Cycle Covers in Graphs Without Subdivisions of K_4

Hong-Jian Lai University of West Virginia, Morgantown, WV 26506

Hongyuan Lai Wayne State Univerity, Detroit, MI 48202

Abstract. In [B], Bondy conjectured that if G is a 2-edge-connected simple graph with n vertices, then G admits a cycle cover with at most (2n-1)/3 cycles. In this note we show that if G is a 2-edge-connected simple graph with n vertices and without subdivisions of K_4 , then G has a cycle cover with at most (2n-2)/3 cycles and we characterize all the extremal graphs. We also show that if G is 2-edge-connected and has no subdivision of K_4 , then G is mod (2k+1)-orientable for any integer $k \ge 1$.

Introduction.

Graphs in this note are finite and loopless. For all undefined terms, see Bondy and Murty [BM]. Let G be a graph and $e \in E(G)$. The contraction G/e is the graph obtained from G by identifying the two ends of e and deleteing the resulting loops. A subdivision of a graph H is a graph obtained from H by subdividing some edges of H, and will be denoted by TH. As in [BM], a block in a 2-edge-connected graph G is a maximal 2-connected subgraph. For a real number x, $\lfloor x \rfloor$ denotes the largest integer not bigger than x.

Theorem A. (Dirac [D]) If G is a nontrivial simple graph without TK_4 , then G has a vertex of degree at most 2.

Let C be a collection of cycles in a graph G. If

$$E(G) \subseteq \bigcup_{c \in C} E(C)$$
,

then C is called a cycle cover of G. It is well known that G has a cycle cover if and only if G has no cut-edges. For a 2-edge-connected graph G, let cc(G) denote the minimum number of cycles in G that are needed to cover E(G). In [B], Bondy conjectured that if G is a 2-edge-connected simple graph with n vertices, then

$$cc(G) \leq \frac{2n-1}{3}.$$

In this note we shall prove that if G is a 2-edge-connected simple graph with n vertices and without TK_4 , then

$$cc(G) \le \frac{2n-2}{3},\tag{1}$$

and we shall characterize all the extremal graphs and thereby show that the bound in (1) is sharp.

Let $k \ge 1$ be an integer. A graph G is $mod\ (2k+1)$ -orientable if it has an orientation such that the out-degree of each vertex is congruent (modulo 2k+1) to the in-degree. (See [J] for further discussion on this subject). Following Jaeger [J], we denote by M_{2k+1} the class of mod (2k+1)-orientable graphs. It is observed in [SY] and in [J] that $G \in M_3$ if and only if G has nowhere-zero 3-flows, (see [J] or [Y] for flows). In this note, we shall show that if G is 2-edge-connected and if G does not contain a TK_4 , then $G \in M_{2k+1}$, for any $k \ge 1$.

Main Results

Let G be a simple graph. An arc of G is an (x, y)-path P of G with $x, y \in V(G)$, where x may equal y, such that all the internal vertices of P have degree 2 in G. A maximal arc is one that cannot be extended in G. The length of an arc P is |E(P)|. We regard K_2 as an arc of length 1.

Let A(G) denote the collection of all maximal arcs A with $|E(A)| \ge 2$. For any $A \in A(G)$, A is a cycle arc is G[E(A)] is a cycle in G; A is a cycle arc if G[E(A)] is not a cycle but there is an arc A' in G such that $G[E(A) \cup E(A')]$ is a cycle in G; and A is an acyclic arc if A is neither a cycle arc nor a cyclic arc.

For each $A \in \mathcal{A}(G)$, define $b_G(A)$ as follows: if A is a cycle arc, then $b_G(A) = |E(A)| - 3$; if A is a cyclic arc, then $b_G(A) = |E(A)| - 2$; and if A is a cyclic, then $b_G(A) = |E(A)| - 1$. Note that by Theorem A, if a simple graph G satisfies $\kappa'(G) \geq 2$, and has no TK_4 , then $A(G) \neq \emptyset$. Define

$$b(G) = \sum_{A \in \mathcal{A}(G)} b_G(A).$$

Let $t \ge 3$ and $s_t \ge \cdots \ge s_2 \ge s_1 \ge 1$ be integers. Let the t arcs of length 2 of $K_{2,t}$ be labeled by A_1, A_2, \ldots, A_t . Define $K_{2,t}(s_1, \ldots, s_t)$ to be the graph obtained from $K_{2,t}$ by replacing A_i by a path of length s_i , $(1 \le i \le t)$. For convenience, we regard a cycle of length $s_1 + s_2$ as a $K_{2,2}(s_1, s_2)$.

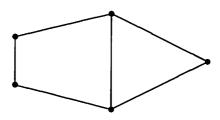


Figure 1: $K_{2,3}(1,2,3)$.

Let K denote the collection of graphs such that $G \in K$ if and only if each block of G is a $K_{2,3}(1,s_2,s_3)$, for some $s_3 \geq s_2 > 1$. Let K' denote the subcollection of K such that $G \in K'$ if and only if each block of G is a $K_{2,3}(1,2,2)$. Note that by definition, every graph in K is simple.

Theorem 1. Let G be a 2-edge-connected simple graph with n vertices. If G has no TK_4 .

 $cc(G) \le \frac{2(n-1-b(G))}{3},\tag{2}$

where equality holds if and only if $G \in \mathcal{K}$. Moreover, if b(G) = 0, then equality holds in (2) if and only if $G \in \mathcal{K}'$.

Theorem 2. Let G be a 2-edge-connected graph. If G has no TK_4 , then for any integer $k \ge 1$, $G \in M_{2k+1}$.

The Proofs

Lemma 1. [LL] Let G be a 2-connected graph without TK_4 . Then either G is a cycle or G is the union of two subgraphs G_1 and G_2 such that the intersection of G_1 and G_2 is an arc in G of length at least 1 and such that $\kappa'(G_1) \geq 2$ and $\kappa'(G_2) \geq 2$.

Let H be a subgraph of G. The set of all vertices in V(H) that are incident with at least one edge in E(G) - E(H), denoted by $A_G(H)$, is called the vertices of attachment of H in G. If $H = K_{2,t}(S_1, s_2, \ldots, s_t)$ is a subgraph of G such that either G = H or $A_G(H)$ consists of two vertices of degree t in H, then H is called a $K_{2,t}$ -block of G.

Lemma 2. Let G be a 2-connected graph without TK_4 . Then for some $t \ge 2$, G has a $K_{2,t}$ -block.

Proof: We argue by induction on |V(G)|. Assume that G is not a cycle (in which case $G = K_{2,2}(s_1, s_2)$). By Lemma 1, G is the union of G_1 and G_2 such that the intersection of G_1 and G_2 is an arc of length at least 1. By induction, either G_1 or G_2 contains such a subgraph H, or both G_1 and G_2 are cycles. If both G_1 and G_2 are cycles, then since the intersection of G_1 and G_2 is an arc in G, G must be a $K_{2,3}(s_1, s_2, s_3)$, and so Lemma 2 follows In any case.

Lemma 3. Let G be a 2-edge-connected graph and let G_1 and G_2 be two subgraphs of G such that

$$G = G_1 \bigcup G_2$$
 and $V(G_1) \cap V(G_2) = \{v\}.$

Then $cc(G) = cc(G_1) + cc(G_2)$.

Proof: By definition, we have $cc(G) \le cc(Gl) + cc(G2)$. Conversely, since G_1 and G_2 are separated by a single vertex v, any cycle cover of G induces cycle covers of G_1 and of G_2 , and so $cc(G) \ge cc(Gl) + cc(G2)$.

Lemma 4. Let G be a 2-edge-connected graph and let $A \in \mathcal{A}(G)$ and $e \in E(A)$. Then

$$cc(G) = cc(G/e)$$
.

Proof: Since A is an arc of length at least 2, any cycle containing an edge in A contains all edges in A.

Proof of Theorem 1: We argue by induction on n = |V(G)|, and so we may assume that G is not a cycle.

Suppose that $\kappa(G) = 1$ and so there are two nontrivial subgraphs H_1 , H_2 of G such that $|V(H_1) \cap V(H_2)| = 1$. Note that by definition, $b(G) \leq b(H_1) + b(H_2)$ and so by induction and by Lemma 3,

$$cc(G) = cc(H_1) + cc(H_2)$$

$$\leq \sum_{i=1}^{2} \frac{2|V(H_i)| - 2 - 2b(H_i)}{3}$$

$$\leq \frac{2n - 2 - 2b(G)}{3}.$$
(3)

If cc(G) = (2n-2-2b(G))/3, equalities hold in (3) everywhere and so by induction, both H_1 and H_2 are in K. It follows that $G \in K$. Thus we may assume that

$$\kappa(G) > 2. \tag{4}$$

If G is a cycle, then Theorem 1 holds trivially. Thus by (4) we may also assume that

$$G$$
 has no cycle arcs. (5)

If b(G) > 0, then by (5), G has no cycle arcs and so G has either a cyclic arc A with |E(A)| > 2 or an acyclic arc A with |E(A)| > 1. Choose an edge $e \in E(A)$. Then G/e is simple, and by the definition of b(G),

$$b(G) - 1 = b(G/e)$$
. (6)

By induction, by Lemma 4 and by (6),

$$cc(G) \le \frac{2(n-1)-2-2b(G/e)}{3} = \frac{2n-2-2b(G)}{3}.$$
 (7)

Again, if cc(G) = (2n-2-2b(G))/3, then equalities hold everywhere in (7) and so by induction, each block of G/e is in K. Let $L' = K_{2,3}(1, s_2, s_3)$ be the block in G/e that contains the vertex to which e is contracted, and let L be the preimage of L' under the contraction, (i.e. L/e = L'). If $L = K_{2,3}(2, s_2, s_3)$, then since $b(L) = s_2 + s_3 - 4$ and $|V(L)| = 1 + s_2 + s_3$,

$$\frac{2(|V(L)|-1-b(L))}{3}=\frac{8}{3}>2=cc(L).$$

Thus by Lemma 3, cc(G) < (2n-2-2b(G))/3, a contradiction. Hence L must be in K, and so Theorem 1 is proved by induction in this case.

Hence we may assume that b(G) = 0. By a similar argument, we can assume that

every arc in
$$\mathcal{A}(G)$$
 has length 2 and lies in a K_3 of G . (8)

In fact, let A be an arc in A(G). By b(G) = 0, A is cyclic and of length 2. If A is not lying in a 3-cycle K_3 in G, then for any edge $e \in E(A)$, G/e is simple, and so by repeating the previous paragraph, we can conclude that

$$cc(G)<\frac{2(n-1)}{3}.$$

By Lemma 2, G has a maximal $K_{2,t}$ -block $H = K_{2,t}(s_1, s_2, \ldots, s_t)$. Choose H so that t is maximized. By (7) and since G is simple, we may assume that

$$1 = s_1 < s_2 = \dots = s_t = 2. \tag{9}$$

Suppose first that G = H. By (5), t > 2. Since $G = K_{2,t}(1,2,...,2)$, cc(G) = |(t+1)/2|. Note that n = t+1 and b(G) = 0. Thus for $t \ge 3$,

$$cc(G) \leq \frac{t+1}{2} \leq \frac{2t}{3},$$

and equalities hold if and only if t=3, which implies that $G\in\mathcal{K}'$. Hence we may assume that

$$G \neq H. \tag{10}$$

Suppose that $t \geq 3$. Let A_i , $(1 \leq i \leq t)$ denote the arc of length s_i in H and let $H' = G[\bigcup_{i=t-1}^t E(A_i)]$. By (9), H' is a cycle of order 4 in G. Let $G' = G - (V(H') - A_G(H))$. By (10), by (4) and by $t \geq 3$, $\kappa'(G') \geq 2$. Thus by b(G) = 0, by |V(H')| = 4 and by induction,

$$cc(G) \le cc(G') + 1 < \frac{2|V(G')| - 2}{3} + \frac{2|V(H')| - 2}{3} = \frac{2n - 2}{3}.$$

Hence t = 2 and so by the maximality of t and by (8), we may assume that in G,

every maximal
$$K_{2,t}$$
-block is a $K_{2,2}(1,2)$. (12)

Since $G \neq H$, G/H is also simple and nontrivial. It follows by Theorem A that $|A(G)| \geq 2$. Let A_1 and A_2 be two distinct arcs in A(G). By (8) and (12), each

 A_i lies in a 3-cycle H_i and has exactly one vertex v_i of degree 2, and so $H_i - v_i$ contains exactly one edge e_i in $G - v_i$, ($1 \le i \le 2$). By (12), $e_1 \ne e_2$. Since H_1 and H_2 are $K_{2,2}$ -blocks of G and by (4), $G - \{v_1, v_2\}$ is also 2-connected, and so by Menger's Theorem ([BM], page 46), there is a cycle C' in $G - \{v_1, v_2\}$ that contains both e_1 and e_2 . Let

$$C = G\left[E(C') \bigcup E(H_1) \bigcup E(H_2) - \{e_1, e_2\}\right]$$

Then C is a cycle in G containing v_1 and v_2 .

Let C' be a cycle cover of $G - \{v_1, v_2\}$ such that

$$cc(G - \{v_1, v_2\}) = |C'|.$$

Define $C = C' \cup \{C\}$. Then by the definition of C and C', C is a cycle cover of C and

$$cc(G) \leq |\mathcal{C}| = |\mathcal{C}'| + 1.$$

Since $|V(G - \{v_1, v_2\})| = n - 2$, by induction and by b(G) = 0,

$$cc(G) \le cc(G - \{v_1, v_2\}) + 1$$

$$\le \frac{2(n-2) - 2}{3} + 1$$

$$< \frac{2n-2}{3}.$$
(13)

Hence Theorem 1 is proved by induction.

Proof of Theroem 2: We shall prove Theorem 2 by induction on the number of edges of G.

If G is a cycle, then any orientation that makes G a directed cycle will do. Hence we may assume that G is not a cycle.

If G has a cut-vertex v, then G has two subgraphs H_1 and H_2 with $G = H_1 \bigcup H_2$ and $V(H_1) \bigcap V(H_2) = \{v\}$. Since $\kappa'(G) \ge 2$ and since v is a cut-vertex, both $\kappa'(H_1) \ge 2$ and $\kappa'(H_2) \ge 2$. Hence by induction, $H_1, H_2 \in M_{2k+1}$ and so $G \in M_{2k+1}$.

Thus we may assume that $\kappa(G) \geq 2$. By Lemma 1 and since G is not a cycle, G is the union of two 2-edge-connected subgraphs G_1 and G_2 such that the intersection of G_1 and G_2 is an arc A of length at least 1 in G. Since $\kappa'(G_2) \geq 2$, G_1 has fewer edges than G and so by induction, $G_1 \in M_{2k+1}$. Similarly, $G_2 \in M_{2k+1}$.

Observation 1: If D is a mod (2k + 1)-orientation of a graph L, then D^- , then orientation obtained from D by reversing all directions in D, is also a mod (2k + 1)-orientation.

Observation 2: If D is a mod (2k + 1)-orientation of a graph L, if A is an arc of length at least 1 in L, then under D, all edges in A have the same direction.

These two observations above are immediate from the definitions of arcs and of mod (2k+1)-orientations. Since both G_1 and G_2 are in M_{2k+1} and by the above two observations, we may assume that there are mod (2k+1)- orientations D_1 and D_2 such that both D_1 and D_2 agree on A, the arc in G commonly shared by G_1 and G_2 . (If they do not agree, then by Observations 1 and 2, D_1 and D_2 must agree). Thus we can combine D_1 and D_2 to obtain a mod (2k+1)-orientation of G and so $G \in M_{2k+1}$.

References

- [B] J. A. Bondy, Small cycle covers of graphs. Research Report CORR 88-40, University of Waterloo, (1988).
- [BM] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, American Elsevier, New York (1976).
- [D] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc. 27 (1952) 85-92.
- [J] F. Jaeger, *Nowhere-zero flow problems*, Selected Topics in Graph Theory, 3. eds. by L. W. Beineke and R. J. Wilson, Academic Press, London, (1988).
- [LL] H.-J. Lai and H. Y. Lai, Graphs without K₄-minors, submitted.
- [SY] R. Steinberg and D. H. Younger, Grotzsch's theorem for the pro-jective plane. Ars Combin. 28 (1989) 15-31.
- [Y] D. H. Younger, Integer flows. J. Graph Theory 7 (1983) 349-357.