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1. Introduction

The problem of characterizing hamiltonian graphs is one of the most challenging
and exciting open problems in graph theory. As a consequence an extensive lit-
erature exists on the subject. It is well-known that to decide whether a graph is
hamiltonian is an N P-complete problem. So, it is very likely that there does not
exist an “efficient” characterization. Therefore, the investigation of hamiltonian
graphs goes in various directions, the problem is tackled from different points of
view. As with other problems, the graphs extremal with respect to given property
are studied. In the case of hamiltonian graphs, basically two such classes of graphs
are taken into account; hypohamiltonian and maximally nonhamiltonian graphs.

A graph G is said to be hypohamiltonian if G is not hamiltonian but remov-
ing an arbitrary vertex results in a hamiltonian graph. For instance, the Petersen
graph is hypohamiltonian and, in addition, it is the hypohamiltonian graph with
the minimum number of vertices. Not too much is known about hypohamiltonian
graphs and even the question for which numbers » there is a hypohamiltonian
graph on z vertices, was open for a long time. (For more details on this problem
see [1]). However, in what follows we will concentrate on maximally nonhamil-
tonian graphs and hypohamiltonian graphs will be mentioned only marginally.

A graph G is called maximally nonhamiltonian, in short an MNH-graph, if G
is nonhamiltonian and becomes hamiltonian with the addition of any new edge.
The Petersen graph is an instance also of an MNH graph. Unlike hypohamiltonian
graphs, it is easy to see that, for any natural n > 3, there is an MNH graph on n
vertices because each nonhamiltonian graph has a MNH supergraph on the same
set of vertices.

In this paper we deal with the question of how sparse and how dense an MNH
graph can be. We were attracted to this area by two problems of P. Erdds. They
are discussed in section 3. Section 4 is devoted to graphs which are sparse with
respect to the number of edges, section 5 to graphs sparse with respect to their
clique number. This question arises in connection with another problem of Erdos
on dense MNH graphs. A partial solution to this problem is presented.

2. Preliminaries

Let us first introduce some further notions and symbols. Unless stated otherwise
we make use of the standard terminology of graph theory. Throughout, G denotes
a simple graph with vertex set V(G) and edge set E(G), G denotes the comple-
ment of G, and e(G) stands for the number of edges of G. The complete graph
on n vertices is denoted by K,, and K, », , dcnotes the complete bipartite graph.
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If G, and G are disjoint graphs we write G1 U G2 and G + G2 to denote their
union and join, respectively.

The clique number of a graph is the number of vertices in its largest complete
subgraph. We finish this section with a lemma which can be found in [17].

Lemma. Let n; > 0,1 = 1,...,7+ 1 be natural numbers. Then the graph
K, + (Ul K,,) is a MNH graph.

3. Two problems of P. Erdos

We start with MNH graphs dense with respect to the number of edges. O. Ore
[15] answered the question of how dense MNH graphs can be.

Theorem 1 [15]. If G is an MNH graph on n > 3 vertices, then e(G) <
(2) — (n—2) and the equality holds only for the graph (K1 U Kn-2) + K1 and
3K, + K, in the singular exceptional case n=5.

Denote by H,, the family of all graphs on n vertices which have nonhamiltonian
complement, i.c. if G is a subgraph of the complete graph K, then G € M, if and
only if every Hamiltonian cycle of K, has a common edge with G. Thus, if G is
minimal graph in H,, then its complement is an MNH graph. The two following
problems of P. Erdds [9] are, in a way, a generalization of a problem solved by
Ore.

Pl. Letg(n) be the maximum number r such that there are r graphs G; € H,,
1 < 1 < r which can be packed into K,. Determine g(n).

P2. Determine f(n,7) = min Y [, e(G;), where minimum is taken over all
r-tuples of graphs G; € H,, 1 < 1 < r which can be packed into K ,,.

As a direct consequence of Theorem 1 we get, e(G) > n—2 for G € H, and
the equality holds, in the case n # 5, only for the star Ky -2 . As it is possible to
pack up to 3 stars K 52 into K, f(n,7) = r(n—2) forr=1,2,3 andn> 4.

For r > 4 P. Erdés conjectured f(n,7) < 27.n. As regards the number g(n)
he proved log,(n+ 1) < g(n) < cy/n and believed that the value of g(n) is
close to the lower bound. In the rest of this section we present a complete solution
to both P1 and P2 given in {12].

Letn> 3.2™3+ 1 andletv;, vz, ..., v, be vertices of the graph K,,. We shall
define r graphs G1,G?, . .., G, by writing down their edge sets:

E(G)) = {2} J{vivji 4 <j<n}
E(Gy) = {uzm}U{vzv;; 4 <j<n}

E(Gs) = {nsu1}J{wsvys 4 <j < n)
B(Gy) = {vjwes 3270 +1< <3232 + 1 <k<m, j#k}
fori=4,5,...,7.
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It is a matter of routine to check that G1,Gz,.. ., Gy are r graphs packed into
K,. G,,G, and G5 are stars Kl,u—Z’ G; = (Ka‘ + K,,_zm) U K‘,‘., where a; =
324 fori = 4,...,r, 0y = a2 = a3 = 1. The graphs G;, 1 < i < 7
are well known as MNH graphs (see e.g. [8]), which implies G; € Ha. Thus
g(n) > 3+ |log, l;lj for n > 4. This construction was known to several
people. In [12] the reverse inequality was proved which has given the answer to
P1.

Theorem 2 [12]. g(n) = 3+ |log, %54] forn> 4.

In [12] it is also proved, using Posa’s sufficient condition for a graph to be
hamiltonian (see [16)), that 37, e(G:) < Y0, e(H;) forall 7 < g(m), where
H; is an r-tuple of graphs from M, which can be packed into K. In the case
r = g(n) in order to obtain a solution to P2 it is necessary to take, instead of G,
the graph G, for n odd, G for n even, where

E(G)) = {v,-vk; 324 +1<j<k<32™+ ﬁﬂ}

2
} - {"J'ovkn)

n+2

E(G) = {vj'vk; 3274 4+1<j<k<327%+
jo=32"44+1, ko =32""+2.

Thus to get r graphs which are optimal to P2 it is sufficient to take a set of graph
which are optimal to P2 for ~ — 1 and then to add one more graph in “optimal
fashion”.

Now a routine calculation gives:

Theorem 3 [12). Let r > 4,n > 3.2" + 1. Then f(n,v) = w(n,r) for
r < 3+log, &;m,and f(n,7) = win,v—1)+c, for 3+ zogz%"m <r<g(m),
where w(n,r) = 3274(2n—32"2 = 1),b, = 1, ¢, = ZFL for n odd,
ba = 4, cu = Z225=% for neven,

4. MNH graphs sparse with respect to the number of edges

A nonhamiltonian graph is an MNH graph if and only if cvery two non-adjacent
vertices are joined by a hamiltonian path. Thus, if we have a sparse graph therc
are many pairs of nonadjacent vertices, that is, there are many hamiltonian paths
but we have only few edges. So, how sparse can MNH graph be? This question
was raised by Bollobas [2]. He posed the problem of finding the minimum number
of edges, f(n), in an MNH graph on n vertices. Forn > 7, Bondy [3] proved
that such a graph with m vertices of degree 2, has at lcast 3"; . edges. Thercfore,
f(m) > [32] forn > 7. So, in order to attain this lower bound, we need a cubic
MNH graph for n even and, for n odd, an MNH graph all of whose vertices but
one are of degree 3 and one vertex is of degree 4.
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The values of f(n) forn < 10 can be read of in the paper [14] where the list of
all MNH graphs on up to 10 vertices is presented. For n > 10 an almost complete
answer to the question of Bollobas is given in [5], [6] and [7]. If a cubic graph is
hamiltonian then it is 3-edge colorable. Therefore snarks, 4-edge chromatic cubic
graphs are candidates for smallest MNH graphs. First, Clark and Entringer [5]
showed that the famous Isaacs’ snarks [13] and small modifications of them are
MNH graphs which implied f(n) = 3= for all even n > 36 and various small
n even. Later, together with Crane and Shapiro [6], [7] they showed, again by
suitable modification of Isaacs’ snarks, that f(n) = 3—"2*—' for all odd » > 53 and
various small odd n.

Combining results from [5]), [6], and [7] f(n) remains undetermined only for
n=13-19, 23-27, 31, 33-35, 43 and 51.

In [10] it has been shown that sparse MINH graphs are not “rare” by presenting
aclass T;, of MNH graphs which are sparse with respect to the number of edges.
In fact, for G € T,, e(G) < %—r, where » = (n+ 1)5, is the number of vertices
of G. Further, |T;| — oo for n — co. Actually, | T;| grows exponentially.

In order to be able to describe the class T, we need to introduce a construction
of Thomassen [18] which creates new hypohamiltonian graphs from old ones. Let
G, and G, be graphs and suppose z; € Gy, 2, € G, are vertices of degree 3.
Let u;, v;, w; are neighbours of Z; in G fori= 1,2, Denote by G=G10G; a
graph obtained from G and G, by deleting the vertices z; and z; and identifying
the pairs of vertices u; and uz, v; and vz, and w; and w;. Thomassen proved

Theorem 4 [18). If G and G are hypohamilionian graphs then also G o G2
is hypohamiltonian.

Let P beaPetersen graphandlet T, = {P}and T, = {GoP,whereG € T, },
n > 1. Thus, the graphs from 7, are obtained by pasting together n copies of
Petersen graph by Thomassen’s construction. In [10] it was proved that in this case
(and some other cases as well) the construction preserves not only the property of
being hypohamiltonian but also the property of being maximally non-hamiltonian,
Thus, each graph of T, is an MNH graph.

To show that |T,,| grows exponentially with n — oo it is sufficient to realize
that to each graph G € T, we can assign a tree on n vertices that “shows” which
pairs of n copies of Petersen graph where pasted together and vice versa to each
tree on n vertices with maximum degree four we can assign graph from with the
“structure” of the given tree. It is well-known that the number of these trees grows
exponentially, so T, also does.

5. MNH Graphs Sparse with Respect to the Clique Number

In the previous section the sparseness of a graph was measured by the number
of its edges. Another possible way to measure the sparseness is by means of its
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clique number. We were led to this concept by the following problem of Erdds
(personal communication) concerning dense MNH graphs.

P3. Letn> 3, k > 2 be natural numbers.
Determine g(k,n) = max{e(G); G is an MNH graph on = vertices with
clique number k}. The weaker version of P3, also posed by Erdds reads
as follows: Does there exist an absolute constant C such that g(k,n) <
(£) — C(n— k)n? So, P3 is another generalization of the problem solved
by Ore [15]. Thus, for k = n—1,by Theorem 1,g(n—1,7) = (3)—(n—2).
Before giving values of g(k,n) for # < k we introduce one more notation,
Denote by F(k,n) the graph K, + (Kak—n U Kn-t). This graph plays an
important role in the theory of hamiltonian graphs. It is a nonhamiltonian graph
of given minimum degree k£ having maximum possible number of edges (sce Erdds
(8]). At the same time, the graph is an example which shows that the sufficient
conditions, in terms of degrees of vertices, for a graph to be hamiltonian, due to
Chvatal [4] cannot be, in a sense, improved.

Theorem 5[11). For 3 < k < n,g(k,n) = (;) +(n—k)2. Moreover, F(k,n)
is the unique graph, up to isolated vertices, on which this minimum is attained.

The graphs are constructible only when n> k > #. Thus, it is of some interest
to know what are extremal graphs like for other values of &.

Theorem 6 [11). Let n > 4. Then g(n,2n) = (™2) — 3 and the unique
extremal graph, up to isolated vertices, is (3K2 U Ku-4) + Kn3.

Denote by Y(k,n) the family of graphs G = K, + (Ut} K,,), where n; >
m > > e >0,n=1+ Y0t n;and k = r + ny. Clearly, clique number
of G € Y(k,n) equals k£ and by Lemma G is an MNH graph.

Hence, all extremal graphs from both Theorem 1 and Theorem 2 are from
Y(k, ). This and other evidence leads us to conjecture that g( k, n) = min{e(G),
G e Y(k,m}fork > 2v/n+ 1 —1.Itis easy to show that Y(k, n) is an empty
family for k < 2v/n+ 1 — 1. To our knowledge the values of g( k, n) mentioned
above in Theorems 1 and 2 are the only one known so far. Now we proceed to
bounds on g(r, n).

The following theorem answers in the affirmative the weaker version of P3.

Theorem 7 {11]. For any pair (k,n) from the domain of g there are absolute
constants c), c3 such that

n

(;‘) — e (n— k)< gk, < (2) —o(n—k)n.

Moreover, one can take c, = %, ¢z = 1 and these constants cannot be improvced.
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So, P3 includes in itself the question for which values ( k, n) there is an MNH
graph on n vertices with clique number k. In particular, how sparse can an MNH
graph be with respect to its clique number?

Fork > 2v/n+ 1 —1, (k,n) belongs to the domain of G because Y(k,n) # 0.
For almost all values n, and k£ < 2v/n+ 1 — 1 an MNM graph on n vertices with
clique number & can be made up by pasting together copies of the Petersen graph
together with a copy of Isaacs’ snark by the construction of Thomassen and then
replacing a vertex of degree three by a suitable complete graph (for more details
see [10], and [11]). Combining these results we get

Theorem 8 [11). Foranyn > 60,2 < k < n— 1, there exists an MNH graph
on n vertices with clique number k.

The sparsest graphs from this point of view are those of clique number 2, that
is, triangle free graphs. If we want to classify graphs of clique number 2 more
finely, probably the most natural way would be to do it by means of girth of graph,
the length of the shortest cycle. Now the question is how sparse an MNH graph
can be with respect to its girth. In [10] the following question is posed.

Problem: Is it true that for each natural number = there exists an MNH graph of
girth at least n?

There are infinitcly many MNH graphs of girth 5, because any graph of 7,, has
the property. Isaacs’ snarks I;, » > 7 form an infinite class of MNH graphs of
girth 6. Coxeter graph on 28 vertices is an MNH graph of girth 7 and by applying
Thomassen construction to this graph we get an infinite class of MNH graphs of
girth 7. As far as we know no MNH graph of girth > 7 has been found yet.
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