The disjoint 1-factors of (d, d + 1)-graphs

Cheng Zhao

Department of Mathematics West Virginia University Morgantown, WV 26506 U.S.A.

Abstract. A graph G is called (d, d+1)-graph if the degree of every vertex of G is either d or d+1. In this paper, the following results are proved: A (d, d+1)-graph G of order 2n with no 1-factor and no odd component, satisfies $|V(G)| \ge 3d+4$; A (d, d+1)-graph G of order 2n with $d(G) \ge n$, contains at least [(n+2)/3] + (d-n) edge disjoint 1- factors. These results generalized the theorems due to W. D. Wallis, A.J.W. Hilton and C. Q. Zhang.

A 1-factor in a graph G is a set of disjoint edges of which together cover all vertices of G. In this paper we only consider simple graphs. A graph G is said to be (d, d+1)-graph, if the degree of each vertex of G is either d or d+1. We derive a lower bound for the number of vertices in a (d, d+1)-graph which has no 1-factor and no odd component. And we also obtain the lower bound of the edge-disjoint 1-factors of (d, d+1)-graph G of order 2n with $d \ge n$. We use the following well-known theorems:

Lemma 1.[2]. A graph G has no 1-factor if and only if there is some set K of k vertices such that deletion of K (all edges touching it) from G leaves a graph with at least k+1 odd components.

Lemma 2.[3]. If G has an even number of vertices without 1-factor, then there is some set K of k vertices such that G - K has at least k + 2 odd components.

Theorem 1. A (d, d + 1)-graph G of order 2n with no 1-factor and no odd component, satisfies: |V(G)| > 3d + 4.

Proof: By contradiction. Suppose that $|V(G)| \le 3d+3$, and G has no 1-factor, and no odd component. Since G is a (d, d+1)-graph of order 2n, then by Lemma 2, there is set K of k vertices such that G-K has at least k+2 odd components.

Suppose G-K has a component with p vertices, where $1 \le p \le d$. The number of edges within the component is at most p(p-1)/2. But in G, each vertex has degree at least d, so the number of edges joining the component to K must be at least

$$pd - p(p-1)$$

For the sum of degrees of these p vertices in G - K is at most p(p-1), but in G each vertex has degree at least d, so the sum of their degree is at least pd.

For fixed d and for integer p satisfying $1 \le p \le d$, this function has minimum value d. So any odd component with d or less vertices is joined to K at least d edges.

Now let G - K contain a_+ odd components with more than d vertices and a_- odd components with d or less vertices. It is obvious that

$$a_+ + a_- > k + 2 \tag{1}$$

Each of the a_{-} smaller components has at least one vertex and each of the a_{+} larger components has at least d+1 vertices, so the number of |V(G)| satisfies:

$$|V(G)| \ge k + a_{-} + (d+1)a_{+} \tag{2}$$

Since |V(G)| < 3d + 3, by (2), it follows that $a_+ \le 2$, and by (1), $a_- \ge k$.

Note that the number of edges leading from K to the odd components is at least $a_+ + da$. Thus we have that

$$a_+ + da_- \le k(d+1) \tag{3}$$

Rearrange the inequality (3), we have that

$$a_{-} < k + [(a_{-} - a_{+})/(d+1)]$$
 (4)

Then, $a_- - a_+ \ge 0$, since $a_- \ge k$. By (1), we have

$$2a_{-} \geq a_{-} + a_{+} \geq k + 2$$
,

Then, $a_- \ge (k+2)/2 \ge 3/2$, it follows that $a_- \ge 2$.

Case 1: If $a_- - a_+ \ge d + 1$, then $a_- \ge d + 1 + a_+$. By (3), $k \ge [a_+ + d(d + 1 + a_+)]/(d + 1)$, then, if $a_+ \ge 1$, $k \ge d + 1$; if $a_+ = 0$, $k \ge d$.

Subcase 1.1: If $a_+ \ge 1$, then by (2), $|V(G)| \ge k + (a_- + a_+) + da_+ \ge d + 1 + d + 1 + 2a_+ + d \ge 3d + 4$. This is a contradiction.

Subcase 1.2: If $a_+ = 0$, then by (1), $a_- \ge k + 2$, and by (3), we have, $d(k+2) \le da_- \le k(d+1)$. It follows that, $k \ge 2d$. Hence, by (2), $|V(G)| \ge k + a_- \ge 2d + (2d+2) \ge 4d + 2$. Since G contains no 1-factor and no odd component, we can exclude the trivial case $d \le 1$, therefore $4d + 2 \ge 3d + 4$, a contradiction.

Case 2: If $a_{-} - a_{+} \le d$, then by (4), $a_{-} \le k$, and by (1), $a_{+} \ge 2$. Therefore $a_{+} = 2$, $a_{-} = k$.

Suppose C is one of the small odd components; consider a vertex x in C. Since vertex x and all its neighbors are in (K+C), then $|K|+|C| \ge d+1$, so

$$|V(G)| > d+1+(a_{-}-1)+2(d+1) \ge 3d+4, \tag{5}$$

since $a_{-} - 1 \ge 1$. This is a contradiction. This completes the proof.

We point out that all possible orders can be realized (except for the trivial case d=1, when the graph must be a union of even paths, and have a one-factor). Here is an easy construction. Take a set K of d+1 vertices. Then G-K has a set S of d+2 components of size 1 and one large component H of size d+1 (d even) or d+2 (d odd). One vertex x of H is distinguished. When d is even, H is K_{d+1} ; when d is odd, form H from K_{d+2} by deleting one edge through x. Then add one edge from one vertex of K to x, and d^2+2d edges from the vertices of K to S, in such a way as to form a connected graph. This can be done in many ways.

Corollary [3]. Let G be a d-regular graph of even order without 1-factor and odd component. Then $|V(G)| \ge 3d + 4$.

By theorem 1, we have the following result:

Theorem 2. If G is a (d, d+1)-graph of order 2 n and $d \ge n$, then G contains at least $\lfloor (n+2)/3 \rfloor + (d-n)$ disjoint 1-factors.

Proof: If $d \ge n+1$, then we can use the Dirac theorem to find d-n disjoint 1-factors in G. Hence, it is sufficent to prove the theorem by considering an (n, n+1)-graph G of order 2n.

We assume that $n \ge 5$. Let F_1, \ldots, F_t be a maximum set of disjoint 1- factors of G. We prove the theorem by contradiction. Suppose t < (n+2)/3. Then $H = G - \bigcup_{j=1}^t F_j$ is an (h, h+1)-graph, where h = n-t and H is of order at most 3h+1.

If H is connected, by the previous theorem, H has a 1-factor and this contradicts the choice of F_1, \ldots, F_t . Hence, H must be disconnected and contains some odd components. Since each component of H is of order at least h+1, H has exactly two components C_1 and C_2 , each of which is of odd order. Without loss of generality, let $|V(C_1)| \leq |V(C_2)|$. Then

$$h+1 \le |V(C_1)| \le |V(H)|/2$$

$$|V(H)|/2 \le |V(C_2)| \le 2h$$
,

Since C_2 is an odd component,

$$|V(H)|/2 \le |V(C_2)| \le 2h - 1$$

We claim that there is $F_j \in \{F_1, \dots, F_t\}$ such that $e_{F_j}(C_1, C_2) \ge 3$. If not, then $e_{F_j}(C_1, C_2) = 1$, for each $F_i \in F_1, \dots, F_t$, because C_1 is an odd component and $e_{F_j}(C_1, C_2)$ is odd. Since

$$\sum_{i=1}^{t} e_{Fi}(C_1, C_2) = t.$$

$$t \leq h < |V(C_1)|.$$

There must be a vertex v of C_1 such that the neighbor of v in each F_i is contained in C_1 . Thus, all vertices adjacent to v in G are contained in C_1 and hence, $|V(C_1)| \ge n + 1$. This contradicts the assumption that $|V(C_1)| \le |V(H)|/2 \le n$.

Without loss of generality, let F_1 be such that $e_{F1}(C_1, C_2) \geq 3$, and (x_1, x_2) , $(y_1, y_2), (z_1, z_2)$ be edges of F_1 such that $x_i, y_i, z_i \in V(C_i)$ for i = 1, 2. Since $|V(C_i) - \{x_i\}| \leq 2h - 2$ and the minimum degree of $H(C_i - x_i)$ is $\geq h - 1$, by the Dirac theorem, let $P_i = v_1^i \dots v_{|c_i|-1}^i v_1^i$ be a Hamilton cycle in $H(C_i - x_i)$, for i = 1, 2. Thus, if $F_0 = \{(x_1, x_2)\} \cup \{(v_{2j-1}^1, v_j^1) : j = 1, \dots, \frac{|V(C_i)|-1}{2}\} \cup \{(v_{2j-1}^2, v_j^2) : j = 1, \dots, (|V(C_2)|-1)/2\}$, then F_0 is a 1-factor of $H \cup F_1$. Since $|V(C_i)| \leq 2h - 1$ and the minimum degree of $H(C_i) - F_0$ is at least h - 1, $H(C_i) - F_0$ is still connected. Therefore, $[H \cup F_1] - F_0$ is also connected because (y_1, y_2) and (z_1, z_2) are edges joining the two connected parts $[F_1 \cup H(C_1)] - F_0$ and $[F_1 \cup H(C_2)] - F_0$. By theorem 1, the connected (h, h + 1)-graph $H \cup F_1 - F_0$ has a 1-factor F_{i+1} , which contradicts the choice of F_1, \dots, F_t . This completes the proof.

Corollary [4]. A d-regular graph G of even order 2n with $d \ge n$, contains at least $\lfloor (n+2)/3 \rfloor + (d-n)$ disjoint 1-factors.

Acknowlegement.

The author wishes to thank Dr. C.Q. Zhang and referees for their helpful suggestions.

References

- 1. G.A. Dirac, Some theorems on abstract graphs, Proc. London Math.Soc (3) 2 (1952), 69-81.
- 2. W.T.Tutte, The factorizations of linear graphs, J. London Math.Soc 22 (1947), 459-474.
- 3. W.D. Wallis, The smallest regular graphs without one-factor, Ars Combinatorics 11 (1981), 295-300.
- 4. C.Q. Zhang, On a theorem of Hilton, Ars Combinatoria 27 (1989), 66-68.