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Abstract. The problem we consider is: Given a complete multipantite graph G with
integral weights on the edges, and given an integer m, find a clique C in G such that
the weight-sum of the edges of C is greater than or equal to m. We prove that where G
has k parts, each with at most two nodes, the edge-weights are 01, and m = (;) , this
problem is equivalent to 2-conjunctive normal form satisfiability, and hence is polyno-
mially solvable. However, if either each part has at most three nodes or m is arbitrary,
the problem is NP-complete. We also show that a related problem which is equivalent
to a 01 weighted version of 2-CNF satisfiability is NP-complete.

The maximum edge-weighted clique problem in complete multipartite graphs arises
in transit scheduling, where it is called the schedule synchronization problem.

Let Vi, V2, ..., Vi be pairwise disjoint non-empty sets. The complete multipar-
tite graph G( VA, V2, ..., Vi) is defined to be the graph with node-set U:.‘,,l V; and
an edge between nodes u and v (denoted [u, v]) ifand only if u € Vi, v € Vi, i #
h.

A clique C in graph G is a subgraph of G such that if nodes u, v € C, then edge
(u,v] €C.

We consider problems of the following form: Given a complete multipartite
graph G with integral weights w[ 4, v] on the edges, and given an integer m, find
a clique C in G such that the weight-sum, ), .o wlu,v], of the edges of C
equals m or is greater than or equal to m.

Consider a complete multipartite graph G(V1, V3, ..., Vi) with 0-1 edge wei-
ghts. We will show that the problem of finding a clique of weight () is poly-
nomially solvable if |V;| < 2 Vi, but NP-complete if |[V;] < 3 Vi. We will also
show that given an integer m, the problem of finding a clique of weight > m
is NP-complete even if [V;| < 2 Vi. One other related problem is shown to be
NP-complete.

A Boolean expression B is said to be in conjunctive normal form (CNF) if it
consists of a conjunction (“and”) of disjunctions (“or”) of literals (variables z; or
their negatives z;); that is, B = AL, (Vgen,€;) where D; is a set of literals. A
Boolean expression B is satisfiable if there is an assignment of true (T) and false
(F) values to the variables such that B = T'.

1Research supported by the Natural Sciences and Engineering Research Council of Canada, Operating
Grant A8036.

JCMCC 9 (1991), pp. 33-37



The satisfiability problem is: Given a Boolean expression, it is satisfiable? A 2-
CNF is a CNF with two literals per disjunction, and a 3-CNF is defined similarly.
The 2-CNF satisfiability problem is polynomially solvable (e.g., see (2]), but the
3-CNF satisfiability problem is NP-complete [1].

Problem 1. Given a complete multipartite graph G = G(V1,Va, ... Vi), with
|Vil = 2 Vi, and with 0-1 weights wlu,v] on the edges, find a clique of weight
(¥) or determine that there isn’t one.

Theorem 1. Problem 1 is equivalent to: given a 2 -CNF, find a satisfying as-
signment or determine that there isn’t one.

Theorem 1 is proved using the following Construction 1 and its reverse, Con-
struction 2.

Construction 1. Given an instance of Problem 1, construct a 2 -CNF as follows.

For each i, create a variable =;, and let the two nodes in V; represent z; = F
and z; = T. For each edge [u,v) of G with wlu,v] = 0, let D[u,v] be
the two-literal disjunction which would be false if the assignments corresponding
to u and v were chosen. (For example, D(z, = F,z; = T] = z, V I;). Let
B = Ayfup)=0Dlu,v].

Construction 2. Givena2-CNF B = A%, (&, V¢;,) whered;,, &, € {zi,5; :
1 < i < k}, construct an instance of Problem 1 as follows. For each variable z;,
let V; be a set of two nodes, one representing x; = F and the other =; = T. Give
all edges of G(Vi,Va,..., Vi) weight 1 except, for each disjunction 2;, V¥, of
B, give the edge which corresponds to [1;, = F,l;, = F] weight 0.

Claim 1. In Construction 1 (or 2), G has a clique of weight () if and only if
B is satisfiable.

Proof: Suppose C is a clique in G of weight (£). Then |C N V;| = 1 Vi, and all
edges of C have weight 1. Assign z; the value specified by C N V;. Because all
edges of C have weight 1, this assignment satisfies B.

Reversing this argument proves the “if” part of Claim 1. |
Proof of Theorem 1: Theorem 1 now follows from Constructions 1 and 2 and
Claim 1. |

Construction 1 enables us to use any algorithm for finding a satisfying assign-
ment for a 2-CNF to solve Problem 1. Knowing Construction 1, it is quite easy
to transform known polynomial algorithms for 2-CNF satisfiability (e.g. see [2])
into polynomial algorithms for Problem 1. Any algorithm for Problem 1 is easily
modified to solve the same problem where |V;| < 2 Vi.

Problem 2. Given a complete multipartite graph G = G(V1, V2, ..., Vk) with
|V| = 2 Vi, and with 01 weights w(u,v] on the edges, and given an infeger m,
is there a clique which hits each V;, and has weight > m?
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Theorem 2. Problem 2 is NP-complete.

Proof: Problem 2 is clearly in NP, The following problem is NP-complete: Given
a 2-CNF B, and given an integer g, find an assignment which satisfies at least g of
the clauses [4]. This problem can be reduced to Problem 2 by using Construction
2 because:

Claim 2. In Construction 2, G has a clique which hits each set V; and which
has weight (¥) —p if and only if B has an assignment in which all but p of the
disjunctions are satisfied. |

Where d is the number of disjunctions in B, choose m = (;) —(d—-qg). 1§

Problem 3. Given a complete multipartite graph G = G(V,Va,..., Vi), with
|Vil = 3 Vi, and with 0-1 weights wlu,v] on the edges, is there a clique of
weight (£)?

Theorem 3. Problem 3 is NP-complete.

Proof of Theorem 3: Problem 3 is clearly in NP. Construction 3 below transforms
any 3-CNF satisfiability problem into an instance of Problem 3. Since 3-CNF
satisfiability is NP complete, so is Problem 3. 1

Construction 3. GivenaCNE B = AL, (Vgeny), let G be the complete mul-
tipartite graph G = G(V1, V4, ..., Vi) where V; = {(&;,4) : literal £; € D;}.
Assign weights to the edges of G as follows:

1 ifg#5

0 otherwise

Fori#h wl(Z,) (k)= {

Claim 3. There is a clique of weight (¥) in G ifand only if B is satisfiable.

The referee pointed out that Construction 3 is essentially the same as the con-
struction used in [5], p.522, to prove that the following problem is NP-complete:
Given a graph H and an integer m, is there a clique in H with > m nodes? The
construction in [5] is, given a CNF B, construct G as in Construction 3, except
delete all the edges of weight 0. Let m be the number of disjunctions in B. Then
there is a clique with > m nodes in the graph constructed if and only if B is
satisfiable.

We remark that Construction 3 transforms any 2-CNF satisfiability problem into
an instance of Problem 1, but not the same instance of Problem 1 that Construction
2 would produce. In Construction 3, if we consider the subgraph of G formed by
the edges with weight 0, each connected component is a complete bipartite graph.

Problem 4. Given a complete multipartite graph G = G(V1,Va,..., V) with
|Vi| = 2 Vi with 0-1 weights on the edges and 0 -1 weights on the nodes, and
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given an integer m, is there a clique in G with edge-weight (;) and node-weight
>m?

Problem 4 is an extension of Problem 1 and hence of 2-CNF satisfiability. In
the 2-CNF form what it says is: Given a 2-CNF B and for each variable z; two
0-1 weights, one for setting z; = F and one for setting z; = T, and given an
integer m, is there a satisfying assignment such that the sum of the weights of the
chosen values is > m?

Theorem 4. Problem 4 is NP-complete.

Proof: Problem 4 is clearly in NP. We will prove that it is NP-complete by reduc-
ing the following NP-complete problem to it: Given a graph A and an integer m,
is there a clique in H with > m nodes?

Construction 4. Given a graph H with k nodes, and given an integer m, con-
_ struct an instance of Problem 4 as follows. For each node 1 of H, let V; =
{ui, v}, and let G = G(W1,Va,..., Vk). Give all edges of G weight 1 except
edges of the form [up, u;] where [h,1] is not an edge of H. Give the nodes u;
weight 1 and the nodes v; weight 0.

Claim 4. H has a clique with > m nodes if and only if the instance of Problem
4 constructed above has a yes answer.

Proof of Claim 4: Let C be a clique in H with pnodes. Then C’' = {u; : iisa
node of C} U{v; : i is not a node of C} is the node-set of a clique in G with edge
weight (%) and node-weight p.

Conversely, let C' be a clique in G with edge weight (§) and node-weight p.
Since all edges of C' have weight 1,C = {i : u; is a node of C'} is the node-set
of aclique in H,and |C| = p. [ |

The maximum edge-weighted clique problem in a complete multipartite graph
arises in transit scheduling; see [6], where it is called the schedule synchroniza-
tion problem. The exact form of the problem given in [6] is: Given a complete
multipartite graph G(Vi, V2,..., Vi) with weights on the edges, find a minimum
weight clique which hits each set V;.

By modifying the proof of Theorem 2, it follows that this problem is NP- hard
even if |V;] = 2 Vi and the edge weights are O or 1.
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