such
rectangles are orthogonal if and only if the &’s do not satisfy (2).

Example: Letm = 5 and n= 10 so that $(5,10) = {1,2,3,4,6,7,8,9} and
(2) becomes 4(k; — k;) = 0(mod 10) whose solutions are (1,6), (2,7), (3,8), and
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4,9). Since (6,10) > (1,10), (6) is eliminated and similarly 2,4,8 are eliminated
from S(5,10) so that §'(5,10)= {1,3,7,9} and hence N(5,10) = 4. Moreover
the four MOLRs of size 5 x 10 given by (1) are

0123456789 0123456789 0123456789 0123456789
1234567890 3456789012 7890123456 9012345678
2345678901 6789012345 4567890123 8901234567
3456789012 9012345678 1234567890 7890123456

As a result of the algorithm we can prove

Theorem.
(A) N(2,nm)=n-—1 forall n,
n—1 ifnisodd
N(3,n) =
® NG,n {"—1 if nis even,

(C) If p is prime R (p,m) = n— 1 if all prime divisors of n are at least p,

(D) N(m,n) =n—1if 2 < m < p where p is the smallest prime in n,

(E) If n=p} ... pt with p; distinct primes, then N(n,n) = min; gc {p; —
1},

(F) If pisprimeand a < b, N(p°,p%) = pP—*! — 1,

(G) If n= pq with p and q prime, then N(qg+ 1,pq) =p— 1.

Proof: Let1 < ki, k2 < m. For (A), (2) becomes ky = k2 (mod n) so ki = k2
and N(2,n) = n— 1. For (B), (2) becomes 2(k; — k2) = O(mod n). The
congruence 2z = 0 (mod n) has one solution if  is odd and 2 solutions if n
is even. Hence for n odd we have k; = kp so that N(3,n) = n— 1. Forn
even, the two solutions are z = 0 and n/2. For n/2 the possible pairs ( ki, k2)
are (3 +7,7),7r=1,...,n— 1. If n/(k,n) = 1 then n divides k which is
impossible and so n/(k,n) = 2 so that k = n/2. Hence for the pairs (} + r,7)
r=1,...,n— 1, k = n/2 must be eliminated and we can choose only one
component so that N(3,n) = (n— 2) /2 for neven.

For (C) and (D), (2) becomes (k; — k2)(m ~1) =0 (modn). Letd= (m —
1,7) so(m—1)z = 0 (mod n) has exactly d solutions. Hence N(m, n) = n—1
ifand only if d = 1 and m < minigecn1 Gy Letm = pi'...p[ be the
prime factorization of n with p; < pj+1,¢ = 1,...,r—lande; > 1 forj =
1,...,7. Thus minygeen-1 7oy = P1- If m < p then (m — 1,m) = 1. Hence
N(m,n) = n—1 if and only if m < p where p is the smallest prime factor of
n. This proves both (C) and the more general (D). For (E) suppose py < -+ < Py
and let n = pi'q. If 1 < k < pi'q then k can be represented as ap, + j with
1<j<p—1and0 < a < pf'~'g— 1. We first eliminate all multiples of p; .
For the remaining k, we know that the pairs (j,ap; + j) with a > 1 satisfy the
congruence (n— 1)(k; — k;) = 0 (mod pf' ). Hence by step 2 of our algorithm
we eliminate all k except 1,2,...,p1 — 1 so that N(n,n) = p1 — 1. By using
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p — 1 for p prime, these values are not displayed.
Table 1

We note that (C) and (D) both generalize results of Quattrocchi [4] which gave
Table 1 gives the values of N(m,n) for n < 30. As N(2,m) =n—1and

complete sets only in the case of p x pg rectangles where each prime factor of ¢

the algorithm and an argument similar to that used in the proof of (E) we obtain
is not less than the prime p.

(F) and (G).

N(m,p)
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3. Higher Dimensions

These ideas can be generalized to cubes and hypercubes of dimensiond > 3. For
example ford =3 if ;; < m < m = n,ann X m X m latin parallelepiped of
order n is an array with the property that if any two coordinates are fixed, no ele-
ment is repeated in the third coordinate. A collection of three such parallelepipeds
is said to be 3-orthogonal if upon superposition no ordered triple occurs twice, and
a set is 3-orthogonal if any three distinct parallelepipeds are 3-orthogonal.

If n > 3 isprime then foranym < m < m = n, if k1ky k3 Z 0 (mod »)
then

Tivigiy = k181 + k2g2 + k3dza (modn), 0<i.<n;e=1,2,3 (3)

gives an n; X m X ng latin parallelepiped of order n. Moreover if (k1, k2, k3),
(ki k5, k3), (k{, k3, k3), are linearly independent over Fy, then (3) will yield a
set of 3-orthogonal cubes and each cube is latin provided none of the k’s are zero,
(if some of the k’s are 0, the corresponding cubes will not be latin but the set will
remain 3-orthogonal). The maximum number M (3, p, 3) of vectors (k1 , k2, k3)
over F,, (possibly with some 0 coordinates) with the property that any three are
linearly independent over Fy, is p + 1, see [3]. For example for n = 3 we may
take the vectors (1,1,1), (2,1,1) (1,2,1) and (1,1,2) which will yield the four 3-
orthogonal latin cubes of order 3 given by

012 012 021 012
120 201 102 120
201 120 210 201

120 120 102 201
201 012 210 012
012 201 021 120

201 201 210 120
012 120 021 201
120 012 102 012

These ideas will work for the construction of sets of k-orthogonal parallelpipeds of
dimension d > 2 provided one knows the maximum number M (k, p, d) of vec-
tors of length d over F, any k of which are linearly independent over F,. Unfor-
tunately as indicated in [3], the function M (k, p, d) ,which is related to algebraic
coding theory, is known only in a few special cases. Even the value of M (d, p, d)
is known only ford < 5.

165



References

1. R.C. Bose, On the application of the properties of Galois fields to the problem
of construction of hyper-Graeco-Latin squares, Sankhya 3 (1938), 323-338.

2.J. Dénes and A. D. Keedwell, Latin Squares and their Applications, Aca-
demic Press. New York (1974).

3. J. W. P. Hirschfeld, Maximum sets in finite projective spaces, in “Surveys in
Combinatorics.” London Math. Society, Lecture Note Series 82, edited by
E.K. Lloyd, Camb. Univ. Press, Cambrige 1983, 55-76.

4. P. Quattrocchi, S-spazi e sistemi de rettangoli latinia, Atti Semi. Mat. Fis
Univ. Modeva 17 (1968), 61-71.

166



