Uniform Generation of Random Latin Rectangles

Brendan D. McKay
Computer Science Department
Australian National University

GPO Box 4, ACT 2601
AUSTRALIA

Nicholas C. Wormald
Department of Mathematics and Statistics
University of Auckland
Private Bag, Auckland
NEW ZEALAND
Abstract. We show how to generate k % n Latin rectangles uniformly at random
in expected time O(nk?), provided k = o(n'/3). The algorithm uses a switching
process similar to that recently used by us to uniformly generate random graphs with
given degree sequences.

1. Introduction.
Let1 < k < n. A kx nLatinrectangle is a k x nmatrix A = (a;;), with entries
from N = {1,2,... ,n}, such that no two entries in the same row or in the same
column are equal. It follows that each row of A forms a permutation of N.

There is a considerable body of literature devoted to Latin rectangles, but little
or nothing that specifically deals with random generation. The paper [1] con-
tains a survey of the relevant enumeration work, and also some limited theory on
the structure of random Latin rectangles obtained by analysing the effect of in-
terchanging pairs of entries in the same row. In the current paper, we will use a
different switching operation in conjunction with an accept-reject strategy to per-
form uniform random generation. This approach was inspired by the algorithm
in [2], which uses a very similar method to generate random graphs with a given
degree sequence.

To our knowledge, the only algorithm previously known for this problem is the
following, which is implicit in many enumeration papers.

repeat
for i from 1 to k do
assign a random permutation of N 10 g;1, 642, .. , Gin-
endfor
until no pair of entries in the same column of A are equal.
Unfortunately, the expected running time of this algorithm is approximately

exponential in k2 , making it unusable except for very small k. This follows from
well-known enumeration results (see [11).

JCMCC 9 (1991), pp. 179-186

2. Switchings and their analysis.

Define K = {1,2,...,k}. Let M(k,n) be the set of all k x n matrices over
N such that no two entries in the same row are the same. Fors € K andj € N,
define C; = {(8,7):t € K}. Further, for A € M(k,n) and EC K X N, define
ALE] = {aj: (i,) € E}. Thus, for example, A[C] is the set of entries in the
second column of A.

If A= (ay) € M(k,n),aconflictin A is a pair ({1),42 }, /) suchthatd; # 1,
and a;,; = aj,5. Two distinct conflicts ({il,iz},j) and ({i'l,i&},j') are said to
overlap if j = j' and {4,452} N {i},5,} # 0. A directed conflict is a 3-tuple
(41,142, 7) such that ({41,42},) is a conflict.

Lemma 2.1. Choose a random member A of M(k,n) fork = o(n'/®). Then,
with probability at least + + o(1), A has at most k* conflicts and no overlapping
conflicts.

Proof: The expected number of conflicts is easily seen to be exactly (£), while
the expected number of pairs ({i1,42,43},7) where 4y, i, i3 are distinct and
Biyj = Bipj = Biyj 18 (;‘) /n The claim follows immediately. 1

For A € M(k,n), define d(A) to be the maximum number of conflicts which
involve any one row of A.

Lemma 2.2. Choose a random member A of M(k,n) fork = o(n'/?). Then,
with probability at least 1 — O(n~'/), d(A) < 5k+In n.

Proof: Let D = [S5k + In n] . Consider the number T of sets of D conflicts
involving the first row. There are at most (kD)?/D! available positions for
conflicts, and each one occurs (subject to any subset of the others occurring) with
probabilty at most (n— D) ~D. Therefore, the expectation of T is bounded above
by (kD)2 /(D!(n—- D)P) = O(1)(ek/D)? = O(D(e/S) »=0(n"1?). 1t
follows that the probability of D or more conflicts in any one row is O(kn1/2) =
o(n~1/6). |
For ¢ > 0, define M, = M_.(k,n) to be the set of all members of M(k,n)
which have at exactly ¢ conflicts and no overlapping conflicts. ForA € M (k,n)
define Sw(A) to be the set of all quintuples (11, 42; j1,J2,/3) suchthatd; i € K
are distinct, j1,j2,73 € N are distinct, and conditions X; — X are satisfied,
where y = a;,j,, 4 = a;,j, and v = a;,j,:

X1t apj =y

Xa2: u g A(Cj, — {(41,72)}1;
X3: v ¢ ALCj, — {(31,/3)}];
Xa: y ¢ AlC,15

Xs: ug AlC;,l;

X¢: v ¢ ALC;,1.

180

If o = (41,12:71,)2,73) € Sw(A), then the switching sw(o) is the operation
mapping A onto the matrix A’ = (a;) with the same entries as A except that
!

g, =V, 0 ,m = y and a“ j» = u. Note that A' € M._; ifandonly if A € M.. A
pictorial representation of sw(o) appears in Figure 1.

J J2 J3 J1 J2 Ja
. ! : : s) . ! i :
31 TR Y - U - F _811)_(_)_, t1feene- /RSERE Y ---meee U omeeen
; : ‘ ' . P i
Y 7 ROV S su'(o) ialeee.. e
Figure 1

The switching sw(o) and its reverse sw'(o).

For A' € M (k,n),define Sw(A’) tobe the setof all quintuples (11,125 j1,J2,73)
suchthati;,i2 € Karedistinct,j;,jz,js € Naredistinct,andconditionslﬂ-Y-,
are satlsﬁecl wherey = a} ; ,u= andv =g ;:

it o, =

Ya: v ¢ A'LCy — {(31,7)}1:

1/3: y ¢ AI[C]I - {(’21]1)}]’

Ya: y¢ A'LCj, —{(41,72)});

Ys: u ¢ A'LC), — {(in, /) };

Ys: u¢ A'[C})s

Y v ¢ A [CJ,

If o = (41,42: j1,J2,J3) € Sw(A"), then the reverse sw:tchmg sw'(o) is the
operation mapping A’ onto the matrix A = (a;;) with the same entries as A’
except that a;,j, = y, a;,5, = u and a;, j, = v.

It is easy to see that sw(o) takes A onto A’ if and only if sw'(o) takes A’ onto
A. Furthermore, the conditions X; — X¢ are consistent with Y7 — ¥7 in the sense
that o € Sw(A) if and only if o € SW'(A4').

Lemma 2.3. Let A€ M., wherec > 1, and letd = d(M). Then

‘lJ!

2cn? —6ckn—4cdn < [SWA)| < 2cnt. 4))

Proof: Consider finding all the quintuples (41, 12; j1,/2,J3). We can choose (1),
iz, j1) in c ways, then j in at most n — 1 ways and then 73 in at most n — 2
ways. This gives us an upper bound of 2¢(n — 1)(n — 2), which gives us the
right inequality of (1).

To obtain a lower bound, we subtract upper bounds on the numbers of quintuples
we have just included, but which fail one of X, — X¢. (X is already satisfied.)
In each case the argument is elementary; we merely list the bounds here.

181

X2: 2¢(d—1)(n—-2);
X3: 2¢(d-1)(n—2);
Xa: 2c(k—-2)(n—2);
Xs: 2¢(k—1D(n-1);
Xe: 2¢(k—2)(n—2).

In total, we find a lower bound of
2¢(n—1)(n—2)—4c(k—2)(n-2)-2c(k—1)(n—1) -4 c(d-1)(n-2),

which implies the left inequality of (1). 1
Lemma 24, LetA' € M.y, wherec > 1. Then

k(k - 1)n? — 2k*n— 8ckn < |SW(A")| < k(k — 1) ®)

Proof: This follows along the lines of the proof of Lemma 2.3. To get an upper
bound on the number of (4, 42; j1,/2,73) € SW(A'), note that we can choose
(41,1) in kn ways, then 4, in at most k — 1 ways (which then determines j, by
Y1), then 73 in at most n—2 ways. This gives a total of at most k(k—1)n(n—2),
implying the right inequality of (2).

Conditions Y3 — Y7 each eliminate some of these choices from consideration;
we list upper bounds for each.

Y2: 2(c—1)(k—-2)(n—2);

Ya: 2(c—1)(k—-2)(n-2);

Ya: 2(c—1)(k—2)(n-2);

Ys: 2(c—1)(k—1)(n-1);

Yo: k(k—1)%nm;

Ys: k(k—1)%n
Overall, we have a lower bound of

k(k—1) n(n—2) —6(c—1) (k—2) (n—2) —2(c—1) (k—1) (n—1) ~2k(k—1)*n,

which implies the left inequality of (1).]

We mention in passing that Lemmas 2.3 and 2.4 provide a very simple deriva-
tion of the asymptotic number of k x = Latin rectangles for k = o(n'/?), aresuit
due first to Yamamoto [3]. However, the estimate obtained is far weaker than that
attainable by other methods such as those used in [1].

3. The algorithm.

The approach we will take towards generating Latin rectangles will be to generate
members of M (k,n) and then apply switching operations until all conflicts have

182

been removed. In order to produce a uniform distribution, we will use an accept-
reject strategy; the closeness of the upper and lower bounds in Lemmas 2.3 and
2.4 will ensure a respectable average running time.
Define S(c) = k(k — 1) — 2k>n— 8ckn.
function LATIN (k, n) — generate a random k x n Latin rectangle
repeat
repeat
A := random member of M (k,n)
until A has at most k2 conflicts and no overlapping conflicts
¢ := the number of conflicts in A
rejected : = false
while ¢ > 0 and not rejected do
(41,142, j1): = arandom directed conflict of A
j2 := arandom member of N — {j1}
j3 := arandom member of N — {j1,/2}
if (41,425 1, J2,73) € Sw(A) then
A := the result of applying sw(o) to A
with probability 1 — S(c)/|SW'(A)| do rejected := true endwith
else
rejected : = true
endif
ci=c—1
endwhile
until not rejected
return A
end

Theorem 3.1. If1 < k < nand S(k?) > 0, function LATIN generates k x n
Latin rectangles uniformly at random.

Proof: The condition S(k2) > O ensures that LATIN will eventually return, with
probability one. This follows from Lemma 2.3.

Let us say that a rectangle A is accepted by LATIN if A is the value of the
variable of that name when the inner repeat loop completes or when an iteration
of the while loop ends with rejected = false.

Suppose that A., A._1, ... is the sequence of rectangles accepted during a sin-
gle iteration of the outer repeat loop, where A. € M,. Itis immediately clear that

183

(given c), A, is chosen uniformly at random from M.

As an induction hypothesis, suppose that, for some i (¢ > 1 > 1), the probabil-
ity that A; € M; is accepted is independent of A;. We will show that the same is
true of the probability that A;_; € M; is accepted. Take an arbitrary B’ € M;1
and let B(B') be the set of all B such that B' can be obtained from B by applying
sw(ao) for some o € Sw(B). Clearly, B(B') C M;and |B(B")| = |[SW(B')|. If
p is the (uniform) probability of accepting each B € M;, then the probability of
accepting B’ is

2i(n— 1)(n—2) [SW(B')| 2i(n—1)(n—2)"’

P S(9) pS(i)
Be%B’)

which is independent of B'. The theorem is now immediate.]

4. The average complexity of the algorithm.

We will now show that function LATIN can be implemented so that the average
running time is O(nk?) if k = o(n'/?). We will assume a machine model in
which elementary operations on integers of O(log n) digits require O(1) time,
and in which all variables have initial (arbitrary) values.

An important parameter is the average number of executions of the outer repeat
loop.

Lemma 4.1. If k = o(n!/?), the expected number of iterations of the outer
repeat Joop of function LATIN during one invocation is 1+ o(1).

Proof: Let A be the matrix produced by the inner repeat loop. Suppose A has c
conflicts; by design ¢ < k2.

By Lemma 2.2, there is a probability of 1 — o(1) thatd < 5k + In n where
d = d(A); suppose that is the case. Then the probability of flag rejected being
set during the execution of the while loop is at most

: [Sw(Ay)] S5(i)
E (1 T 2i(n—1(n-2) |Sw’(A,-_1)|) '

i=1

where the sequence A, Ac_1, ... is defined as in the proof of Theorem 3.1. How-
ever, Lemmas 2.3 and 2.4 imply that

__ Iswan| SG)
2i(n—1)(n—-2) |SW(Aiz1)]
(k(k — 1)m? —2k*n— 8ikn)(2in® — 6ikn— 4idn)
2ik(k — 1)n®

<1-

=O(M+ i>’
n kn

184

from which the lemma follows. |

The number of conflicts, and the presence of overlapping conflicts, in a matrix
A € M(k,n) can be determined easily in O(nk?) time. Thus, by Lemma 2.1,
at most O(nk?) time is required for the completion of the inner repeat loop for
each execution of the outer repeat loop.

By construction, the while loop is executed at most k? times. To make the
execution of this loop efficient, we introduce a number of auxiliary arrays. Recall
that A = (a,-j) .

CI[1] is the ¢-th conflictin A(1 < 1< 0).

I(4,7] is the value ¢ such thatay = j (i € K, j € N).

V'[J,1] is the number of times ¢ occurs in column j (j, t € N).

Array C can be constructed for the initial A in time O(nk?) and updated after
each switching in time O(1). The same holds true for the armray I.

For the array V', we must take care to avoid an O(»?) initialization phase. This
can be achieved by implementing V as a pair of armrays V;[j,t] (j,t € N) and
Vals,u] (1 € 8 < m, 1 < u < 3), where m is the sum of the numbers of
different entries in each column. The values (V2(s, 1], V2[s,2],Va[s,3]) areall
the triples (j,¢, V[7,t]) for which V[j,t] > 0, in no particular order. For each
such s, Vi[7,t] = s; other entries of V; are arbitrary. Since V; does not need
initialization, the arrays V; and V3 can be constructed from A in O(nk) time. As
each switching is performed, they can be updated in O(1) time. Further, any entry
of V can be determined or modified in O(1) time.

Given the array C, we can choose a random directed conflictin O(1) time. The
test“(41,142: /1, J2,73) € SW(A)” can be performed in O(1) time also, using the
array V. The only significant contribution to the running time that we have not
accounted for is the computation of |Sw'(4)].

For given A, define Q = Q(A) to be the set of all quintuples (11,42; /1, j2,73)»
with distinct 1,4, € K and distinct ji, 2,73 € N. The events Y1,...,Y7 de-
fined in Section 2 can be identified as subsets of Q. For any Y C Q, define
Y = Q — Y. Then we have

[SW(A)|="1NY2NY3NYaNYs NYs NY7|
=%l -YvinY2|-[vinY2nYs|
—YinY:nanYs|-YinannYanYs| @)
- lYiNY2NY3NYaNYs NYs|
—niNY2NY3NYaNYs NnYs NnY5|.

Letn,...,n; denote the seven cardinalities on the right side of (3), and suppose
that A has c conflicts. Then, recalling that A has no overlapping conflicts, we have

n=n{n—2Dk(k—1) —-2c(n-2)

185

and
n=2ck—2)(n-2).

To compute m3, take each directed conflict (42,143, /1), and each 1, € K
—{#2,43}, and test if Y> is satisfied using the array V. The value of n3 is then
n—2 times the number of successful tests. This takes O(k>) time.

To compute m4, take each directed conflict (4;,13,2), and each i € K
—{41,143}, and test if Y N Y3 is satisfied for j; = I[4,,a;,j,]. The value of n4 is
then n— 2 times the number of successful tests. This takes O(k>) time also.

To compute the values of ns, ng and »7, we need a more complex approach.
For the initial A (that is, the one which passes the inner repeat loop) these val-
ues can be computed in time O(nk®) time by systematically testing each of the
possibilities. Then, as each switching is done, the change to these values can be
computed in O(nk) time. To see this, notice that whether or not a particular quin-
tuple (43,423 f1,j2,73) counts towards these values is unchanged by a switching
unless at least one of the columns j, j2, 73 is changed. Only three columns are
changed, so there are only O(nk) quintuples whose membership of Y;NY's might
be affected. The corresponding bounds for Y; NYs and Y; NY 7 are both O(k3).
In each case, we can look at each possibility and test membership of Y2 NY3 N...
in O(1) time using array V.

We conclude that all the computations of |[Sw’(.A)| required for one execution
of the outer repeat loop can be performed in O(nk?) time. Putting this together
with the other bounds we have found, we conclude that the following theorem is
true.

Theorem 4.2. Let k = o(n'/3). Then function LATIN can be implemented so
that the expected running time is O(nk?).

References

1. C. D. Godsil and B. D. McKay, Asymptotic enumeration of Latin rectangles,
J. Combinatorial Theory 48 (1990), 19-44.

2. B. D. McKay and N. C. Wormald, Uniform generation of random regular
graphs of moderate degree, J. Algorithms. (to appear).

3. K. Yamamoto, On the asymptotic number of Latin rectangles, Japan J. Math.
21 (1951), 113-119.

186

