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1. Introduction.

A pairwise balanced design (or PBD) of index ), denoted by B[ K, X;v], is a
pair (X, A) where X is a set of v elements (called points) and A is a collection
of subsets (called blocks) of X, such that every unordered pair of points is con-
tained in exactly ) blocks of A and every block in A has its size in K. A PBD
B[{k},); v] is also denoted (v, k, »)-BIBD or 5,(2, k, v). It is well known that
a 5,(2,4,v) exists if and only if

Mv—1)=0 (mod 3)and Av(v—1) =0 (mod 12),
or equivalently,

A=1,5 (mod 6) and v=1,4 (mod 12)
,\52 4 (mod 6) and v=1 (mod 3)
A=3 (mod 6) and v=0,1 (mod 4) and

A=0 (mod 6) and v > 4.

If (X, A) and (Y, B) are two PBDs such that X C Y and A C B, we say that
(X, A) is embedded in (Y, B) and that (Y, B) contains (X,.A) as a subdesign.
If the (X, A) is missing from (Y, B), then we denote this design by (Y, X, B\A)
or (v, u; A\; K)-IPBD where |Y| = v, |X| = u and the set of the block sizes is K.
We also say that the PBD has a hole of size u. In fact, the missing subdesign need
not exist. The necessary condition for a S5(2,4,v) tocontaina S3(2,4,u) asa
subdesign is that v > 3u + 1. The problem which has attracted much interest in
recent years (that is, [2], [8], [9], [10], [17], (18]) is that of determining whether
the necessary condition is also sufficient. The embeddings of S\(2,4,u) into
5.(2,4,v) ofindex X = 1 and X = 2 are completely solved. The following two
theorems have been obtained.

Theorem 1.1. (710]) Suppose v = 1 or 4 (mod 12) andu = 1 or 4
(mod 12). Then there exists a (v,4,1) -BIBD containing a (u,4,1)-BIBD as
a subdesign if and only ifv > 3u+ 1.

Theorem 1.2. (8]) Supposev = u = 1 (mod 3). Then there exists a
S2(2,4,u) as a subdesign ifand only ifv > 3u + 1.

In this paper we shall consider the case A = 3. We shall prove the following
theorem.
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Theorem 1.3. Supposev =0 orl (mod 4) andu =0 or1 (mod 4). Then
there exists a S3(2,4,v) containing a S3(2,4,u) as a subdesign if and only if
v>3u+l.

letu=0orl (mod 49,v=0o0r1 (mod 4) and v > 3u+ 1. Then we say
that the ordered pair (v, u) is admissible. Let

A4 = {(v,u): (v, u) is admissible} and
E4 = {(v,u): thereisa S3(2,4,v) containinga S3(2,4,4)}.

Then Theorem 1.3 says that A4 = E4.
The following two lemmas which were proved in [17] are useful in this paper.

Lemma 14, Let K4 = {4,5,8,9,12}. Suppose(v,u) € A4 andv > 4u—3.
Then foru > 28, any B[ K4, 1; u] can be embedded in some B[ K4, 1; v].

Lemma 1.5. Let(v,u) € Ag. If4u —~3 < v < 5u, thenany B[ Ka,1;u] can
be embedded in some B[ K4,1; v].

By virtue of the above lemmas, there are two cases needed to be treated. One
caseisthatu > 28 and 3u+ 1 < v < 4u — 3, and the other is that v < 28 and
3u+1<v<4u—3,0rv>Su.

2. Preliminaries.

A group divisible design (GDD) denoted by GD[ K, A, M’; v] isatriple (X, G, A)
where X is a v-set , G and A are collections of some subsets of X (called groups
and blocks respectively) such that

(1) |G| € M forevery G € G;

(2) |B| € K forevery B € A;

(3) |GNB| < 1forevery G € G andevery B € A; and

(4) every pairset {z,y}, where z and y belong to distinct groups, is contained
in exactly ) blocks of A.

The group type of aGDD (X,G,.A) is the multiset {|G|: G € G} and denoted
by 1°2/3% ., which means that in the multiset there are { occurrences of 1, j oc-
currences of 2, etc. A set of blocks is called a parallel class if the blocks partition
X. When A can be partitioned into parallel classes, the GDD is called resolv-
able. For ease of notation we sometimes write a GD[ K, ), M, v] asaGD[ KX, )]
together with its group type or just as a GD[ K, A].

Asub-GDD(Y,G', A") of aGDD (X, G, A) isa GDD whose points and blocks
are respectively points and blocks of the GDD (X, G, A) and whose every group
is contained in some group of the latter. If the sub-GDD is missing, then it is
called an incomplete GDD, or IGDD, and denoted by IGDD (X, Y, G, A\A').
Sometimes we denote it by an IGD[ K, \] when |A] € K for every A € A\A',
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and define its group type to be the multiset of ordered pairs {|G|, |GNY |: G € G}.
Also the missing sub-GDD need not exist.

A transversal design T(k,v) is a GD[{k}, 1, {v}; kv]. It is well-known that
the existence of a T'(k, v) is equivalent to the existence of £ — 2 mutually or-
thogonal Latin squares (MOLS) of order v. For the existence of T'(k,v) the
reader is referred to [1] and [20). A design which is obtained by deleting all
blocks of a T'(k, u) from a T'(k,v) is called an incomplete array and denoted
by IAg-2(v,u).

Now we generalize the concept of IPBD. If a B[ K, A] has m holes, we denote
itby (X;1,Y2,... ,Ym, A) -On-IPBD where X is the point set of the design, Y;
is the point set of the ith hole of the design, 1 < 1 < m, and A is the set of blocks.
In this design, every pair of points {z, y} occurs in X blocks unless {z,y} C Y;
for some 1, 1 < ¢ < m, in which case the pair occurs in no block. When ) = 1,
m=2,|X| = v, |Yi| = wi, |Y2]| = w2 and |[Y; NY2| = w; it is denoted by
(v; wy, wy; wa; K)-$-IPBD. This notation is first used by Rees and Stinson [9].

The following known results will be used in this paper.

Lemma 2.1. (/10]) Letv = 7 or10 (mod 12) andu =7 or10 (mod 12).
Then there exists a(v,u; {4 }) -IPBD with index X = 1 ifand only ifv > 3u+ 1.

The next lemma comes from Theorem 2.2 in [20].

Lemma2.2. If0 < a < nand thereexist T(5,m),T(5,m+1) and T(6,7),
then there exists an I As(mn+ a,a). If we further have T'(5,a), then there exist
an IAs;(mn+ a,m+ a) and an IA3(mn+ a, m) provideda < n.

A resolvable BIBD, denoted by (v, k, \)-RBIBD, is a (v, k, A)-BIBD such that
its block set can be partitioned into parallel classes. The existence of (v,4,))-
RBIBD is determined in [4] and [12].

Lemma 2.3. (/4)) A (v,4,1)-RBIBD exists ifand only ifv =4 (mod 12).
Lemma24. ((12]) A (v,4,3)-RBIBD exists if and only ifv =0 (mod 4).

The proof of the following lemma is similar to that of Theorem 4.2 in [17], so
itis omitted here.

Lemma 2.5, Letu=0 (mod 4),v=10r4 (mod 12) and 3u+1<v <
4y, Then(v,u) € Ey.

Now we give the main construction of this paper. This is a generalization of the
construction in, for example, [14], [9], [10], and [18].

Construction 2.6. Suppose (X,G,A) is a GD{ K,)\] which has two missing
sub-GDDs (Y1,G1,B1) and (Y3,G»,B;). ForallG; € G,1 < i < =m, denote
GiNY, andG;NY> by G, andG! respectively. Let Sy be a point set disjoint from
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X and S3 C S» C S1. Suppose the following designs exist (all these designs
have their block sizes in K and index )\):

(1) a(G;U81;81,G:US8:,G{US3;A:)<3-IPBD, forl <i<n—1;

2) a(G,US1;GLUS,,G"US;s ; A,)<-IPBD; and

(3) a(huS,,(Y1NY2)USs,Ay)-IPBD.

ThenthereisaIPBD (X U 81,Y2 U Ss, (A\(B1 UBy)) U (UL, A)) U A,) which
has block sizes in K and index .

When Y; = ¢ in the above construction, we obtain the following construction
which was first presented by Stinson (see [14]).

Construction 2.7. Suppose thereisanIGD{ K, )] of type{ (t1,w),(¢2,42),...,
(tn,uq)} and leth > a > 0. Suppose the following designs exist:
(1) a(t;+ b;u; + a,b;a; K)-O-IPBD, with index )\, for1 < i< n—1, and
(2) a(ts+ b,uq+ a; K)-IPBD with index ).
Then there exists a (t + b,u + a; K)-IPBD with index \, wheret = ZLt; and
u=2Xu;.

To obtain a GDD with two missing sub-GDDs, we shall use the following con-
struction. For simplicity, we only state the special case instead of the general
form. To give a point z weight ¢(z) means that the point z is replaced by the set
{z} x Iyz) where Iz = {1,2,...,¢(=z)}.

Construction 2.8. Suppose(X,Y,G,A) isanIGDD ofindex unityandW C X.
Lett: X — Z* U {0} be a function (that is, to give the point T weight t(z)).
Suppose for every A € A there is an IGD[ K, \] with group type {t(z): z € A}
such that its groups are {{z} x Iyz):x € A} and the missing sub-GDD has its
groups {{z} x {1}:z € ANW} . Then there is a GD{ K, )] constructed on
Uzex{z} x Iz which has two missing sub-GDDs constructed onUzew {x} X
{1} andUzey {z} x Iz respectively.

The main recursive constructions of this paper are the following Lemmas.

Lemma2.9. Let(v,u) € As andu = 4s+t1+ty ,wheret; =0 orl,1 <t <s
ands+t; =0 orl (mod 4). Suppose there existT(5, s) and (v—12s,t) +12;
3;{4})-IPBD. Then(v,u) € E4 for3u+1 <v <3u+4s—2(t +12).

Proof: Make use of Construction 2.8 by starting from a T'(5, s) instead of the
IGDD. Denote the groups of the T(5,s) by Gi, 1 < i < 5. Let U be a set of
order t; which is contained in G's . Let set W consist of all points of U and ali
points of G;, 1 < i < 4. Give the points of U weight 3 or 4, the points of Gs\U
weight 0 or 3 and the others weight 3. Fill in any block which contains a point
of U witha GD[{4 }, 3] of type 34 41 (which is obtained by deleting four points
from a block in a T'(5,4)) or type 3° (which is obtained by giving weight 3 to
every pointofa S3 (2,4, 5)). Fill in other blocks aGD[ {4 }, 3] of type 35 (which
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is obtained by deleting 1 point of a S(2,4, 16)) or type 3* (which is obtained by
deleting 1 pointof a S(2,4,13)). Thus we obtain a GD[{4 }, 3] of type (3s)*n!

which contains a sub-GDD of type s (£2) ! . Ast, > 1, here ncan be any positive
integer between 3¢2 and 3 s + ¢2. Now we use Construction 2.7 by starting from
thisIGDD.Leta=1t,. Letb=1orswhent; =0,orb=4 ors+ 1 whent; = 1.
The required (3 s + b; s + a, b; a; {4 })-{-IPBD can be easily obtained. Then we
obtain a (12s + n+ b,u; 3; {4 })-IPBD. So the conclusion follows by selecting
suitable values of nand b. |

The next lemma which is essentially Lemma 3.1 in [2] is also a corollary of
Construction 2.7.

Lemma 2.10. Suppose there exists an I A3 (m + n,n) . Suppose also there exist
a(m+n+a,n+a;3;{4})-IPBDanda(m'+n'+a,n +a; 3; {4}) -IPBD where

0<m <m0 <7 <nanda > 0. Then there exists a (v, u; 3; {4 })-IPBD
whereu=4n+nd+acandv=4m+u+m.

From Construction 2.7 we easily obtain the following:

Lemma 2.11. Suppose there existaT(k,m), a(m + n,n; 3;{4})-IPBD and a

B({4},3;m'+n] wherek =5 or9,n >0 and0 < m' < m. Then there exists
a(v,m'+ n; 3; {4})-IPBD wherev = (k — 1)m + m' + n. If there also exists a
(m' + n,n 3; {4}) -IPBD, then there exists a(v,m + n; 3; {4 }) -IPBD.

Note that when m’ = 0 in the above lemma, the existence of a T'( k, m) can be
weakened to thatof aT(k — 1, m).

Lemma 2.12. Let(v,u) € A4 . Suppose thatu = 0 (mod 4),v > 3.5u and
v—u=0o0r5 (mod 20) orthatu=1 mod 4,v>3.5u—-2.5andv—-u=0
or15 (mod 20). If there exists aT(6,(v — u)/5) then(v,u) € Es.

Proof: When u = 1 (mod 4), delete some points from one group of a T(6, (v —
u) /5) such that this group is of size (u — 1) /2. Give weight 2 to every point of
this group and weight 1 to others. Now for every block of size 5, fill in it with a
$3(2,4,5). For every block of size 6, fill in it witha GD{ {4 },3] of type 2! 15
which is displayed below.

points: Zs U {001,002}

grOBPS: {0011002}U{i}’ i= 0: 1:2|3s4

blocks: {001,0,1,2} {002,0,1,3} modS5.
Finally add one new point to every group and fill in the groups with S3(2,4,(v—-
u) /5+ 1) or S3(2,4, u) to obtain the required design.

When u = 0 (mod 4), the proof is similar and the details are omitted here. J

Lemma2.13. {(61,8),(32,9),(56,9),(65,12),(41,13),(44,13), (45,13),
(53,16),(57,16), (60, 17),(93,28), (96,28), (89,29), (93,29), (96,29)}
C E,.
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Proof: These designs are listed in Appendix. Two of which are given by L. Zhu
and H. Shen, and we put * and ** on them respectively. 1

3. The embeddings of S3(2,4,u) foru=0,1,4,5,8 and9 (mod 16).

First we discuss the embeddings of S3(2,4,4) and S3(2,4,5). Itis easy to
know that if there exists a (v, u; 1; K4)-IPBD then there exists a (v, u; 3; {4})-
IPBD.

Lemma 3.1. (2]) Letv =0 or 1 (mod4). A B[ K4, 1;v] containing a block
of size 4 or 5 exists wheneverv > 13 or 17 respectively.

The proof of the following lemma is simple and it is omitted.
Lemma3.2. Letu=0 orl (mod 4). Then(3u+ 1,u) € E4.

Proposition 3.3. (v,4) or (v,5) € E, if and only if (v,4) or (v,5) € A4
respectively.

Proof: The conclusion comes from Lemma 3.1 and 3.2 immediately. [ |

Lemma 3.4. Letd be a non-negative integer,d =0 orl (mod 4). If(u,d) €
E4 forany(u,d) € As, then(v,u) € E4 where(v,u) € Ay ,u >3d+ 1 and
4u—d+1<v<Su—4dorv=4u-—3d.

Proof: When (u,d) # (4,1) apply Lemma2.11 by lettingk = 5, m = u—dand
2d+1<m'<u—dorm'=0andn=d. 1

Proposition3.5. Letu=0,1,4,5,8 0r9 (mod 16) andu > 20, If (v,u) €
As and3u+1 <v<4u—12, then(v,u) € E,.

Proof: Make use of Lemma 2.9 by taking s, ¢; and ¢, as following:

u s
0,4(mod16) (u-—4)/4
1,5(mod 16) (u—15)/4

8(mod 16) (u—4)/4
9(mod 16) (u—5)/4

OO -
Vb s wg

Letd = 4 in Lemma 3.4. This shows (4u — 12,u) € E4 foru > 13 and
completes the proof. [

Now we shall use Lemma 3.4 to consider thecase 4u— 11 < v <4u-—-4.To
do this, we need the embeddings of S3(2,4,v) foru € {8,9,12}.
The method used in the proof of the next lemma is from [6].
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Lemma 3.6. Suppose thereexist(w+1;,t1;1; {4})-IPBDand(w+t2,%2:;2;{4})-
IPBD,wheret, > t; andt, —t; = 0 (mod 3). Then there exists a{w + t3 +
(t1 —t2) /3,82 + (t1 — t2) /3; 3;{4}) -IPBD.

Proof: Let Y, X and W be point sets such that [Y| = w, [X]| = &1, |[W]| = ta
and W C X. Constructa (w + ¢;,%:1;{4})-IPBD (Y U X, X, A,) and a
(w + t2,12:2; {4})-IPBD (Y U W, W, A2). Let U be a new point set of order
(¢1 — t2)/3. Now partition the points of X \W into triples and substitute every
point of a triple by a point of U. At the same time, A; becomes A} accordingly.
It is easy to now that (Y UW U U, W U U, A] U Az) is the required design. [

Corollary 3.7. There exists a(11,2;3;{4})-IPBD.

Proof: There exist $(2,4,13) and S$3(2,4, 10), equivalently, (13,4;1; {4})-
IPBD and (10, 1; 2; {4 })-IPBD. The conclusion follows from Lemma 3.6. i

Lemma 3.8. If25 < v < 76 and(v,8) € A4 , then(v,8) € E4.

Proof: There exist three incomplete MOLS of order 10 which have 5 disjoint holes
of order 2 (for the details see [7]). From this we obtain an incomplete T°(5, 10)
which has § holes of order 2. Delete 9 points of one group of this T'D and fill in
other groups with GD[ {4 }, 3] of type 23 (see [3)). Fill in blocks with 53(2,4, 5)
or §3(2,4,4). Fill in holes with four S3(2,4,8) and one 53(2,4,9). Thus
(41,8) € E,. For v = 45 or 49, make use of Lemma 2.10 by taking m = 9,
n=2,7 =a=0andm =1 or5. The required IPBD comes from Corollary
3.7 and I A3 (11, 2) comes from [16]. For v = 48,53, 68 and 73, the conclusion
follows from Lemma 2.12. For v = 28 and 61, see Lemma 2.5 and Lemma 2.13.
For the other values of v, use Lemma 2.11 by letting v = (k — I)m + m' + nas
following:

44=4x9+8+0 52=4x11+7+1 56=4x12+7+1 57=8x7+0+1
60=4 x13+8+0 64=8x8+0+0 65=8x8+1+0 69=8x8+5+0
T2=8x9+0+0.

For29 < v < 40 and (v, 8) € A4 , it follows from Lemma 1.5 that (v,8) €
E, . The proof is completed. 1

Lemma 3.9. If28 < v < 85 and(v,9) € A4 , then(v,9) € E,.

Proof: For v = 29, give weight 4 to every point of a GD[{4 },3] of type 2! 15
and add a new point to every group of it. For v = 48 and 60, the conclusion comes
from Lemma 3.6 and the existence of (52,13; 1; {4 })-IPBD, (46,7;2;{4})-
IPBD, (64,13; 1; {4})-IPBD and (58,7; 2; {4 })-IPBD. For v = 64,69 and 84,
the conclusion comes from Lemma 2.12, For v = 32 and 56, see Lemma 2.13.
For v = 49, add 9 new points to a (40,4, 1) -RBIBD such that every new point
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is added in the blocks of a parallel class. Thus we obtain a B[{4,5,9}, 1;49]
and then the required design. Forv = 52,letm=9,n=2,m'=7,# =1 and
a = 0 in Lemma 2.10. The I A3(9,2) comes from [21] and the required IPBD
comes from Corollary 3.7. For the other values of v, we use Lemma 2.11 by taking
v= (k- 1)m+ m'+ nas following:

53=4x11+8+1 57=4%12+9+0 61=4x%13+9+0 65=8x8+0+1
68=8x8+3+1
for72 <v<8l, v=8x9+b+0, where0 <b<9.

For 33 < v < 45, we use Lemma 1.5. This completes the proof. |
Lemma 3.10. If 37 < v < 112 and (v, 12) € As , then(v,12) € Es.

Proof: Forv € {64,72,76 } make use of Lemma 2.11 by lettingv = (k— 1) m+
m' + nas following:

64=4 x13+124+0 72=4%15+12+0 76=4 x16+12+0.

Forv € {44,77,80,81,...,112 }, make use of Lemma 2.10 by letting n = 3,
®=0,a=0andv=4m+ u+ m as following:

44=4 x8+12+0
for 77 < v <92, v=4 x16+ 12+ bwhere0 < b< 16
for 93 <v< 112, wv=4 x20+ 12+ bwhere0 < b< 20.

The required IA,(11,3) see [5], the IA3(19,3) see [13] and the IA3(23,3)
comes from Lemma 2.2 and the fact 23 = 4 x 5+ 3. For the required IPBDs, delete
onepointfromaT(5,4) toobtaina(19,3; 1; K4)-IPBDandthena(19,3;3; {4})-
IPBD. Delete two points from one group of a T°(5, 5) to obtain a (23,3;1; k3)-
IPBD and thena (23, 3; 3; {4 })-IPBD. The required (11, 3; 3; {4 })-IPBD is dis-
played below:

points: Zg U{oo;: 1< i< 3}

blocks: {0,2,4,6} {001,0,1,3} {002,0,1,3} {003,0,1,4} mod8.

For v = 41, add a point to every group of a I A5 (10, 3) and fill in groups with
(11,3;3;{4})-IPBD.

For v = 73, the construction is similar to that of the case v = 41, but is from
an I A, (18, 3) instead of I A;2( 10, 3). The required IPBD is obtained by deleting
one pointof aT(5,4).

For v = 61, add a point to every group of a T'(4, 15) which has 5 disjoint holes
of order 3 (see [15]). Fill in groups witha GD[{4,5},1] of type 4! 34 which is
obtained by deleting 3 points from a group and 1 point from another group of a
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T(5,4). Thus we obtaina B[{4,5,12,13},1;61] and thena (61,12;3; {4 })-
IPBD.

For v = 68, add 4 points to every group of a T'(4,16) which has 5 disjoint
holes, 4 of order 3 and 1 of order 4. This T°(4,16) can be easily obtained from
aGD[ K4, 1] of type 4! 34 . Then fill in groups with GD[ K4, 1] of type 42 3%
which is obtained by deleting 4 points from one group and 1 point from another
groupof aT(5,5).

For v = 40, the conclusion comes from Lemma 2.5.

For v = 65 see Lemma 2.13.

For v = 69, the conclusion follows from Lemma 3.6 and the existence of
(73,16; 1; {4 })-IPBD and (67, 10; 2; {4 })-IPBD.

The proof is completed. 1

Lemma 3.11. Suppose for3w+1 < v < Y9w+4 and(v,w) € A4, (v,w) € Ea,
andforu = 3w+ 1,3u+1 < v < 4uand(v,u) € As, (v,u) € E4. Then
(v,w) € E4 forevery(v,w) € As .

Proof: For9w+ 4 < v < 12w + 4, there is a (v,u;3;{4})-IPBD and a
(u,w; 3; {4})-IPBD. So there is a (v, w; 3; {4 })-IPBD.

Forv > 12w+ 4, apply Lemma 2.11 by lettingk = 5, n=0,m = 3w+ b
and0 < m' < 3w+ b, whereb = 1,4,5,8,..., whenw = 0 (mod 4) or
b=1,2,5,6,...,whenw = 1 (mod 4). This completes the proof. |

To complete the proof of the embeddings of S3(2,4,u) foru € {8,9,12}, we
shall apply the above lemma and some results about the embeddings of S3 (2,4, u)
foru € {25,28,37}.

Lemma 3.12. If 76 < v < 125 and (v, 25) € As, then(v,25) € Es.

Proof: Use Lemma 2.10 by lettingm = 16, n=6,m'=n' =0 anda = 1. The
required IA;(22,6) comes from [5] and the (23,7; 3; {4 })-IPBD is displayed
below:

points: Z1g U{oo;: 1<i<7}
blocks: {0,4,8,12} {c01,0,1,7} {002,0,1,7} {003,0,1,7}
{004,0,2,5} {005,0,2,5} {006,0,2,5} {007,0,4,8} mod 16.

This shows that (89,25) € Es .

Delete one point of a T'(6, 5) to obtain a GD[{5,6}, 1] of type 5° 4!. Use
Construction 2.8 by starting from this GDD. Let W consist of all points of the
groups with size 5. Give every point of W weight 3 and the other points weight
4, Fill in blocks with size 6 of a GDD which is obtained by deleting 1 point from
aT(4,5). Fill in blocks with size 5 of a GDD with type 35 which is obtained
by giving weight 3 to a 53(2,4,5). Thus we obtain a GD[{4 }, 3] of type 1535
16! which has a sub-GDD constructed on W. Use Construction 2.6 for this GDD
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by letting¥; = ¢, Y2 = W, |S1| = 1 and S, = 4. The required IPBDs are
(16,5;3; {4 })-IPBD and S3(2,4,17). S0(92,25) € Ey .
Letk=5,m=m'= 17 andn= 8 inLemma2.11toobtaina (93,25; 3; {4 })-
IPBD.
For the other values of v, see Proposition 3.5. The proof is complete. ]

Lemma 3.13. (v,37) € E, ifand only if (v,37) € A4 .

Proof: From Proposition 3.5 and Lemma 1.4 we know that there are only 4 values
of v which need to be treated. Letk = 5, m = m’ = 25 and n= 12 in Lemma
2.11. This shows (137,37) € Es. Letk=5,m =28,n=9 andm' = 19 or 20
in Lemma 2.11. This shows (140,37) and (141,37) € E4. Finally, (144 ,37) €
E4 by Lemma 3.4 with d = 5. This completes the proof. |

Proposition 3.14. (v,28) € E4 ifand only if (v,28) € As.

Proof: For v € {88,97,100}, the conclusion comes from Lemma 2.5. For v €
{93,96}, see Lemma 2.13.

An JA,(23,7) exists by [5]. (23,7;3; {4})-IPBD is given in the proof of
Lemma 3.12. Using Lemma 2.10 with (m,n, m',%,a) = (16,7,0,0,0), we
have (92,28) € E;. An IA2(22,7) exists by [5]. Using Construction 2.7 with
(b,8) = (1,0) and (¢;,u;) = (22,7) for1 < i < 4, we have (89,28) € E4.

For v = 101, add a new point to every group of an T A3(25,7) (see [5]) and fill
in groups of (26,7; 3; {4 }) -IPBD which is displayed below:

points: Zyo U {oo;: 1 <1< 7}

blocks: {0,1,2,4}{001,0,5,8} {002,0,3,9} {003,0,7,15}

{004,0,4,10} {00s,0,5,12} {006,0,5,6} {007,0,2,10} mod 19.

For v = 104, use Lemma 2.11 by letting k=5, m=m'= 19 andn=9.

For v = 105 or 108, use Lemma 2.11 by taking k = 5, m = 20, » = 8 and
m' =17 or 20.

For the other values of v, see Lemma 1.4. The proof is completed. |

Proposition 3.15. Letu=8,9 or 12. Then(v,u) € E4 if and only if (v,u) €
As.

Proof: The conclusion follows from Lemma 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13,
and Proposition 3.14. 1

Theorem 3.16. Letu = 0,1,4,5,8, or9 (mod 16) and u > 25. Then
(v,u) € E4 forevery(v,u) € As.

Proof: Letn=4,b=9,a=1,t; =28 andu; = 8 for1 < 1 < 4 in Construction
2.7. The IGDDis an I A;(28,8). The (37;9,9; 1; K4)-O-IPBD can be obtained
by deleting 4 points from one group of a T'(5, 8) and then adding 1 new point to
every group of it. Thus a (121,33; 1; K4)-IPBD and then a (121,33;3; {4})-
IPBD is obtained.
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From Lemma 2.12 and Lemma 2.5 we know that (117,32) and (133, 36) € E; .
For other values of v,4u — 11 <v <4u—4,letd=5,8,9 or 12 in Lemma
3.4. Now the conclusion comes from Lemma 1.4 and Proposition 3.5. |

4. The embeddings of S3(2,4,u) for u = 12 and 13 (mod 16).

In this section we shall discuss the case u = 12 or 13 (mod 16) and u > 44.
From the embeddings of $3(2,4,u) for u = 8 or 9 and Lemma 2.9 we easily
obtain the following proposition.

Proposition 4.1. Letu = 12 or13 (mod 16) andu > 44. If(v,u) € As and
3u+1<v<4u—24, then(v,u) € E;.

Proof: Whenu = 12 (mod 16),lets = (u —8)/4,¢; = O andi; = 8
in Lemma 2.9. Whenu = 13 (mod 16) and3u+ 1 < v < 4u — 27, let
s={(u—9)/4,t; =0andt, =9 inLemma 2.9. Whenu = 13 (mod 16) and
v=4u—24,letd=8 inLemma3.4. [}

Now we shall consider the embeddings of S3(2,4,u) foru = 17, 21, and 24,
5o that we shall be able to use Lemma 3.4 forthecase 4u — 23 < v < 4u—3.
Proposition 4.2, (v,17) € E4 ifand only if (v,17) € As.
Proof: Forv € {53,56,61,64}, we use Lemma 2.9 by letting s = 4,¢, = 0 and
ta =1.Herev—3u=1o0r2 (mod 3),so the condition¢; > 1 can be changed
toty = 1.

For v = 57, the conclusion comes from Lemma 2.12. For v = 60, see Lemma
2.13.

For v € {88,89,92,...,157}, make use of Lemma 2.10 by taking n = 4,
7 =1,a=0and v =4m+ u+ m' as following:

8 <v<97, v=4 x16+ 17+ bwhere7 <b< 16
B <Lv<117,v=4x20+17+bwherel <5< 20
118 <v<142,v=4 x25+ 17+ bwhere1 <5< 25
143 <v <157, v=4 x 28+ 17+ bwhere 14 < b < 28.

The required I A3(20,4), IA3(24,4),1A3(29,4) and I A3(32,4) come from
Lemma 22 bythefact24 = 4 x5+ 4,20=4 x5,29 =4 x 7+ 1, and
32 =4 x 7+ 4. The required IPBDs come from the embeddings of S3(2,4,4).
For v > 157, the conclusion follows from the embeddings of S3(2,4,52) and
Lemma 3.11. This completes the proof. 1

Proposition 4.3. (v,21) € Ey4 ifand only if (v,21) € As.

Proof: Forv € {73,76,77},useLemma2.9bylettings = 5,¢; = 0 and¢; = 1.
In this case wecanlett; = 1 forv—3u=1o0r2 (mod 3).
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Forv € {108,109,112,...,192}, we apply Lemma 2. 10 as follows, here the
existence of I A3(m + n,n) comes from Lemma 2.2.

v m n a IAs(m+nmn
108—-121 20 5 0O 25=4x5+35
122-141 24 5 0 29=4x7+1
142 —-161 28 S5 0 33=4x7+5
162 —-181 32 S5 0 37=4x8+5

182-192 35 5 0 40=5x38

The required IPBDs come from Proposition 3.3.

Using Lemma 3.4 with d = 5, we have (80,21) € Es. (v,21) € E4 for
v = 65,68,69,72 by Proposition 3.5.

Forv > 192, the conclusion follows from the embeddings of S3(2,4,64) and
Lemma 3.11. 1

Proposition 4.4. (v,24) € Eq4 ifand only if(v,24) € As.

Proof: From Lemma 2.5 we know that {(85,24),(88,24)} C E4. (89,24) €
E4 comes from Lemma 2.12.
For v = 121, add a new point to every group of an 4z (30, 6) and fill in groups
with (31, 6; 3; {4 })-IPBD which is displayed below:
points: ZpsU{oo;: 1<i<6}
blocks: {0,1,4,7}{0,5,12,16} {0,8,13, 18} {001,0,4,10}
{002,0,1,9} {003,0,1,3} {004,0,10,12} {00s,0,11,19}
{06,0,9,11} mod 25
For v = 124, use Lemma 2.11 by taking k= 5, m =25, m' = 24 and n= 0.
For v = 125 or 128, use Construction 2.7 by starting from an IGD[ K4, 1]
of type (25,5)* (m,4)! where m = 21 or 24, which is obtained by delet-
ing some points from one group of an IA43(25,5). Letb = 4anda = 0.
The required (29; 4, 5; 0; K4)-0-IPBD can be obtained by adding a point to a
(28,4, 1)-RBIBD. Therequired (25; 4,4; 0; K4)-O-IPBDand (28;4,4;0; Ka)-
{-IPBD are just (25,4, 1)-BIBD and (28,4, 1)-BIBD.
For v € {129,132,133,...,220}, we use Lemma 2.10 as following, the ex-
istence of IA3(m + n,n) comes from Lemma 2.2.

v m n a IAs(m+mnm)
1290 —144 24 5 0 29=4x7+1
145—-164 28 5 0 33=4x7+5
165—184 32 5 0 37=4x8+5
185—-199 35 5 0 40=5x8
200 -224 40 5 0 45=5x9.
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The required IPBDs come from Proposition 3.3.

Using Lemma 3.4 with d = 5, we have (92,24) € E4. (v,24) € E, for
v=76,77,80,81,84 by Proposition 3.5.

For v > 220, the conclusion comes from the embeddings of S3(2,4,73) and
Lemma 3.11. |

Lemmad.5. {(157,45),(160,45),(161,45),(164,45),(221,60),(224,61) }
C Es.

Proof: Make use of Construction 2.8 by starting from an I A3 (11, 2) whose groups
are denoted by G;, 1 <§< 5. Let W = (UL, Gi) UU where U = {g} for some
g € Gs. The weight of the points and the IGDD:s filled in blocks are the same
as those in the proof of Lemma 2.9. Thus we can obtain a GD[ {4 }, 3] of type
334 n! where n = 24,27,28 or 31, which contains two sub-GDDs. One sub-

GDD is of type 114 1! and the other is of 64 m! where m = 0 or 3. Now use
Construction 2.6 by letting Y} be the point set of the sub-GDD of type 64 m! and
Y, be the point set of other sub-GDD. Let |S)] = |S2| = 1 and S3 = ¢. The
required ¢3-IPBD can be easily obtained by giving weight 3 to every point of a
(11,2; 3; {4})-IPBD and then adding one new point. The required {-IPBD can
be formed in a similar way. The required IPBD comes from Proposition 3.15. This
shows that(v,45) € B, forv € {157,160,161,164 }.

For (221,60) and (224, 61) , we use a method which is similar to what we have
done for the case (92, 25) in Lemma 3.12. Delete 2 points of aT'(6, 12) to obtain
aGD[{5,6},1] of type 125 10!, Let W consist of all points of the groups with
size 12. The weight of the points and the GDD:s filled in the blocks are the same
as those in the proof of Lemma 3.12. Let [S)| =1 and S; = ¢ or |S;| = 4 and
|S2| = |Ss3| = 1. This shows that {(221,60),(224,61)} C E and completes
the proof. [ |

Lemma4.6. {(153,44),(156,44), (157,44),(160,44), (217,60),(220,60),
(221,61),(225,61)} C Es.

Proof: From Lemma 2.5 weknow that {( 157, 44), (160,44), (217,60), (220,
60)} C Es . A(153,44,;3; {4})-IPBD can be obtained by adding one point to an
IA2(38,11) and filling in groups of (39, 11; 3; {4 })-IPBD which is displayed
below:
points: Zpp U{oo;: 1 <1< 11}
blocks: {0,7,14,21} {0,1,6,13} {00;,0,2,10} {002,0,3,14}
{003,0,4,9} {004,0,1,8} {005,0,2,6} {006,0,3,12}
{007,0,10,25} {00s,0,11,23} {009,0,4,15} {0010,0,6,8}
{o011,0,9,10} mod 28
A (156 ,44; 3; {4 })-IPBD can be obtained by lettingm = 28, n= 8, m' = 0,
n = 8 and @ = 4 in Lemma 2.10. The required IPBD comes from Proposition
3.15 and the I A3(36, 8) see [21].
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Letk=5,m = m' = 41,and n= 20 inLemma 2.11. This shows (225,61) €
E,.
Lemma 2.12 shows (221, 61) € E4. This completes the proof. 1

Theorem 4.7. Letu = 12 or13 (mod 16) andu > 44. Then(v,u) € E4 for
every (v,u) € As.

Proof: From Lemma 1.4 and Proposition 4.1 we know that we need only discuss
the case 4u — 23 < v < 4u — 3. Some pairs are showed in Lemma 4.5 and
Lemma 4.6. For the other pairs, letd = 4,5,8,9,12,17,21, and 24 in Lemma
3.4, The proof is complete. 1

5. The proof of Theorem 1.3.

In this section we shall complete the proof of Theorem 1.3. To do this, we need
the proof of following cases: u = 13,3u+ 1 <v <9u+4; u= 16,3u+1<
v<9u+4:u=20,4u—11<v<d4u—-3andSu<v<9u+4;u=25,
Su<v<9u+4;andu=29,3u+1<v<4u-3.

Proposition 5.1. (v,13) € E4 ifand only if(v,13) € Aa.

Proof: Apply Lemma2.10bytakingn=3,7=0,c=1andv=4m+u+ mw'
as following:

68<v<77, v=4x13+13+bwhere3 <b< 13
77 <v<93, v=4x16+13+bwhere0 <5< 16
93 <v< 113, v=4 x 20+ 13+ bwhere 0 < v <20.

The required TA3(16,3) and IA3(19,3) see [13], the IA3(23,3) can be ob-
tained from Lemma 2.2 and the fact 23 = 4 x 5 + 3. The required IPBDs come
from the embeddings of S3(2,4,4).

A (117,{9,13})-PBD exists, since TD(9, 13) exists. Hence (117,13) €
E.. Deleting one point from TD(9, 13), we have a (116,{8,9, 12, 13})-PBD.
Hence (116,13) € E;. There exists an IGD[{8,9},1] with type (13,1)®
(12, 1)}, which is obtained by deleting one point from TD(9,13). By adding
four new points into the design and using the following input designs, a (17,5 3;
{4})-IPBD and a (16,5; 3; {4 })-IPBD, we have (120,13) € E4. For49 < v
< 65, using Lemma 3.4 withd = 0, 1 and 4, we have (v,13) € E4. For
v € {41,44,45}, see Lemma 2.13. Forv = 48, the conclusion comes from
Lemma 2.12. This completes the proof. [ ]

Proposition 5.2. (v, 16) € E4 ifand only if(v,16) € Aa.
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Proof: Use Lemma 3.1 by lettingn=4,7" =a=0andv=4m+u+m as
following:

81<v<9, v=4x16+16+b wherel <b< 16,
97 <v< 116, v=4x20+16+b wherel <b<20,
117 <v<141, v=4x25+16+b wherel <b< 25,
141 <v<148, v=4 x28+ 16+ b where13 < b < 20.

The required I A3(20,4), IA3(24,4), IA3(29,4) and IA3(32,4) come from
Lemma 22bythefact 24 = 4 x5+4,29 =4 x7+ 1,20 =4 x5 and
32=4 x 7 + 4. The required IPBDs come from the embeddings of S3(2,4,4).

For v = 53 and 57, see Lemma 2.13. For v = 52, see Lemma 2.5. For v = 56,
see Lemma 2.12. For v = 60, use Lemma 2,11 by letting k = 5, m = m' = 11
andn= 5. For61 < v < 80, use Lemma 3.4 with d = 0,1 and 4. The proof is
complete. [ |

Proposition 5.3. (v,29) € E4 ifand only if (v,29) € As.

Proof: Apply Construction 2.8 by starting from a GD[{4,5},1] of type 74n!,
where 0 < n < 7, which can be obtained by deleting some points fromaT'(5,7).
Lett(z) = 3 for every z in this GDD. Let W be the set consisting of all points in
the groups of size 7. Fill in blocks of GD[ {4 }, 1] with group type 35 or 34. Thus
we can obtain aIGD[ {4 }, 3] of type (21, 7)* (37,0)!. Now we use Construction
2.7 for this IGDD by letting e = 1, b and n as follows.

v b n
92 8 0
97 4 3
100 4 4
101 8 3
104 8 4

The required (29; 8,8; 1; {4 })-O-IPBD can be obtained by adding a new point
to an TA;(4,7). The required (25;8,4;1; {4})-0-IPBD is a (25,8;3;{4})-
IPBD. This shows (v,29) € E, forv € {92,97,100,101,104 }.
For v = 105, use Lemma 2.10 by taking m = 19, n=5,m' = 0,7 = 5 and
a=4.The IA3(24,5) comes from Lemma 2.2 and the fact24 =4 x 5+ 4.
For v = 89,93 and 96, see Lemma 2.13. Forv = 108, 109 and 112,letd = 5
and 9 in Lemma 3.4. This completes the proof. [ |
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Proposition 5.4. Letu = 20 or25. Then(v,u) € Ey ifandonly if (v, u) € As.

Proof: Delete 4 points from a group of a T(5,5) to obtain a B{{4,5},1,21]
which has two disjoint blocks of size 5. It also has a block of size 4 and a block
of size § which are disjoint. So we can see it as a (21;5, 5; 0; K4)-0-IPBD or
(21;4,5;0; K4)-O-IPBD. Now use Construction 2.7 with (b,a) = (5,0) and
(t;,4:) = (16,5) for1 < i < 4 orwith (b,a) = (4,0) and (t;, u;) = (17,5) for
1 < i < 4. This shows that {(69,20),(72,20)} C Es. {(73,20),(76,20)} C
B4 is proved in Lemma 2.5.

For u = 20 and v € {101,104,105,...,184}, the proof is similar to that of
u = 21. We apply Lemma 2.10 by taking the values of m, n and a as same as
those in the case u = 21.

Foru = 25 and v € {128,129,132,...,145}, use Lemma 2.10 by letting
m=24,n=06 and a = 1. The required IA43(30, 6) see [18] and the IPBDs see
Lemma 2.1,

For v € {148,149,152,...,225}, use Lemma 2.10 by letting the values of
m, nand a as same as those in the case u = 24.

Forv = 228,letm = 48,n=6,m' = 11,47 = 0 anda = 1 in Lemma
2.10. The IA3(54,6) see [18], and the (55,7; 3; {4})-IPBD see Lemma 2.1.
The proof is completed. [

Proof of Theorem 1.3: The conclusion follows from Theorem 3.16, Theorem 4.7,
Proposition 3.3, 3.14, 3.15, 4.2, 4.3, 4.4 and the propositions of this section di-
rectly. |
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Note added.

Recently, G. Kong and L. Zhu have proved thatany S (2,4, u) can be embedded
in some Ss(2,4,v) iff u > 4 and v > 3u + 1 in their paper “Embeddings
of $»(2,4,u)”. The existence problem of embeddings for Sx(2,4,v) is then
finished.
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Appendix

A (61,8;3; {4)})-IPBD

points: ZszU{ooi: 1 <1< 8}

blocks: {0,1,11,23} {0,2,15,29}
{0,5,15,11} {0,6,18,13}
{0,9,17,28} {00,0,1,10}
{004,0,6,26} {00s,0,7,26}
{c08,0,29,13}

A(32,9;3; {4))-IPBD*

points: ZrU{ooi: 1 £1<9}

blocks: {0,3,6,7}{c01,0,10,11}{c02,0,2,6} {003,0,2,7}

{005,0,2,10}
{00910151 10}

{005,0,3,12}

A(56,9;3; {4))-IPBD

points: Zyn Ufooi: 1 K9}

blocks: {0,1,12,2}  {0,2,15,23)
{0,4,7,13} {0,7,11,25)
{002,0,5,22} {003,0,1,21}
{006,0,13,29}  {007,0,5,7}

A (65,12;3; {4})-IPBD

points: ZssU{ooi: 1 <1< 12}

blocks: {0,1,11,23} {0,2,15,29}
{0,5,9,17} {0,6,19,21}
{o02,0,8,11} {o03,0,7,11}
{00s,0,9,23} {007,0,20,25}
{0010,0,15,16} {0611,0,13,18}

A(41,13;3; {4))-IPBD

28

{0,4,22,25)  {0,3,19,20}
{0,7,21,16}  {0,8,23,25}
{002,0,2,14}  {003,0,4,22}
{006,0,8,29}  {007,0,20,23)
mod 53
{004,0,1,9}
{007,0,4,11}  {o0,0,6,14}
mod 23
{0,3,9,27)  {0,14,19,31}
{0,1,20,32}  {001,0,2,10}
{c04,0,3,9}  (o0s,0,4,14}
{c08,0,11,30} {009,0,8,23}
mod 47
{0,3,19,20} {0,4,22,25}
{0,7,16,33}  {001,0,8,10}
{004,0,14,24} {o05,0,18,25}
{008,0,21,27} {009,0,22,34}
{0012,0,24,30} mod 53



points:
blocks:

Zag U {o0;:
{0,7,14,21}
{004,0,8,18)
{00s,0,9,14}
{0012,0,8,21}

A (44,13;3; {4))-IPBD

points:
blocks:

Z3 U {oo;:
{0,1,4,25}
{004,0,1,14}
{o0s,0,10,25}
{0012,0,3,12}

A (45,13;3; {(4))-IPBD

points:
blocks:

Z32 U {oo5:
{0,8,16,24}
{003,0,12,26}
{007,0,4,16}
{oon0,15,20}

A (53,16;3; {4})-IPBD

points:
blocks:

Zx U {oo;:
{0,2,5,18)
{004,0,11,14)
{c08,0,8, 18}
{c012,0,9, 11}

{0016,0,15,16}

1 <i<13)
{001,0,1,3}  {002,0,4,9}  {003,0,6,13}
{o05,0,11,23} {o006,0,1,4}  {o07,0,2,8}
{009,0,11,13} {0040,0,11,12} {o00y;,0,3,12}
{o013,0,4,10} mod 28

1<ig13)
{c01,0,2,11} {002,0,5,13} {o03,0,12,15}
{005,0,2,6} {006,0,5,12} {o007,0,8,17}
{009,0,4,11} {0010,0,11,26} {o011,0,2,10}
{0013,0,1,14} mod 31

1 <1< 13}
{0,1,7,22} {001,0,2,5} {c02,0,4,13}
{004,0,1,8} {o00s,0,2,11} {00s,0,3,13}
{o08,0,14,29} {009,0,1,5} {0010,0,9,19}
{c012,0,6,8} {o013,11,25} mod 32

1<i< 16}
{001,0,1,7}  {002,0,4,12} {003,0,9,10}
{005,0,15,17} {006,0,4,9} {007,0,6,13}
{o09,0,11,23} {0010,0,15,31} {oon,0,17,20}
{0013,0,4,14} {0014,0,5,13} {o015,0,12,19}
mod 37

29



A (57,16;3; {4})-IPBD

points:
blocks:

Zy U {oo: 1 <116}
{0,1,9,20} {0,2,5,18} {001,0,4,10} {o02,0,7,24}
{003,0,12,26}  {004,0,1,9} {o00s5,0,2,20} {o06,0,3,7}
{007,0,4,15} {008,0,5,19} {009,0,6,22} ({o010,0,12,13}
{oon,0,2,18} {0012,0,5,11} {0013,0,7,15} {0014,0,9,21}
{0015,0,10,24}  {0016,0,3,13} mod 41

A (60,17;3; {4})-IPBD

points:
blocks:

Zg U{ooi: 1117}
{0,1,10,21} {0,2,6,19} {c0,0,3,8} {002,0,7,12}
{003,0,14,16}  {004,0,15,18} {o05,0,1,7} {o06,0,4,12}
{007,0,9,19} {00$,0,11,25} {009,0,13,20} {o010,0,15,21}
{0011,0,2,22}  {00)2,0,4,13} {0013,0,5,17} {0014,0,16,17}
{c015,0,10,28} {0016,0,3,14} {o017,0,8,24} mod 43

A (93,28, 3% {4))-IPBD

points:
blocks:

Zes U {ooi: 1 <1< 28}

{0,1,5,30} {0,2,8,19} {001,0,9,21}  {o002,0,3,10}

{003,0,13,27}  {004,0,15,31} {00s,0,18,41} {oos,0,20,22}
{007,0,26,32}  {008,0,1,28} {009,0,4,18} {0010,0,7,17}
{o011,0,8,19} {0012,0,9,21} {0013,0,15,35} {0014,0,22,24}
{0015,0,25,51}  {o016,0,29,32} {o017,0,25,31} {ooss,0,4,28}
{0019,0,5,21}  {0020,0,7,17} {o0021,0,8,31} {c022,0,9,20}
{0023,0,12,27}  {0024,0,13,43} {0025,0,18,19} {o0026,0,13,29}
{0027,0,3,26}  {o028,0,32,60} mod 65
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A (96,28; 3; {4})-IPBD**

points: Zeg U {ooi: 1 <1< 28)

blocks: {0,7,29,32}
{001,0,12,25}
{o0s,0,20,42}
{009,0,30,61)
{o013,0,27,33)
{0017,0,5,29}
{o021,0,10,21}
{002s,0,4,18}

A (89,29;3; {4))-IPBD

points: Zgo U {oo;:

blocks: {0,15,30,45)
{004,0,5,27)
{00s,0,23,48)
{c012,0,4,15)
{0016,0,8,21}
{0020,0,1,20}
{oon,0,5,13}
{0028,0,12,22)

A (93,29;3; {4))-IPBD

points: Zg4 U {o0;:

blocks: {0,16,32,48)
{003,0,4,25}
{07,0,9,20)
{oon,0,3,15}
{o015,0,8,19})
{o019,0,21,29}
{0023,0,4,20})
{0022,0,9,19}

{0,19,21,28} {0,17,34,51} (repeated 3 times)
{002,0,20,33} {o03,0,28,30} {o04,0,23,28}
{006,0,19,32} {007,0,18,27} {o0s,0,14,26}
{0010,0,15,25} {o0n,0,12,23} {c012,0,6,9)}
{c014,0,24,32} {0015,0,29,60} {o016,0,31,64}
{0018,0,6,30} {o019,0,11,27} {0020,0,10,26}
{0022,0,8,23} {0023,0,5,21} {o0x,0,4,22}
{0026,0,1,3}  {0027,0,1,15} {o02s,0,1,20}
mod 68

1<i<29)

{001,0,1,29}  {002,0,2,18} {003,0,3,20}
{005,0,6,13}  {006,0,8,19) {c07,0,9,21}
{009,0,24,26} {0010,0,1,26} {ooy,0,3,19}
{0013,0,5,29} {0014,0,6,28} {o0ys,0,7,17}
{0017,0,9,23} {o013,0,18,45} {ooys,0,20,30}
{0021,0,2,16} {0032,0,3,24} {o0p,0,4,31}
{0025,0,6,23} {0026,0,25,51} {00z7,0,7,11}
{0029,0,18,46} mod 60

1<i<29)

{0,1,15,34} {001,0,2,29}  {o02,0,3,26}
{004,0,5,13}  {005,0,6,18} {o06,0,7,17}
{c08,0,22,28} {c09,0,1,24} {0049,0,2,26}
{0012,0,4,14} {0013,0,5,3(?} {c014,0,7,27}
{0016,0,9,22} {0017,0,16,33} {o018,0,18,46}
{0020,0,1,32} {0021,0,2,17} {o02,0,3,30}
{0021,0,5,29} {o0025,0,6,28} {o02,0,7,21}
{0028,0,11,23} {o029,0,13,38} mod 64
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A (96,29; 3; {4})-IPBD

points: ZerU{ooi: 1<§<29}

blocks: {0,1,8,30}

{003,0,5,21}

{007,0,12,44}
{oo11,0,4,32}
{0015,0,9,26}
{c019,0,2,33}
{0023,0,7,30}
{0027,0,17,47}

{0,2,15,33} {001,0,3,23}  {002,0,4,28}
{004,0,6,17} {005,0,9,19} {o0s,0,14,40}
{008,0,1,25}  {009,0,2,31} {o010,0,3,16}
{0012,0,6,27} {0013,0,7,18} {o014,0,8,20}
{o016,0,14,33} {0017,0,22,38} {o018,0,1,25}
{c020,0,3,18} {0021,0,4,32} {022,0,6,27}
{0024,0,8,19} {0025,0,9,22} {o02,0,12,26}
{0028,0,5,10} {o0029,0,10,25} mod 67
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