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Abstract. In [B], Bondy conjectured that if G is a 2-edge-connected simple graph
with n vertices, then G admits a cycle cover with at most (21— 1)/3 cycles. In this
note we show that if G is a 2-edge-connected simple graph with n vertices and without
subdivisions of K4, then G has a cycle cover with at most (2n— 2) /3 cycles and we
characterize all the extremal graphs. We also show that if G is 2-edge-connected and
has no subdivision of K4, then G is mod (2 k + 1)-oricntable for any integer k& > 1.

Introduction.

Graphs in this note are finite and loopless. For all undefined terms, see Bondy and
Murty [BM]. Let G be a graph and e € E(G). The contraction G/e is the graph
obtained from G by identifying the two ends of e and deleteing the resulting loops.
A subdivision of a graph H is a graph obtained from H by subdividing some edges
of H, and will be denoted by TH. As in [BM], a block in a 2-cdge-connected
graph G is a maximal 2-connected subgraph. For a real number z, |z denotes
the largest integer not bigger than z.

Theorem A. (Dirac (D]) If G is a nontrivial simple graph without T K4, thenG
has a vertex of degree at most 2. 1

Let C be a collection of cycles in a graph G. If

E@) c|JE©),

ceC

then C is called a cycle cover of G. It is well known that G has a cycle cover if and
only if G has no cut-edges. For a 2-cdge-connccted graph G, let cc(G) denote the
minimum number of cycles in G that are needed to cover E(G). In [B], Bondy
conjectured that if G is a 2-cdge-connected simple graph with = vertices, then

2n—1

ce(G) £ 3

In this note we shall prove that if G is a 2-edge-connected simple graph with n
vertices and without T K4, then

2n—-2

c(G) £ —5—,

0]
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and we shall characterize all the extremal graphs and thereby show that the bound
in (1) is sharp.

Let £ > 1 be an integer. A graph G is mod (2 k + 1)-orientable if it has an
orientation such that the out-degree of each vertex is congruent (modulo 2k + 1)
to the in-degree. (See [J] for further discussion on this subject) . Following Jaeger
[J], we denote by M3, thé class of mod (2k + 1)-orientable graphs. It is ob-
served in [SY] and in [J] that G ‘€ M3 if and only if G has nowhere-zero 3-flows,
(see [J] or [Y] for flows). In this note, we shall show that if G is 2-edge-connected
and if G does not contain aT K4, then G € Ma;4y, forany k > 1.

Main Results

Let G be a simple graph. An arc of G is an (z,y)-path P of G with z,y €
V(G), where z may equal y, such that all the internal vertices of P have degree
2in G. A maximal arc is one that cannot be extended in G. The length of an arc
P is |E(P)|. Weregard K3 as an arc of length 1.

Let A(G) denote the collection of all maximal arcs A with |E(A)| > 2. For
any A € A(G),Alisacyclearc is GLE(A)] isacycle in G; A is a cyclic arc if
G[E(A)] is not a cycle but there is an arc A’ in G such that G[ E(A) |J E(A")]
isacycle in G; and A is an acyclic arc if A is neither a cycle arc nor a cyclic arc.

Foreach A € A(Q),define bg( A) as follows: if A isacyclearc, then bg(A) =
|E(A)| — 3; if A is a cyclic arc, then bg(A) = |E(A)| — 2; and if A is acyclic,
then bg(A) = |E(A)| — 1. Note that by Theorem A, if a simple graph G satisfies
k(@) > 2,and has no T K4, then A(G) # 0. Define

HG) = Y be(A).
A€A(G)
Lett >3 ands; > --- > 82 > s1 > 1 be integers. Let the ¢ arcs of length
2 of K> ; be labeled by Al yAz,..., As. Define Kp4(s1,...,8) to be the graph
obtained from K, ; by replacing A,— by a path of length s;,(1 < 1 < t). For
convenience, we regard a cycle of length s; + 83 asa K3 2(s1,2):

Figure I: K23(1,2,3).
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Let X denote the collection of graphs such that G € K if and only if each block
of Gisa K23(1,s2,33), forsome sz > s3 > 1. Let K' denote the subcollection
of K such that G € K' if and only if each block of GisaK>3(1,2,2). Note that
by deﬁmuon -every graph in K is simple.

Theorem 1. Let G be a 2-edge-connected simple graph with n vertices. If G
hasno TK,, ) |- Ke ‘
ce(G) £ (n= 3-‘- (&) ) 2)
where equality holds if and only if G € K. Moreover, if b(@) = 0, then equality
holds in (2) if and only if G € K'.

Theorem 2. Let G be a 2-edge-connected graph. If G has no TKa, then for
anymteger k>1,G€ M.

The Proofs

Lemma 1. [LL] Let G be a 2-connected graph without T K4. Then either G is
acycleor G is the union of two subgraphs G\ and G such that the intersection
of Gy andGz is an arc in G of length at least 1 and such that k'(Gy) > 2 and
’
&'(G2) 2 2. ]

Let H.be a subgraph of G. The set of all vertices in V'( H) thatare incident with
at least one edge in E(G) — E(H), denoted by Ag( H), is called the vertices of
attachment of H in G. If H = K3 4(8S1,52,...,5¢) is a subgraph of G such that
either G = H or Ag( H) consists of two vertices of degree t in H, then H is called
a K3 g-block of G.

Lemma?2. Let G be a2-connected graph without T K4 . Then forsomet > 2,G
has a K ;-biock.

Proof:, We argue by induction on |[V(G)|. Assume that G is not a cycle (in
which case G = K3 2(s1,s2)). By Lemma 1, G is the union of &) and G such
that the intersection of G| and G is an arc of length at least 1. By induction,
either G; or G, contains such a subgraph H, or both G; and G, are cycles. If
both G, and G, are cycles, then since the intersection of Gy and G is an arc in
G,G mustbe a K3 3(s1,s2,53),and so Lemma 2 follows In any case. [ |

Lemma 3. Let G be a 2-edge-connected graph and let G and G, be two sub-
graphs of G such that

G =G| JG2and V(G [ V(G2) = {v}.
Then ec(G) = cc(Gh) + ce(G2).

Proof: By definition, we have cc(G) < cc(Gl) + cc(G2). Conversely, since
G, and G, are separated by a single vertex v, any cycle cover of G induces cycle
covers of G, and of G, and 50 cc(G) > cc(Gl) + cc(G2). 1
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Lemma 4. Let G be a 2-edge-connected graph and let A € A(G) ande €
E(A). Then
ce(G) = cc(GJe).

Proof: Since A is an arc of length at least 2, any cycle containing an edge in A
contains all edges in A. |

Proof of Theorem 1: We argue by induction on n = |[V/(G)|, and so we may
assume that G is not a cycle.

Suppose that (G) = 1 and so there are two nontrivial subgraphs H;, H, of
G such that [V (H,) ([ V(H2)| = 1. Note that by definition, b(G) < b(H) +
b( H,) and so by induction and by Lemma 3,

cc(@) = cc(Hy) + cc( Hy)
2
2|\V(H;)| -2 —2b(H;)
< E} 3 3
< 2n—-2 =26G) .
3
If ce(G) = (2n—2 — 2b(G))/3, equalities hold in (3) everywhere and so by

induction, both H; and H- are in K. It follows that G € K. Thus we may assume
that

&(G) > 2. @

If G is a cycle, then Thecorem 1 holds trivially. Thus by (4) we may also assume
that
G has no cycle arcs. )

If 5(G) > 0, then by (5), G has no cycle arcs and so G has either a cyclic
arc A with |[E(A)| > 2 or an acyclic arc A with |E(A)| > 1. Choose an edge
e € E(A). Then G/e is simple, and by the definition of b(G),

G) - 1=b(G/e). ©)
By induction, by Lemma 4 and by (6),

(n—1)—2-2b(G/e) 2n-2-2b(G)
3 = 3 . )]

Again, if cc(G@) = (2n— 2 — 2b(G)) /3, then equalitics hold everywhere in (7)
and so by induction, each block of G/e is in K. Let L' = K3 3(1,s2,s3) be the
block in G/e that contains the vertex to which e is contracted, and let L be the
preimage of L' under the contraction, (i.e. L/e = L'). If L = K33(2,s2,53),
thensince b(L) = 82 + s3 —4 and |V(L)| = 1+ 52 + 33,

2(lV(D)I-1-b(L)) 8, _
3 =3 >2=ce(L).

ce(G) £ 2
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Thus by Lemma 3, cc(G) < (2n— 2 — 2b(G))/3, a contradiction. Hence L
must be in IC, and so Theorem 1 is proved by induction in this case.
Hence we may assume that b(G) = 0. By a similar argument, we can assume
that
every arc in A(G) has length 2 and liesina K3 of G. 8)

In fact, let A be an arc in A(G). By b(G) = 0, A is cyclic and of length 2. If
Ais not lying in a 3-cycle K3 in G, then for any edge e € E(A), G/e is simple,
and so by repeating the previous paragraph, we can conclude that

CC(G) < 2(713— 1)

By Lemma 2, G has a maximal K3 :-block H = K3 4(s1,52,...,5t). Choose
H so that t is maximized. By (7) and since G is simple, we may assume that

l=s1<sp=---=8=2. 9)

Suppose first that G = H. By (5),t > 2. Since G = K34(1,2,...,2), cc(G)
=|(t+1)/2]. Notethatn =t + 1 and (G) =0. Thus fort > 3,

cc(G)<tLl<23

and equalities hold if and only if t = 3, which implies that G € K'. Hence we
may assume that
G#H. (10)
Suppose that t > 3. Let A;, (1 < i < t) denote the arc of length s; in i
and let H' = G[UUL,_, E(A)]. By (9), H' isacycle of order 4 in G. Let G' =
G — (V(H") — Ag(H)). By (10), by 4)and by t > 3, #'(G') > 2. Thus by
b(G) =0,by |V(H")| = 4 and by induction,

ce(G) < ce(G) + 1
L2AVEGH -2 2V -2
3 3
2n-2

3

Hence ¢t = 2 and so by the maximality of ¢ and by (8), we may assume that in G,

every maximal K ¢-blockisa K22(1,2). (12)

Since G # H, G/ H is also simple and nontrivial. It follows by Theorem A that
|A(G)| > 2. Let 4; and A; be two distinct arcs in A(G). By (8) and (12), each
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A; lies in a 3-cycle H; and has exactly one vertex v; of degree 2, and s0 H; — v;
contains exactly one edge e; in G — v;, (1 < 1 < 2). By (12), e; # ez. Since H;
and H, are K; -blocks of G and by (4), G — {v1,v2 } is also 2-connected, and
so by Menger’s Thcorem ([BM], page 46), there is acycle C' in G — {v1, v2 } that
contains both e; and e;. Let

c=c[me)JBH) JEH) - {a,)]

Then C is a cycle in G containing v; and v.
Let C' be acycle cover of G — {v1, v2 } such that

cc(G — {v1,n2}) = [C'].
Define C = C'{J{C}. Then by the definition of C and C’, C is a cycle cover of G

and
ce(G) L|C|=[C']+ 1.

Since |V (G — {v1,v2})| = n— 2, by induction and by b(G) = 0,

cc(G) < ce(G — {v1, 12} +1

2(n—2)-2
2n—-2
3
Hence Theorem 1 is proved by induction. 1

Proof of Theroem 2: We shall prove Theorem 2 by induction on the number of
edges of G.

If G is acycle, then any orientation that makes G a directed cycle will do. Hence
we may assume that G is not a cycle.

If G has a cut-vertex v, then G has two subgraphs H; and H; with G =
Hy\J Hy and V(H1) V(H2) = {v}. Since s'(G) > 2 and since v is a cut-
vertex, both x'( H;) > 2 and x'(H,) > 2. Hence by induction, H;,H> €
M3;.1 and so G € Mag+1.

Thus we may assume that <(G) > 2. By Lemma 1 and since G is not a
cycle, G is the union of two 2-edge-connccted subgraphs G and G, such that the
intersection of G; and G is an arc A of length atleast 1in G. Since x'(G2) > 2,
G has fewer edges than G and so by induction, G| € May,. Similarly, G, €
Mg,

Observation 1: If D is a mod (2k + 1)-orientation of a graph L, then D,
then orientation obtained from D by reversing all directions in D, is also a mod
(2k + 1) -orientation.
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Observation 2: If D is amod (2 k + 1)-orientation of a graph L, if A is an arc
of length at least 1 in L, then under D, all edges in A have the same direction.

These two observations above are immediate from the definitions of arcs and of
mod (2 k + 1) -orientations. Since both G and G, are in My, and by the above
two observations, we may assume that there are mod (2 k& + 1)- orientations D,
and D, such that both D; and D, agree on A, the arc in G commonly shared by
G and G,. (If they do not agree, then by Observations 1 and 2, Dy and D5 must
agree). Thus we can combine D; and D, to obtain a mod (2% + 1)-orientation
of Gandso G € Mag+i. [ |

References
[B] J. A. Bondy, Small cycle covers of graphs. Research Report CORR 8840,
University of Waterloo, (1988).

[BM] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American
Elscvier, New York (1976).

[D] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical
graphs. J. London Math. Soc. 27 (1952) 85-92.

[(J1 F.Jaeger, Nowhere-zero flow problems, Selected Topics in Graph Theory, 3.
eds. by L. W. Beineke and R. J. Wilson, Academic Press, London, (1988).

[LL] H.-J. Lai and H. Y. Lai, Graphs without K4-minors, submitted.

[SY] R. Steinberg and D. H. Younger, Grotzsch's theorem for the pro- jective
plane. Ars Combin. 28 (1989) 15-31.

[Y] D. H. Younger, Integer flows. J. Graph Theory 7 (1983) 349-357.

207



