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Abstract. A graph G is called (d,d + 1)-graph if the degree of every vertex of G is
either d or d + 1. In this paper, the following results are proved: A (d,d + 1)-graph
G of order 2 n with no 1-factor and no odd component, satisfies |V(G)| > 3d+ 4; A
(d, d+ 1)-graph G of order 2n with d(G) > n, contains at least [ (n+ 2) /3] + (d—n)
edge disjoint 1- factors. These results generalized the theorems due to W. D. Wallis,
A.J.W. Hilton and C. Q. Zhang.

A l-factor in a graph G is a set of disjoint edges of which together cover all
vertices of G. In this paper we only consider simple graphs. A graph G is said
tobe (d, d + 1) -graph, if the degree of each vertex of G is eitherdord + 1. We
derive a lower bound for the number of vertices in a (d, d + 1) - graph which has
no 1-factor and no odd component. And we also obtain the lower bound of the
edge-disjoint 1-factors of (d,d+ 1)-graph G of order 2n with d > n. We use the
following well-known theorems:

Lemma 1.[2]. A graph G has no 1-factor if and only if there is some set K of
k vertices such that deletion of K (all edges touching it) from G leaves a graph
with at least k + 1 odd components.

Lemma 2.[3]. If G has an even number of vertices without 1-factor, then there
is some set K of k vertices such that G — K has at least k + 2 odd components.

Theorem 1. A (d,d + 1)-graph G of order 2= with no 1-factor and no odd
component, satisfies: |V(G)| > 3d+ 4.

Proof: By contradiction. Suppose that [V (G)| < 3d+ 3, and G has no 1-factor,
and no odd component. Since G is a (d,d + 1)-graph of order 2x, then by
Lemma 2, there is set K of k vertices such that G — K has at least k + 2 odd
components.

Suppose G— K has a component with p vertices, where 1 < p < d. The number
of edges within the component is at most p(p — 1) /2. But in G, each vertex has
degree at least d, so the number of edges joining the component to K must be at
least

pd—p(p—1)
For the sum of degrees of these p vertices in G — K is atmost p(p— 1), butin G
each vertex has degree at least d, so the sum of their degree is at least pd.
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For fixed d and for integer p satisfying 1 < p < d, this function has minimum
value d. So any odd component with d or less vertices is joined to K at least d
edges.

Now let G — K contain e, odd components with more than d vertices and
a_ odd components with d or less vertices. It is obvious that

ar+a_>k+2 ¢))

Each of the a_ smaller components has at least one vertex and each of the a,
larger components has at least d + 1 vertices, so the number of |V (G)| satisfies:

V(@) >k+a_+(d+ Da, 2)

Since [V(G)| < 3d+ 3, by (2), it follows that a, < 2,and by (1),a_ > k.
Note that the number of edges leading from K to the odd components is at
least a, + da, Thus we have that

a, +da_< k(d+1) 3
Rearrange the inequality (3), we have that
a_<k+[(a-—a:)/(d+1)] @
Then, a_ — a4 > 0,since a_ > k. By (1), we have
2a.>a_+a+ > k+2,

Then,a_ > (k+2)/2 >3/2,itfollows thata_ > 2.

Casel: Ifa_—a, >d+1,thena_ >d+1+a,. By(3),k > [a. +d(d+ 1+
a.)1/(d+ 1), then,ifa, > 1,k > d+ 1;ifa, =0,k > d.

Subcase 1.1: Ifa, > 1,thenby (2),|[V(G)| > k+ (a-+a4) +day 2d+ 1+
d+ 1+ 2a, +d > 3d+ 4. This is a contradiction.

Subcase 1.2: Ifa, = 0, thenby (1),a_ > k+2,and by (3), we have, d(k+2) <
da_ < k(d+ 1). It follows that, k > 2d. Hence, by (2), [V(G)| 2 k+a_ >
2d+(2d+2) > 4d+ 2. Since G contains no 1-factor and no odd component, we
can exclude the trivial case d < 1, therefore 4d + 2 > 3d + 4, a contradiction.

Case 2: If a_ — a4+ < d, then by (4), a_ < k, and by (1), a+ > 2. Therefore
ay = 2,(1_ =k.

Suppose C is one of the small odd components; consider a vertex z in C.
Since vertex z and all its neigbors are in (K + C), then |K|+ [C| > d+ 1, 50

[V(G)| > d+ 1+ (a- — D) +2(d+ 1) >3d+4, o)
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since a_ — 1 > 1. This is a contradiction. This completes the proof. |

We point out that all possible orders can be realized (except for the trivial
case d = 1, when the graph must be a union of even paths, and have a one-factor).
Here is an easy construction. Take a set K of d + 1 vertices. Then G — K has a
set S of 4+ 2 components of size 1 and one large component H of size d + 1 (d
even) ord+ 2 (d odd). One vertex z of H is distinguished. When d is even, H is
Kg.1; when d is odd, form H from Ky, by deleting one edge through z. Then
add one edge from one vertex of K to z, and d? + 2d edges from the vertices of
K to S, in such a way as to form a connected graph. This can be done in many
ways.

Corollary [3). LetG be ad-regular graph of even order without 1-factor and odd
component. Then|[V(G)| > 3d+4.

By theorem 1, we have the following result:

Theorem 2. IfG isa(d,d+ 1)-graph of order2m and d > m, then G contains
at least [(n+ 2) /3] + (d — m) disjoint 1-factors.

Proof: If d > n+ 1, then we can use the Dirac theorem to find d — n disjoint 1-
factors in G. Hence, it is sufficent to prove the theorem by considering an (n, n+
1)-graph G of order 2x.,

Weassumethatn > 5.Let F, ..., F; be amaximum set of disjoint 1- factors
of G. We prove the theorem by contradiction. Suppose t < (n+ 2)/3. Then
H =G —Uj. Fjisan (h,h+ 1)-graph, where h = n— ¢ and H is of order at
most3h+ 1.

If H is connected, by the previous thcorem, H has a 1-factor and this contra-
dicts the choice of F, ..., F;. Hence, H must be disconnected and contains some
odd components. Since each component of H is of order at least h + 1, H has
exactly two components C; and C;, each of which is of odd order. Without loss
of generality, let [V (C1)| < |[V(C2)|- Then

h+1 < |V(C)| L V(ED/2,

[V(H)|/2 < |[V(C2)| < 24,
Since C, is an odd component,
ViDI/2 <IV(C)|[<2h -1
We claim that there is F; € {F1,... Fy} such that ez;(C1,Cz) > 3. If not, then

erj(C1,Cy) = 1,foreach F; € Fy,..., F;, because C) is an odd component and
er;j(C1,C) is odd. Since
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t
Y em(C1,0) =t

i=1

t< h<|V(C)|.

There must be a vertex v of C; such that the neighbor of v in each F; is contained in
C. Thus, all vertices adjacent to v in G are contained in Cy and hence, [V(C1)| >
n+ 1. This contradicts the assumption that [V(C)| < |[V(H)|/2 < n.

Without loss of generality, let F; be such thatep (C1,C,) > 3,and (24, 22),
(y1,92),(21,22) be edges of Fy such that x;,y;,2; € V(C)) fori = 1,2.
Since |V(G;) — {zi}| £ 2h — 2 and the minimum degree of H(C; — x;) is
> h — 1, by the Dirac theorem, let P; = vf ... v}, v} be a Hamilton cycle in
H(C; — z;), fori = 1,2. Thus, if Fy = {(z1,32)}U{(v};1,v}) :7=1,...,
W=ty |y {(vd;_y,3) 7 = 1,...,([V(Ca)| — 1)/2}, then Fy is a 1-factor
of H U F,. Since |V(C;)| < 2h — 1 and the minimum degree of H(C) - F
is atleast h — 1, H(C;) — Fo is still connected. Therefore, [H U Fi] — Fo is
also connected because (y1,y2) and (21, z2) are edges joining the two connected
parts [ F; UH(C1)] — Fo and [Fy UH(C2)] — Fo. By theorem 1, the connected
(h, h+ 1)-graph H U F; — Fp has a 1-factor Fy.,, which contradicts the choice
of F, ..., F;. This completes the proof. [ ]

Corollary [4). A d-regular graph G of even order 2m withd > n, contains at
least[(n+ 2) /31 + (d — n) disjoint 1-factors.
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