ON AFFINE AND PROJECTIVE FAILED DESIGNS

Sharad S. Sane

Department of Mathematics
University of Bombay
Vidyanagari Bombay -98
INDIA

Abstract. An affine (respectively projective) failed design D, denoted by AFD(gq)
(respectively PFD(g)) is a configuration of v = g2 points, b = ¢ + ¢ + 1 blocks and
block size k = g (respectively v = g% + g + 1 points, b= g + g + 2 blocks and block
size k = g + 1) such that every pair of points occurs in at least one block of D and D
is minimal, that is, D has no block whose deletion gives an affine plane (respectively
a projective plane) of order g. These configurations were studied by Mendelsohn and
Assaf and they conjectured that an AFD(g) exists if an affine plane of order g exists
and a PFD(g) never exists. In this paper, it is shown that an AFDX(5) does not exist and,
therefore, the first conjecture is false in general, AFD(g?) exists if g is a prime power
and the second conjecture is true, that is, PFD(g) never exists.

1. Introduction.

In [3] Mendelsohn and Assaf defined an imbrical design ID(v, k,1;b) to be a
configuration D of v points, b blocks, block size k such that D is a covering design,
that is, every point-pair of D occurs in at least one block but D is minimal w.r.t.
this property, that is, deletion of a block of D does not result in a covering design
for any block of D or equivalently every block of D contains one point-pair which
does not occur in any other block. In that paper the authors determined all the
possible values of b such that an ID(v, k, 1; b) exists with k = 3 and 4 (with a
finite number of values of b still in doubt). In the same paper, the authors defined
a failed design FD(v, k) to be an ID(v, k, 1; b) say D with b = %Ez—:% + 1, that
is, D has one more block than a (v, k, 1) BIBD. Note that the definition given in
[3] is (numerically) incorrect.

In particular, an affine failed design AFD(g) is just an FD(g?, q) while a pro-
jective failed design PFD(q) is just an FD( g? + g+ 1,g+ 1). These are minimal
covering designs with the same number of points as an affine (respectively pro-
jective) plane but with one extra block and with the property that no block can
be deleted to produce an affine (projective) plane. In [3], the authors made the
following two conjectures:

AFD Conjecture. AFD(q) exists if an affine plane of order q exists.
PFD Conjecture. PFIXq) does not exist for any value of g.

In this paper, the AFD conjecture is shown to be false by showing that AFD(5)
does not exist. This is shown in the last section 5 using structural results on
AFD(g) obtained in section 4. On the other hand, section 2 shows that AFD(g?)
exist for all prime powers q using a construction obtained through Baer subplane
of a projective plane of order q2. Also in section 3 we show that the PFD conjec-
ture is true.
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2. A construction of affine failed designs.

We recall the definition: An affine failed design AFD(q) is a configuration D of
v = ¢ points, b = ¢g> + g+ 1 blocks, block size k = g such that every point-pair of
D is covered at least once and D is minimal w.r.t. this property, that is, D has no
block whose deletion will result in an affine plane of order g; equivalently every
block of D contains a point-pair occurring precisely once.

In [3], AFD(3) and AFD(4) were constructed and these will be shown to be
unique in section 5 of our paper. Here we prove

Theorem 2.1. (3) An AFD(q?) exists for every prime powerq.

(b) If there exists a pairwise balanced design PBD ((¢* — ¢),{¢*,¢* —q¢}) D
(with block sizes q* and q* — q) such that D has ¢* + q + 1 blocks of size ¢* — q
fogm’ng a spread (parallel class partitioning the point-set) then there exists an AFD
(¢).

(c) If there exists a projective plane I1 of orderq® containing a Baer subplane IT*
(of order q) then a PBD (q* — q,{q?,q* — q}) as stipulated in (b) exists.

Proof: (a) follows from (b) and (c) after noting that a projective plane as stipu-
lated in (c) exists. Consider (b) and suppose a PBD as in (b) exists. Then construct
anew configuration D as follows: let S be a set of g points notin D. The point-set
of D is a union of the point-set of D and S. All the blocks of size g2 of D are
blocks of D and for every block B of D, BUS is a block of D. Itis easily checked
that D is an AFD(g?).

Consider (c). Delete the points of IT* from IT to get a PBD (with truncated
blocks) as required. This PBD has a spread of lines of size g% — g since these lines
form lines of IT* and, hence, do not meet in IT\IT* (also note that every point of
IT\IT* is on a unique line of IT*). 1

3. Projective failed designs do not exist.

We recall from [3] that a projective failed design PFD(q) is a configuration D of
v = g% + g+ 1 points, b = g% + ¢ + 2 blocks, block size k = g + 1 such that
every point-pair of D is covered by at least one block of D but D has no block
whose deletion produces a projective plane of order ¢; equivalently every block
of D contains a point-pair covered by that block alone. In [3], it was shown that
PFD(2) and PFD(3) do not exist. This section is devoted to the proof of

Theorem 3.1. Forevery q, PFD(q) does notexist. Hence, the PFD conjecture
is true.

Theorem 3.1 will be proved after proving several ‘assertions’. Qur notations
and terminology are simple: z,y, 2, etc., denote points, and X, Y, Z, etc., denote
blocks. For a point z, r(z) denotes the number of blocks containing z and for a
point-pair ( z, ), r( z, y) denotes the number of blocks containing z and y. From
this point on, let D denote a PFD(q). We show that this leads to a contradiction.
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Assertion 1. Forevery pointz,r(z) > q+1 withequality ifandonly ifr(z,y) =
1 forally # =.

Proof: Trivial after noting thatv — 1 = ¢> + ¢,k — 1 = gand 7(z,y) > 1 forall
y#z. ]
A point z will be called regular if r(z) = g + 1 and irregular otherwise. A
point-pair (z,y) is called regular if r(z,y) = 1 and irregular otherwise. Let
R (respectively I) denote the set of regular (respectively irregular) points of D.
Clearly an irregular pair has both points irregular because for a regular point z,
r(z,y) = 1 forall y # z. Finally, call a block regular if it is contained in R.

Assertion 2. |I| < g+ 1 with equality ifand only if v(z) = q+2 forall z € I.

Proof: A two-way counting produces £ r(x) = bk = g> + (g + 2)(g+ 1).

So Z(r(z) — (g + 1)) = ¢ + 1 since v = ¢ + g + 1. By Assertion 1, every
summand is non-negative and is positive if and only if z € I. So |I| < ¢+ 1 and
with equality if and only if r(z) — (¢+ 1) = 1 forallz € I. 1

Assertion 3. D has a regular block.

Proof: Suppose not. Let z € R. Then the g + 1 blocks on z contain at least one
point of I. Since for all points y other than z, v(z,y) = 1, we have |I| > ¢+ 1
which by Assertion 2 implies that |I| = ¢ + 1 and every point z of I has r(2) =
g+ 2. Since equality holds everywhere, our argument also shows thatall the g+ 1
blocks on z € R contain exactly one point of I. Therefore, every block containing
some point of R contains just one point of I. Since the number of pomt-panrs of
R x I covered by such a block is ¢ while R x I has cardinality ¢ 2(g+ 1), it
follows that there are precisely g( g+ 1) such blocks (note that every pairin R x I
is regular), The remaining two blocks say I; and I; must be completely contained
in I. So I, and I, as point-sets, are both equal to I. Deletion of I, then clearly
leaves us with a projective plane of order g, which is a contradiction. 1

Assertion 4. The set of points of I forms a block (say I*).

Proof: Let C be a regular block given by Assertion 3. Forapointz € R,z ¢ C,
every block on = meets C in at most one point (because C contains regular pairs)
and r(z) = ¢ + 1 = |C|. So z is on no block disjoint from C. How many blocks
are disjoint from C? These are (b— 1) — g(g+ 1) = 1 in number. Our argument
shows that the unique blocks I* disjoint from C contains no point of R. So I*CI
and |I*| = ¢+ 1 > |I| by Assertion 2. Therefore, I* = I as desired. |

Assertion 5. Letz € I. Then there is a block X such that X N I = {z}.

Proof: By Assertion 4, |I| = g+ 1 and by Assertion 2, 7(z) = ¢+2. So|R| =

and one block comammg z is I*. If every other block comammg x contains one
more point of I then ¢> = |R| < (7(z) — D-(¢—1) = g% — 1, a contradiction.
So there is a block X on z for which X NI = {z}. 1
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Proof of Theorem 3.1: It is sufficient to show that forall z,y,€ I, r(z,y) > 2
holds, since in that case we can delete the block I* to obtain a PBD D* with block
size ¢ + 1 which is clearly a projective plane of order g. Forz € I, let X be a
block with X N I = {z} given by Assertion 5. Every point-pair of X is regular.
So no block meets X in more than one point. But for y # z, y € I, Assertion 4
and Assertion 2 imply that r(y) = g+ 2 = 1+ | X|. Our argument also shows that
X meets (¢ + 1) + g-¢q = ¢* + g + 1 blocks, that is, no block is disjoint from X.
Since r(y,2) > 1 forall 2 € X, we have r(y,z) = 2 for precisely one z € X.
Clearly, then z is irregular. But X NI = {z}. So z = z and r(y,z) = 2 as
desired. 1

4. Affine failed designs revisited.

We again recall the definition of an affine failed design AFD(g) given in section 2
to be a covering design D with ¢2 points, g2 + g+ 1 blocks, block size g such that
no block of D can be deleted to obtain an affine plane of order q. Since AFD(2)
does not exist, throughout this section D will stand for an AFD(q) with ¢ > 3.
This section is devoted to the structural investigations of D. Our terminology
is borrowed from section 3 (paragraphs 2 and 5) and is, therefore, only partially
repeated. Our main theorems give some necessary conditions on D which will be
used in studying AFD(q) with ¢ = 3,4 and 5 in section 5.
Lemmad.1. Forevery z,r(z) > q+ 1 withequality if and only if r(z,y) = 1
forally # =.
Proof: Trivial after noting thatr(z,y) > landv—1=¢2—1,k—1=¢g—1.
A point-pair ( z, y) is calledregular if r(z, y) = 1 and a point z is called regular
ifr(z) = g + 1. As in section 3, R and I denote the sets of regular and irregular
points respectively. Finally a block X is regular if X C R.
Lemma 4.2, |I| < q with equality if and only ifr(z) = g+ 2 forallz € I,
Proof: A two-way counting produces Z(r(z) —(¢g+ 1)) = bk —v(g+ 1) =¢
where, by Lemma4.1 every summand on the L.H.S. is non-negative and is positive
ifand only if z € I. Hence, the proof. 1

Proposition 4.3. Let X beablocksuchthatXNI = {z}. LetX;,1=2,3,...,s
be the set of (all the) s— 1 blocks disjoint from X . WriteX = {X) = X, X, ...,
X,}. Then the following assertions hold.
(a) Ify is a regular point, theny is on a unique X;,i=1,... ,s.
(b) Fori# j, X;N X, is contained inI.
(©) s=g.
(d) If some X; is a regular block then the set of points of I forms a block say
I*andthen forallz € I,v(2) =q+2.
(e) IfX; is irregular for everyi then | X; N I| = 1 foreverysi, |I| = g and the
set X forms a spread, that is, the blocks of X partition the point-set of D.
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Proof: Since X contains no irregular point-pair, no block on y meets X in two or
more points. Now r(y) = ¢+ 1 = 1+ | X| proves (a) after noting that r(y, z) = 1
forall 2 € X; (b) is clearly a consequence of (a). If s < g— 1 then the blocks of X
can cover at most (¢— 1)g— 1 = g> —g— 1 points of R because |[X; NR| = ¢—1.
By Lemma 4.2, |R| > ¢?> — ¢ and by (a) and (b) every point of R is on a unique
member of X. This contradiction shows that s > g. On the other hand, count the
number of blocks meeting X . Since no block meets X in two or more points and
since 7(z) > g + 2 this number is at least (¢ — 1)g+ (g + 1) = g® + 1. So the
number s — 1 of blocks disjoint from X is atmost(b—1) — (g2 + 1) =¢—1,
that is, s < q. Therefore, s = g and (c) is proved. Also the equality s = ¢
implies r(z) = g + 2 (else s < ¢). Now consider (d). Let X; = y be regular.
Then the number of blocks meeting Y is ¢- ¢ = ¢2 and, hence, Y is disjoint from
(b— 1) — ¢* = g blocks. Forapointy ¢ Y and y € R, y is on a unique block
not meeting Y = X; which must be some X; by (a) and (b). Thus, X, j # ¢ are
g — 1 blocks disjoint from Y and the unique remaining block I* disjoint from Y
can not contain any regular point. Therefore, I* C I. But [I*| = g and |I| < g by
Lemma 4.2. This proves (d).

Finally, consider (). By assumption |X; N R| < ¢ — 1 for all 1 and since X;’s
partition R, Lemma 4.2 gives ¢> — g < |R| = Z|X;NR| =< ¢(g—1). Therefore,
equality must hold everywhere and (X; N R) = ¢ — 1 foralli and |R| = ¢> —g.
So|X;NR|=gqg—1foralliand|I| = q. Hence, by Lemma 4.2, r(z) = ¢+ 2
forall z € I. Let z # z and z € I. Since no block meets X in two points, z
is on at most two blocks not meeting X . Suppose that is the case and let z be on
XiN X;,1+ j. We show that this leads to a contradiction. Since ¢ > 3, X; has
distinct points y, w € R. Forany X, k # 4, j, X; N X; is contained in I. But
X;nI = {z}. If X;; N X; is non-empty then X; NX; = {z}. But then z will be on
three blocks disjoint from X, a contradiction. This contradiction shows that X is
disjoint from X;, k #1,j,k=1,2,...,q. In the present proposition application
of (a) through (e) with X replaced by X; shows that X; = Y is disjoint from
exactly ¢ — 1 blocks and g — 2 of these are given by X, k # 4, 7. Let Z be the
remaining unique block disjoint from X;. By (a) (with X replaced by Y') every
regular point is either on some Xi, k # j oris on Z. Since y, w € X;, y, w are
notonany X, k # 7. Soy,w € Z. Butthen r(y,w) = 1 implies Z = X, which
is a contradiction.

This contradiction shows that each z € I is on at most one member of X. But
every member of X meets ] in a single pointand [X| = |I| = g. Therefore, every
point of I is on a unique X; and conversely every X; meets I in a unique point.
This completes the proof of (€). |

Theorem 4.4. D has no block I'* such that I* = I (as a point-set).

Proof: Suppose D has a block I* = I. Then by Lemma 4.2, r(z) = ¢ + 2 forall
z € I. If every block on z contains at least two points of I (note that I* contains
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nopointof R) then |R| < (g+2—1)-(¢g—2) = q*> —g—2 which is a contradiction
of Lemma 4.2. So there is some block X for which X N I = {z}. Form the set
X of g blocks exactly as in Proposition 4.3. ]
Case 1. X has no regular block.

By Proposition 4.3(¢), every y in I with y ¢ X is on exactly one block disjoint
from X. Since r(y) = ¢ + 2 and since no block meets X in two or more points
we have r(y,z) = 2 for some z € X. Clearly such a z must be irregular. But
X n I contains the only point z. So z = z and r(z,y) = 2.

Case 2. X has a regular block say X; = Y.

Then the number of blocks disjoint from Y is (g2 + ¢) — g2 = ¢ and of these
g—1aregivenby Xy, k # i,k = 1,2,... ,¢ by Proposition4.3(b). The remaining
block disjoint from Y’ is, of course, I* . Lety € I, y # = and suppose y is on two
blocks X; and X, disjoint from X. Since X;, X; meet I, they are not regular.
So X;, X are also disjoint from Y = X;;. Thus, y is on three blocks (including
I*) disjoint from Y. But no block meets Y’ in two or more points and, therefore,
r(y) > |Y'|+ 3 = ¢ + 3, a contradiction since r(y) = ¢+ 2 holds by Proposition
4.3(d). So y is on at most one block disjoint from X . Again no block meets X in
more than one point and r(y) = g+ 2 = |X|+ 2. Therefore, there issome z € X
for which 7(y,2) >2.Butthenz € X NI = {z}. Soz=zand r(z,y) > 2.

In both the cases we have proved that r(z,y) > 2 holds for every point-pair
(z,y) in I. Clearly then deletion of the block I* from D results in a smaller
covering D* with ¢g? points and g> + g blocks (and block size g). It is easily seen
that D* is an affine plane of order ¢ which contradicts the assumption that D is an
AFD.

_Theorem 4.5. D contains no block pair (X,Y’) such that X is disjoint fromY,
IXNI|=1andY isregular.

Proof: If D contained such a block pair then Proposition 4.3(d) implies the exis-
tence of a block I* which is prohibited by Theorem 4.4. 1

Theorem 4.6. Let S = {X | X is a block of D meeting I in a single point}.
Assume that S is non-empty and define a relation || on S by: X||Y if X =Y or
X andY are disjoint, Then the following assertions hold.

() || is an equivalence relation on S.

®) /I =q.

(c) Every|| class partitions the point-set of D.

(d) g divides|S|.

(e) If|S| = s then every regular point is on s/q blocks of S.

(® IS]# 4.

® IS|#4* —q.
Proof: (a)LetX € SandsupposeY,Z € Ssuchthat Z||X||Y and Z # Y. From
the set X as in Proposition 4.3 and by Theorem 4.5 no member of X is regular.
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Since Y, Z are in S and are || to X, Y, Z belong to X and by Proposition 4.3(¢)
members of X are pairwise disjoint. So Z and Y are disjoint, that is, Z||Y. (b)
is clear from Proposition 4.3(e). For (c) observe that the || class of X is actually
X (from the discussion in (a)) and use Proposition 4.3(¢). (d) is then obvious
since every || class has g blocks. For (€), notice that any regular point X is on
a single block of every || class of S. Consider (f) and suppose |S| = ¢>. Then
every regular point z is on ¢ members of S and these blocks pairwise intersect in
z alone. So z is on no other block meeting I. But r(z) = ¢+ 1. Sozisona
unique regular block. Since this is true for every z € R and since |R| = ¢*> — g,
D has (g% — q)/q = g — 1 regular blocks. It is also clear that no blocks except
those in S contain points of both Rand I . Therefore, D has b— (|S|+¢—1) =2
blocks say I and I, which are equal to I as point-sets. Deletion of I from D
then clearly results in an affine plane of order g, a contradiction.

Consider (g). If |S| = ¢> — ¢ then every pointz € R is on ¢— 1 blocks meeting
I. These blocks certainly do not intersect in I and cover exactly ¢ — 1 points of
I. But |I| = g and, therefore, there is one more block say X containing z such
that X N I is non-empty and X ¢ S. But then X must intersect I in two or more
points and, hence, forsomeY € Sandz € Y, zNY NI is non-empty which is
a contradiction because z is a regular point. ]

Theorem 4.7.
@ || >2.If|I|=2 theng=4.
() |I|=3 impliesg=3 orqg=9.
(c) |I| =4 implies q is an even number between 6 and 16.

Proof: . In all the three cases, if there is a block with | X N I| = 1 then by Theorem
4.6, |I| = g. In (a) this is impossible since ¢ > 3, by assumption. Therefore, in
(a) every irregular block properly contains I and all such blocks do not meet in
R and, hence, the set of these blocks partitions R. This shows that ¢ — 2 divides
|R| = ¢* — 4, thatis, ¢ = 4. Consider (b) and note again that if we have a block
X meeting I in a single point then ¢ = 3. Suppose no such block exists. Let
z € R. If z is on some block meeting I in two points then z must be on some
(unique) block meeting I in the remaining single (third) point. This contradiction
shows that every irregular block contains I properly and the set of all such blocks
partitions R.

Hence, forapoint z € R, z is on one irregular block and ¢ regular blocks. So the
number of regular blocks is (¢ —3)-g/g = ¢>~3. Since b = ¢?+g+1, thenumber
of irregular blocks is ¢ + 4 and these partition R. Therefore, (¢ —3)(¢+4) =
g* — 3, the solution of which is ¢ = 9. This proves (b).

The proof of (c) is rather tedious and is divided into two major cases.

Casel. g=4.
Let a;; denote the number of blocks meeting I in i points and R in j points,
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i+ j = 4. By Theorem 4.4, as = 0. Hence, counting of blocks, point-pairs in
I x R and point-pairs in R x R obtains the following equations

013+031+a22+ao4=b=21 (l)

3a13 + 3a31 + 402 =4.12=48.... (3]
12

an+3013+6am=(2)=66.... A3

Let S snd T respectively denote the sets of blocks meeting I in one (two) points.
Then by Theorem 4.6(d), 4 divides |S| = e13 and, hence, Equation (3) implies
that 6 divides ay;. Therefore, Equation (2) yields a2z = 0, 6 or 12, First let
ap = 0. Then the unique solution of (1), (2) and (3) gives a13 = 12=¢(g—1)
which contradicts Theorem 4.6(g). Let ay» = 6. Then the unique solution of (1),
(2) and (3) gives aj3 = 6 which contradicts Theorem 4.6(d). Let a2 = 12 then
(1), (2) and (3) imply a;3 = a3; = 0 and ags = 9. So D has 9 regular blocks.
For a point z € R, the blocks on z meeting I intersect I in two points. So z
is on two such blocks and, hence, on 5 — 2 = 3 regular blocks. It follows that
any two regular blocks intersect in a single point and if R* denotes the incidence
structure with point-set R and block-set the set of regular blocks then R* is dual of
a(9,12,4,3,1) BIBD, that is, R* is dual of an affine plane of order 3. So there
exist three ‘parallel’ points say z, y, z in R*. Clearly then the blocks containing zy,
zz,and yz are notregular and, hence, are members of T'. But these blocks intersect
in R and, therefore, cannot intersect in I. So |I| > 3.2 = 6, a contradiction.

Case2. ¢ > 5.

By Theorem 4.6(b), D has no block meeting I in a single point. Letz € R
such that z is on some block X meeting I in three points. Then the unique other
block Y on z meeting I must have [Y N I| = 1, a contradiction. This contra-
diction shows that every irregular block meets I in 2 or 4 points and let z and
y respectively denote the number of such blocks. The calculation of Lemma 4.1
shows that Z(r(p) — (¢ + 1)) = bk — v(g+ 1) = ¢ and a summand on the
L.H.S. is positive if and only if p € I. Therefore, restricting p to I obtains
Zr(p) = g+ 4(g+ 1) = 5¢g+ 4. Clearly the L.H.S. equals 2z + 4y. So we
have:

2z+4y=5¢q+4.... @
Similarly count double-flags to get Z(»(p,8) — 1) = bk(k— 1)—v(v-1) =
g(g — 1). Again a summand on the L.H.S. is positive only if p, s € I. So
restricting p, s to I, Z7(p,s) = g(g—1) +4-3. Butthe L. H.S.equals 2z + 12 y.
Hence:

22+ 12y=¢> —gq+12... ®)
(4) and (5) can be solved to get
y=l+ 2(18:'—6)-"" (6)
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So g is even. Also every block containing 4 points of I contains ¢ —4 points of R
and all such blocks are clearly disjoint in R. Therefore, y-(¢—4) < |R| = ¢ —4.
Substitution of the value of y from (6) then leads to ¢ < 16. Hence, 6 < ¢ < 16
and ¢ is even as desired.

5. A disproof of the AFD conjecture and concluding remarks.
We make a modest beginning by proving

Theorem 5.1. and AFD (3) and AFD (4) are unique.

Proof: First note that both the configurations were constructed in [3] and AFD (4)
is also constructed in our section 2. However, there is an error in the solution of
AFD (3) given in [3]. Actually oneblock (out of 13) is missing and, hence, we give
the following complete solution: The point set is the set of numbers 0 through 8
and the blocks are 147, 345,057,013,048,237, 156, 678,258,246 ,026, 128,
368. In (3], the first block is missing. Also note that I = {2,6,8}.

The proof of Theorem 5.1 is easy: Lemma 4.2 implies || < g and Theorem
4.7 implies that |I| = 3 forg = 3 and |I| = 2 forg = 4. For ¢ = 3, it s easily
seen that we have 4 regular blocks, 6 blocks meeting I in two points each and
3 blocks meeting I in a single point each such that these three blocks partition
the point-set of D in view of Theorem 4.6(b). The uniqueness of AFD(3) is then
easily established.

Let g = 4. Then |I| = 2. If D had a block meeting I in a single point, then
by Theorem 4.6, g — 1 divides |R| = 14, that is, 3 divides 14, a contradiction. So
every irregular block contains both points of I and, hence, there are 7 such blocks.
It is, therefore, sufficient to show that the PBD( 14, {4,2}) R* induced on R with
14 blocks of size 4 and 7 of size 2 forming a partition of R is unique. This is done
as follows: Every block of size 4 of R* is disjoint from a unique block of size
4 and three blocks of size 2 such that these 5 blocks are pairwise disjoint. Also
we obtain 7 parallel classes, any block of size 4 contained in a unique parallel
class while any block of size 2 occurs in three parallel classes and any block-pair
(disjoint) occurs in a unique parallel class. Addition of 7 new points, one to blocks
of each parallel class produces a projective plane IT of order 4 and it is easily seen
that R* is actually IT \IT* where IT* is a Baer subplane of IT.

We now offer a disproof of the AFD conjecture (section 1) by showing that

Theorem 5.2. AFD (55) does not exist.

From this point on assume that D is an AFD(5), that is, has v = 25 points,
b = 31 blocks each of size S such that no block of D can be deleted to produce
an affine plane of order 5 and D is a covering design. We show that this leads to

a contradiction.
By Lemma 4.2, |I| < 5 and Theorem 4.7 rules out |I| = 2,3,4. Therefore,
|[I| = 5. Let a;; denote the number of blocks meeting I in i points and R in j
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points (i + 7 = 5). Then by Theorem 4.4, aso = 0. Therefore, counting of
blocks, point-pairs of R x I, R x Rand I x I covered by the blocks obtains:

041+a14+a32+023+aos=3l... (7)
4(as1 + a14) = 6(as2 + az3) =20.5=100... 8)
6a14 + aaz + 3ax + 10ags = 202"19 =190... )
6a4; + 3a32 + a3 =20... (10)

where the last equation is obtained as follows: we have the sum of various point
pairs covered by blocks = %4=1 = 310. Now subtract (8) and (9) from this to
get the point-pairs in I x I which obtains (10).

We have a4; < 3 in view of (10). If a4; = 3 then (10) gives a3z = 0,a23 = 2
which by (8) implies ay4 = 19. But Theorem 4.6(d) already tells us that a14 is a
multiple of 5. Hence, aq; # 3.

Let a4y = 2. Then (8) implies that aj4 = 2 (mod 3) which using Theorem
4.6(d) and the fact that a;4 < 25 given by (8) obtains aj4 = 5 0r20. Ifaj4 = 5
then (8) and (10) have no non-negative solution for az; and a3;. Alsoays =20 =
5.4 is ruled out by Theorem 4.6(g). Hence, as; 7 2.

Let ag; = 1. Then (8) implies that 3 divides a;4 which by Theorem 4.6 (d) and
(8) gives ajs = 15. Then the unique solution of (7) through (10) is: a3; = 4,
ax = 2 and ags = 9, that is, D has 9 regular blocks. Therefore, some point p
of D is on at least [9-5/20] = 3 regular blocks. If S denotes the set of blocks
meeting ] in a single point (as in Theorem 4.6) then |S| = a14 = 15 and Theorem
4.6(e) tells us that p is on 3 blocks of S. Since r(p) = 6, p is on 3 regular blocks
and 3 blocks of S. But |I| = 5 and, therefore, there are two points t € I for which
r(p,t) = 0, a contradiction. Hence, a41 # 1.

Finally, let as; = 0. Then (8) implies that 6)4 < 25 anday4 = 1 (mod 3),
which by Theorem 4.6(d) implies a14 = 10 or 25. The second possibility is ruled
out by Theorem 4.6(f). So a4 = 10 and the unique solution of (7) through (10)
gives: as» = a3 = 5 and ags = 11. Let T be the set of all the blocks meeting
I in two or three points. Then |T'| = a3 + a32 = 10. Let p € R such that
peEXNYandX,Y € T, X # Y. We have, by Theorem 4.6(¢) exactly two
blocks on p which meet I in a single point. Since the blocks on p do not meet
inL2+|XNnI|+|Y NIl <|I|]=5. But|XnlI|and [Y N I|is each at
least 2. This contradiction shows that the blocks of T" do not meet in RB. Hence,
20 = |R| > 3ax + 2a32 = 3.5+ 2.5 = 25, a contradiction.

This completes the proof of Theorem 5.2. |

We end the paper with some questions.

(1) Theorem 5.2 shows that the AFD conjecture is not true in general, while
Theorem 2.1 shows that AFD(q) exists for infinitely many values of ¢. It
is perhaps true that AFD(g) does not exist if g is a prime, g > 5.
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(2) Define an (s, )-FN (failed net) D as follows: D is a configuration of v =
s points, b = sr + 1 blocks, block size k = s such that given any point p,
r(p, ) > 1 holds for atleastr(s— 1) points = and such that the deletion of
any block of D destroys the above property, that is, every block B contains
apoint-pair (p, z) such that with the deletion of B either p occurs with less
than r(s— 1) points or £ occurs with less than r(s— 1) points. When does
an (s,)-FN exist? Observe that an AFD is an (s, s + 1)-FN.
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Notes added in the proof:

After writing this paper in October, 1989 and presenting it in the Fourth Carbon-
dale conference on Combinatorics, the following two papers were brought to the
author’s attention.

(1) Z.Fiiredi in the paper A projective plane is an outstanding 2-cover Discrete
Math., 74/3 (1989), 321-324, contains a proof of the PFD conjecture.

(2) A. Blokhuis, H.A. Wilbrink, C.A. Baker, and A.E. Brouwer in the paper
Characterization theorems for failed projective and affine planes to appear
in the IMA proceedings on Combinatorics, Springer-Verlag, give some
results on the AFD conjecture. In particular, Blokhuis et al prove thatif an
AFD is not of the Baer type, then it must be a certain type of Bhaskara-Rao
type design. However, that paper does not contain a proof of the statement
that an AFD(5) does not exist (which is proved in the present paper).
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